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Abstract: Building on a contribution by Dalgaard and Strulik [C.L. Dalgaard and H. Strulik, Resource and Energy Economics33, 782
(2011)], this paper deals with the mathematical modelling for an economy viewed as a transport network for energy in which the law of
motion of capital occurs with a time delay. By choosing time delay as a bifurcation parameter, it is proved that the system loses stability
and a Hopf bifurcation occurs when time delay passes through critical values. An important scenario arising from the analysis is the
existence of limit cycles generated by supercritical Hopf bifurcations. The results are of great interest for the analysis of the asymptotic
economic growth.
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1. Introduction

The research of basic principles for the modelling of the
economic growth are nowadays a new and hot challenge
which has been object of several investigations. Since 1982
Spencer has advocated that the economic growth of soci-
eties depends on their capability to exploit the increasing
amounts of energy [1]. Accordingly, the quantity of energy
that a society consumes becomes an economic tool to mea-
sure its progress and thus the capital accumulation repre-
sents an important strategy for the growth process, see [2]
and [3]. In particular the Solow model [3], which involves
the aggregate production function, has given an important
contribution to the economic growth theory especially be-
cause it has been proven to be able to explain the cross-
country differences in GDP per worker. However, as dis-
cussed in [4], the derivation of a law of motion for capital
without recurring to the existence of an aggregate produc-
tion function could be more appropriated.

Recently, some principles of the physics and biology
have been proposed for the modelling of the law of motion
for capital per worker, see, among others, [5,7–9]. Simi-
larly to paper [10] where a growth model for living tissue
has been derived by assuming that energy is required to

cells for their survival and reproduction (thermodynamics
conservation principle), it is assumed that the capital stock
increases if total energy expenditure exceeds the energy
costs. Another principle is referred to Kleiber’s law [11],
which states the correlation between the energy consump-
tion of biological organisms (basal metabolism) and their
energy requirements (body mass). Specifically the biolog-
ical systems are viewed as energy transporting networks
and the Kleiber’s law models the diffusion and absorb-
tion of energy. The previous principles refer to biological
networks that have been developed through natural selec-
tion, which has produced more efficient networks. Sim-
ilarly, these principles can be also applied to man-made
networks, see [12], where the authors have applied these
principles to artificial networks with the aim to discover
universal laws with applications to human societies. More-
over mathematical models have been developed in [5] and
[6] for an economy viewed as a transport network for en-
ergy. In these models the energy consumption per worker
is seen as the counterpart to metabolism, and capital per
worker as the counterpart to body size.

Recently, Dalgaard and Strulik [6] have developed a
mathematical model of an economy viewed as a trans-
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portation network for electricity that is mathematically iso-
morphic to the Solow-Swan model proposed in papers [3,
13]. The model is based on the main assumption that there
exists a supply relation, which is a concave and log-linear
Kleiber’s law relation, between the electricity consump-
tion per capita (viewed as the economic counterpart to me-
tabolism) and capital per capita (viewed as the counterpart
to body size).

This paper is concerned with a generalization of the
Dalgaard and Strulik model analyzed in [6]. Specifically,
the energy conservation equation contains a time delay
which take cares of the previous occurring dynamics. Gen-
erally, delay in dynamical systems is exhibited whenever
the system’s behavior is dependent at least in part on its
history. The introduction of time delay is a common ap-
proach used in biology for instance in the modelling of
gene expression, cell division, as well as cell differentia-
tion and cell maturation, with the aim to be more consistent
with the cell growth kinetics, see the review paper [14], pa-
pers [15–17] and the references therein. This work is mo-
tivated by economical applications to plan the asymptotic
economic growth [22].

The present paper is organized as follows. After this
introduction Section 2 reviews the original model by Dal-
gaard and Strulik and deals with the generalization which
includes the delay. In Section 3 by choosing time delay
as a bifurcation parameter, and applying the local Hopf
bifurcation theory (see e.g. [18]), we investigate the ex-
istence of stable periodic oscillations for equation. More
specifically, we prove that, as the delayT increases, the
positive equilibrium loses its stability and a sequence of
Hopf bifurcations occur. Furthermore in Section 4 by us-
ing the Lindstedt’s perturbation method [19], we prove that
the Hopf bifurcation is supercritical and the bifurcating so-
lutions are stable. Finally Section 5 is devoted to research
perspective.

2. The delayed Dalgaard and Strulik model

As already mentioned in the introduction the mathemati-
cal model of Dalgaard and Strulik [6] is concerned with
the modelling of an economy viewed as a transportation
network for electricity. Electricity is used to run, maintain,
and create capital.

Assuming that time is continuous, and letµ be the en-
ergy requirement to operate and maintain the generic capi-
tal good whileν is the energy costs to create a new capital
good, energy conservation implies

e(t) = µk(t)+ν
dk(t)

dt
, (1)

wherek(t) denotes capital stock. Equation (1), which pro-
vides a metric for aggregation of capital, captures the elec-
tricity at any given instant in time; the right-hand side of
(1) summarizes the instantaneous electricity requirements
(the size of population has been normalized to one).

It is worth stressing that if we were to shut off energy
supply entirely, namelye(t) = 0, the capital stock would
shrink over time, due to lack of maintenance and replace-
ment. The rate at which the stock shrink is−µ/ν , which
therefore can be viewed as the mirror image of the depreci-
ation rate, commonly introduced in models of growth and
capital accumulation.

Bearing all above in mind the Dalgaard and Strulik
mathematical model [6] is derived by modelling the en-
ergy ase(t) = ε[k(t)]a where0 < a < 1 is a real constant
proportional to the dimension and efficiency of the net-
work, andε > 0 is a real constant in the sense that it is
independent of capital per worker. The model thus reads:

dk(t)
dt

=
ε
v

[k(t)]a− µ
v

k(t). (2)

The Dalgaard and Strulik model shares the technical prop-
erties with the Solow model. In particular, there exists a
unique globally stable steady-state to which the economy
adjusts.

In what follows we consider a generalization of the
Dalgaard and Strulik model [6]. Specifically, it is assumed
that the energy conservation equation contains a time de-
lay T which is introduced in the equation (1) as follows:

e(t−T) = µk(t−T)+v
dk(t)

dt
, (3)

Consequently, the law of motion for capital is described by
the following non-linear delay differential equation:

dk(t)
dt

=
ε
v

[k(t−T)]a− µ
v

k(t−T), (4)

for some initial functionk(t) = φ(t), t ∈ [−T,0].
According to the mathematical model (4), at any given

instant in timet, the capital stockk(t) is determined by the
electricity at the instant in timet−T.

3. Existence and analysis of Hopf
bifurcations

Equilibria (or steady states in the language of the econom-
ical sciences) of equation (4), of course, coincide with the
corresponding points for zero delay,T = 0. Hence, there
exists a unique positive steady statek∗ satisfying the re-
lation εka−1∗ = µ. After setting the following translation
x(t) = k(t)−k∗, equation (4) is rewritten as follows:

dx(t)
dt

=
ε
v

[x(t−T)+k∗]a− µ
v

[x(t−T)+k∗] . (5)

The following theorem characterizes the nature of the
equilibrium pointk∗.
Theorem 3.1.Let k∗ be the unique positive equilibrium for
the mathematical model (4). Then there exists a positive
numberT0 such that the equilibriumk∗ is asymptotically

c© 2013 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.7, No. 1, 139-143 (2013) / www.naturalspublishing.com/Journals.asp 141

stable forT ∈ [0,T0) and unstable forT > T0. Moreover
equation (4) undergoes a Hopf bifurcation atk∗ whenT =
Tj where

Tj =
1

ω0

(π
2

+2 jπ
)

, j ∈ {0,1,2, . . .},

and

ω0 =
(1−a)µ

v
.

Proof. As is well known, the stability of the positive steady
state and local Hopf bifurcations can be determined by the
distribution of the roots associated with the characteristic
equation of its linearization [20]. The linearization of (5)
at zero is

dx(t)
dt

=
(a−1)µ

v
x(t−T). (6)

By substituting candidate solutions of the forme−λT into
equation (6), we get that the corresponding characteristic
equation of (6) is given by

λ =
(a−1)µ

v
e−λT . (7)

Equation (7) is a quasi-polynomial, which exhibits an infi-
nite number of (complex) roots. Notice that, whenT = 0,
x∗ = 0 is asymptotically stable becauseλ = (a−1)µ/v <
0.
Let iω (ω > 0) be a root of equation (7). Then we have

iω =
(a−1)µ

v
e−iωT .

Separation in the real and imaginary parts implies that

(a−1)µ
v

cosωT = 0, ω =− (a−1)µ
v

sinωT. (8)

Squaring and adding the both equations in (8), we getω2 =
(a−1)2µ2/v2. Consequently, we can conclude that equa-
tion (7) has a unique pair of purely imaginary roots±iω0,
where

ω0 =
(1−a)µ

v
. (9)

From the equations in (8), we can define

Tj =
1

ω0

(π
2

+2 jπ
)

, j ∈ {0,1,2, . . .}.

Let λ j(T) = α j(T)+ iω j(T) denote a root of equation (7)
nearT = Tj satisfyingα j(Tj) = 0 andω j(Tj) = ω0. Dif-
ferentiating the characteristic equation (7) with respect to
T, we obtain

dλ
dT

=
(1−a)µ

v
e−λT

(
T

dλ
dT

+λ
)

.

Hence, we have
(

dλ
dT

)−1

=− 1
λ 2 −

T
λ

.

This implies that

sign

[
dνk(T)

dT

∣∣∣∣
T=Tj

]
= sign


Re

(
dλ
dT

)−1
∣∣∣∣∣
Tj




= sign

[
Re

(
− 1

λ 2 −
T
λ

)∣∣∣∣
Tj

]

= sign

(
1

ω2
0

)
. (10)

Thus, from(10) we have thatα ′
j(Tj) > 0, implying that all

the roots crossing the imaginary axis atiω0 cross from left
to right asT increases and thus this results in the loss of
stability. We have found that ifT ∈ [0,T0), then all roots
of equation (7) have negative real parts. IfT = T0, then
all roots of equation (7), except± iω0, have negative real
parts. Finally, ifT ∈ (Tj ,Tj+1) for j ∈ {0,1,2, . . .}, then
equation (7) has2( j +1) roots with positive real parts. Re-
calling that spectral properties of equation (7) lead imme-
diately to the properties of the positive equilibriumk∗ for
equation (4), the conclusion holds.¤.

4. On the direction and stability of Hopf
bifurcation

In this section, we investigate the direction and stability of
bifurcating periodic solutions of equation (4) atT0 given
by Theorem 3.1, using the method based on the perturba-
tion theory introduced by Lindstedt [19].

Theorem 4.1.The mathematical model (4) admits a stable
limit cycle. Moreover the Hopf bifurcation is supercritical.

Proof. We start by considering the Taylor expansion of
equation (5) up to the third order at the zero equilibrium:

dx(t)
dt

=
(a−1)µ

v
x(t−T)

+
a(a−1)µk−1∗

2v
[x(t−T)]2

+
a(a−1)(a−2)µk−2∗

6v
[x(t−T)]3 + · · · (11)

Next, we stretch time by replacing the independent vari-
ablet by s= ω (η) t, whereω is a parameter close toω0
and η is a small positive number. In this way, solutions
which are2π/ω periodic int become periodic with period
2π. With this change of variable equation (11) becomes

ω
dx(s)

ds
=

(a−1)µ
v

x(s−ωT)

+
a(a−1)µk−1∗

2v
[x(s−ωT)]2

+
a(a−1)(a−2)µk−2∗

6v
[x(s−ωT)]3 + · · · . (12)

c© 2013 NSP
Natural Sciences Publishing Cor.



142 C. Bianca, M. Ferrara, L. Guerrini: Hopf bifurcations in a model of capital accumulation

As a final step in the perturbation method, we expandx(s),
ω andT in power series ofη as follows:





x(s) = ηx0(s)+η2x1(s)+η3x2(s)+ · · · ,
ω = ω0 +ηω1 +η2ω2 + · · · ,
T = T0 +ηT1 +η2T2 + · · · ,

(13)

with the obvious definition ofx0,x1, . . . .
According to (13),x(s−ωτ) can be expanded as fol-

lows:

x(s−ωT) = ηx0(s−ωT)+η2x1(s−ωT)

+ η3x2(s−ωT)+ · · · ,
where

x j(s−ωT) = x j(s−ω0T0)

−x′j(s−ω0T0)[η(ω1T0 +ω0T1)

+η2(ω2T0 +ω1T1 +ω0T2)+ · · · ]

+
1
2

x′′j (s−ω0T0) [η(ω1T0 +ω0T1)+ · · · ]2−·· · .
Recalling (9) and the fact thatω0T0 = π/2, by substituting
the above series expansions in (12), and regrouping into
contributions at each order inη , we obtain a system of dif-
ferential equations, omitted here for brevity. After tedious
and long calculations, we can derive (see Rand and Ver-
dugo [21] for details) thatω1 = 0, T1 = 0 as well as the
amplitudeA of the limit cycle that was born in the Hopf
bifurcation. Therefore we have

A2 =
P
Q

η2T2, (14)

whereP = 20ω7
0 > 0 and

Q =
[

5πa(a−2)
4

− 11πa2

4
−a2

]
k−2
∗ ω6

0 < 0.

In (14), A is real so thatA2 > 0, which means from (14)
that T2 must have the same sign asP/Q. Therefore the
proof of the theorem is concluded.¤

5. Perspective

This section lays out some research perspective of the Dal-
gaard and Strulik model with time-delay introduced in the
present paper. The model is based on the thermodynamic
assumption according which the capital is generated and
maintained by human and non-human energy.

The first issue to be developed is the comparison of the
delayed model introduced in the present paper with the ex-
perimentally measurable quantities. Indeed the mathemati-
cal models should reproduce both qualitatively and quanti-
tatively empirical data. The economic growth is a complex

phenomenon from which emerges a collective behaviour
that cannot be explained by the analysis of the single el-
ements. Therefore the model should reproduce, at least
at a qualitative level, the relative emerging collective be-
haviours. Accordingly our model should be able to match
the data on electricity consumption per capita, which is an
observable variable.

The mathematical model proposed in this paper could
be also adapted for the analysis of the asymptotic eco-
nomic growth. This is an interesting research perspective
since, if it is reached, allows the possibility to perform pre-
dictions of future economical disasters.

The energy-based method used to derive the mathe-
matical model of this paper can be further specialized by
taking into account the possibility to include the conserva-
tion of global resources. The conservation of global quan-
tities in the system can be performed by using the frame-
work of the thermostatted kinetic theory for active parti-
cles [23,24]. This new framework has been developed for
the modelling of complex systems where the kinetic en-
ergy (in general a moment of the distribution function)
must be preserved. The framework has been adopted to
model large systems of physical and living systems, e.g.
to semiconductor devices, nanosciences, biological phe-
nomena, vehicular traffic, social and economics systems,
crowds and swarms dynamics, see the review paper [25].
Therefore perspective include also the possibility of gen-
eralizing the Dalgaard and Strulik model within this new
framework.
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