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Abstract: The object of the present paper is to investigate a class of three-term recurrence relations for the Frobenius-Euler polynomials
of higher order. By making use of a new explicit formula for the Frobenius-Euler polynomials of higher order in terms of the weighted
Stirling numbers of the second kind, we provide an algorithmfor calculating these polynomials. Furthermore, as an application of the
results derived in this paper, we present an algorithm for computing the Lipschitz-Lerch zeta function at nonnegative integer arguments.
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1 Introduction

For λ ∈ C with λ 6= 1, the Frobenius-Euler polynomials

H(α)
n (x | λ ) of orderα ∈ C, are defined by the following

generating function

(

1−λ
ez−λ

)α
exz=

∞

∑
n=0

H(α)
n (x | λ )

zn

n!
.

Whenx= 0,

H(α)
n (0 | λ ) = H(α)

n (λ )

are called the Frobenius-Euler numbers. Clearly, we have

H(α)
n (x | λ ) =

n

∑
k=0

(

n
k

)

H(α)
n (λ )xn−k

. (1)

The generalized Euler polynomialsE(α)
n (x), given by

E(α)
n (x) := H(α)

n (x | −1)

are defined by the following generating function

(

2
ez+1

)α
exz=

∞

∑
n=0

E(α)
n (x)

zn

n!
.

In the special case whenα = 1, the Frobenius-Euler
polynomials are reduced to the Eulerian polynomials
given by

H(1)
n (x | λ ) := Hn (x | λ ) ,

which are widely cited in the literature. For an expository
survey on this topic, we refer the reader to [7].

Recently, many research articles were devoted to the
study of the Frobenius-Euler polynomials [9,13] and many
generalizations were introduced [14,16]. As an example of
a recent application of the Frobenius-Euler polynomials,
T.-X. He [11] presented a relationship betweenHn(x | λ )
andB-splines (see also [1,15]).

In this paper, we propose to investigate several explicit

formulas of the Frobenius-Euler polynomialsH(α)
n (x | λ )

of orderα in terms of the weighted Stirling numbers of
the second kind. As a consequence of our investigation,
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we provide an algorithm computing the Frobenius-Euler

polynomialsH(α)
n (x | λ ) .

We first recall some basic definitions and some results
that will be useful in the rest of the paper. Forν ∈ C, the
Pochhammer symbol(ν)n is defined by

(ν)n = ν (ν +1)· · · (ν +n−1) and (ν)0 = 1.

The (signed) Stirling numberss(n,k) of the first kind are
the coefficients in the following expansion:

x(x−1) · · ·(x−n+1) =
n

∑
k=0

s(n,k)xk
.

and satisfy the recurrence relation given by

s(n+1,k) = s(n,k−1)−ns(n,k) (1≦ k≦ n) . (2)

The Stirling numbers of the second kind, denoted by
S(n,k), are the coefficients in the following expansion:

xn =
n

∑
k=0

k!

(

x
k

)

S(n,k) .

The exponential generating functions fors(n,k) and
S(n,k) are given by

∞

∑
n=k

s(n,k)
zn

n!
=

1
k!

[ln(1+ z)]k

and
∞

∑
n=k

S(n,k)
zn

n!
=

1
k!

(ez−1)k ,

respectively.
For any nonnegative integerr, the r-Stirling numbers

Sr (n,k) of the second kind, which were introduced by
Broder [3], are a generalization of the familiar Stirling
numbersS(n,k) of the second kind. In fact, the numbers
Sr (n,k) count the number of partitions of a set ofn
objects into exactlyk nonempty and disjoint subsets such
that the first r elements are in distinct subsets.
Furthermore, their exponential generating function is
given by

∞

∑
n=k

Sr (n+ r,k+ r)
zn

n!
=

1
k!

erz (ez−1)k .

For any positive integerm, the r-Whitney numbers
Wm,r(n,k) of the second kind, which were introduced by
Mezö [18], are the coefficients in the following
expansion:

(mx+ r)n =
n

∑
k=0

mkWm,r(n,k)x(x−1) · · ·(x− k+1)

and are given by their generating function as follows:

∞

∑
n=k

Wm,r(n,k)
zn

n!
=

1
mkk!

erz (emz−1)k .

Clearly, we have

W1,0(n,k) = S(n,k) andW1,r(n,k) = Sr (n+ r,k+ r).

For more details on these numbers, we refer the reader to
[10,19,21,25] and also to the references cited therein.

The weighted Stirling numbersS k
n (x) of the second

kind are defined by (see [4,5])

S
k
n (x) =

1
k!

∆kxn

=
1
k!

k

∑
j=0

(−1)k− j
(

k
j

)

(x+ j)n ,

where ∆ denotes the forward difference operator. The
exponential generating function ofS k

n (x) is given by

∞

∑
n=k

S
k
n (x)

zn

n!
=

1
k!

exz(ez−1)k (3)

and weighted Stirling numbersS k
n (x) satisfy the

following recurrence relation:

S
k
n+1 (x) = S

k−1
n (x)+ (x+ k)S k

n (x) (1≦ k≦ n).

As a consequence from the generating function(3), one
can deduce the following results:

S
k
n (0) = S(n,k) , (4)

S
k
n (r) = Sr (n+ r,k+ r) (5)

and

mn−k
S

k
n

( r
m

)

=Wm,r (n,k) . (6)

2 Explicit Formulas for the Frobenius-Euler
Polynomials of Order α

An explicit formula for the Frobenius-Euler polynomials

H(α)
n (x | λ ) of order α ∈ C, expressed in terms of the

weighted Stirling numbers of the second kind, is given by
the following result.

Theorem 1. The following relationship holds true:

H(α)
n (x | λ ) =

n

∑
k=0

(α)k

(λ −1)k
S

k
n (x) . (7)

Proof. From (3), we have

∞

∑
n=0

(

n

∑
k=0

(α)k

(λ −1)k
S

k
n (x)

)

zn

n!

=
∞

∑
k=0

(α)k

(λ −1)k

(

∞

∑
n=k

S
k
n (x)

zn

n!

)

= exz
∞

∑
k=0

(α)k
1
k!

(

ez−1
λ −1

)k

.
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Since
∞

∑
n=0

(a)n
zn

n!
= (1− z)−a

,

we get

∞

∑
n=0

(

n

∑
k=0

(α)k

(λ −1)k
S

k
n (x)

)

zn

n!
= exz

(

1−
ez−1
λ −1

)−a

=
∞

∑
n=0

H(α)
n (x | λ )

zn

n!
,

which gives, by identification, the desired result.
⊓⊔

Remark 1. By settingx= 0 andα = s (s being a positive
integer) in(7) , we have

H(s)
n (λ ) =

n

∑
k=0

(s)k

(λ −1)k
S(n,k) ,

which is a result due to Carlitz [6].

Remark 2. By substitutingα = 1, Theorem1 is reduced
to the known result given earlier by Chang and Ha [8].

Remark 3. If we set x = r
m in (7) and using(6), we

obtain an explicit representation forH(α)
n (x | λ ) at

rational arguments involving ther-Whitney numbers
Wm,r(n,k) of the second kind.

H(α)
n

( r
m

∣

∣λ
)

=
n

∑
k=0

(α)k

(λ −1)k
mk−nWm,r (n,k) .

In particular, form= 1, we have

H(α)
n (r | λ ) =

n

∑
k=0

(α)k

(λ −1)k
Sr (n+ r,k+ r).

Remark 4. Setting λ = −1, we obtain the following
explicit formula for the generalized Euler polynomials

E(α)
n (x) :

E(α)
n (x) =

n

∑
k=0

(−1)k

2k
(α)k S

k
n (x) ,

which was given by Bouticheet al. [2].

3 Frobenius-Genocchi Polynomials of Higher
Order

Recently, Yılmaz Yaşar and̈Ozarslan [26] introduced and
studied a new family of polynomials, called
Frobenius-Genocchi polynomials, which are defined by
the following generating function:

(1−λ )z
ez−λ

exz=
∞

∑
n=0

Gn (x | λ )
zn

n!
.

It is natural that we define the generalization of the
Frobenius-Genocchi polynomials by means of the
following generating function:

(

(1−λ )z
ez−λ

)α
exz=

∞

∑
n=0

G(α)
n (x | λ )

zn

n!
. (8)

We call G(α)
n (x | λ ) in (8) the Frobenius-Genocchi

polynomials of orderα. Whenx= 0,

G(α)
n (0 | λ ) = G(α)

n (λ )

denote the Frobenius-Genocchi numbers of orderα.

The generalized Genocchi polynomialsG(α)
n (x), given

by (see, for details, [12,23])

G(α)
n (x) := G(α)

n (x | −1)

are defined by the following generating function:

(

2z
ez+1

)α
exz=

∞

∑
n=0

G(α)
n (x)

zn

n!
. (9)

By settingα = 1 in (9), we obtain the classical Genocchi
polynomials:

Gn (x) := G(1)
n (x) .

It is obvious thatG(α)
n (x | λ ) belongs to the class of

Appell polynomials. Some of the well-known properties
are readily derived from(8) . For example, we have

d
dx

G(α)
n (x | λ ) = nG(α)

n−1(x | λ )

and

G(α)
n (x | λ ) =

n

∑
k=0

(

n
k

)

G(α)
n (λ )xn−k

. (10)

Theorem 2. The following explicit formulas hold true:

G(l)
n (x | λ ) =

n!
(n− l)!

H(l)
n−l (x | λ ) (11)

=
n!

(n− l)!

n−l

∑
k=0

(l)k

(λ −1)k
S

k
n−l (x) . (12)

The following corollary is derivable easily from
Theorem2.

Corollary. The Frobenius-Genocchi polynomials

G(l)
n (x | λ ) of order l at rational arguments are given by

G(l)
n

( r
m

| λ
)

=
n!

mn−l (n− l)!

n−l

∑
k=0

(l)k

(λ −1)k
mkWm,r (n− l ,k)

in terms of the Whitney numbers of the second kind.
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By settingx= 0 in Theorem2, we obtain the following
explicit formula for the Frobenius-Genocchi numbers of
orderα :

G(l)
n (λ ) =

n!
(n− l)!

n−l

∑
k=0

(l)k

(λ −1)k
S(n− l ,k)

By settingλ = −1 in (12), we obtain an explicit formula

for the Genocchi polynomialsG(l)
n (x) of orderl as follows:

G(l)
n (x) =

n!
(n− l)!

n−l

∑
k=0

(−1)k

2k (l)kS
k
n−l (x) . (13)

If we setx= 0 in (13), we obtain an explicit formula for the
generalized Genocchi numbers of orderl , which is given
by Luo and Srivastava [17, p. 5709, Eq. (53)].

4 Recurrence Relations for the
Frobenius-Euler Polynomials of Higher
Order

In this section, we propose an algorithm, which is based
on a three-term recurrence relation, for calculating the

Frobenius-Euler polynomialsH(α)
n (x | λ ) of order α.

First, by settingx = 0 in Theorem1, we obtain the
following explicit formula for the Frobenius-Euler
numbers:

H(α)
n (λ ) =

n

∑
k=0

(α)k

(λ −1)k
S(n,k) .

Now, by means of the Stirling transform (see, for details,
[20]), we obtain

(α)n

(λ −1)n
=

n

∑
k=0

s(n,k)H(α)
k (λ ) .

Next, it is convenient to introduce the sequence

A
(α)

n,m (λ ) with two indices as follows:

An,m := A
(α)

n,m (λ ) =
(λ −1)m

(α)m

m

∑
k=0

s(m,k)H(α)
n+k (λ ) (14)

together with

A0,m = 1 and An,0 = H(α)
n (λ ) .

Theorem 3. TheA
(α)

n,m (λ ) satisfies the following three-
term recurrence relation:

An+1,m =
m+α
λ −1

An,m+1+mAn,m (15)

with the initial sequence given by

A0,m = 1.

Proof. From(14) and(2) , we have

An,m+1=
(λ −1)m+1

(α)m+1

m+1

∑
k=0

[s(m,k−1)−ms(m,k)]H(α)
n+k (λ ) .

After some rearrangement, we find that

An,m+1 =
(α)m

(α)m+1
(λ −1)An+1,m−

m(λ −1)(α)m

(α)m+1
An,m.

This evidently completes the proof of Theorem3.
⊓⊔

Finally, we consider the polynomialsA (α)
n,m (x,λ )

defined by

An,m(x) := A
(α)

n,m (x,λ ) =
n

∑
k=0

(

n
k

)

A
(α)

k,m (λ )xn−k
.

It obviously follows from(1) that

A
(α)

0,m (x,λ ) = 1

and that
A

(α)
n,0 (x,λ ) = H(α)

n (x | λ ) .

Theorem 4. The polynomialsA
(α)

n,m (x,λ ) satisfy the
following three-term recurrence relation:

An+1,m(x) = (x+m)An,m(x)+
m+α
λ −1

An,m+1 (x) (16)

with the initial sequence given by

A0,m(x) = 1.

Proof. It is readily seen that

x
d
dx

An,m(x) = n
n

∑
k=0

(

n
k

)

A
(α)

k,m (λ )xn−k

−n
n−1

∑
k=0

(

n−1
k

)

A
(α)

k+1,m(λ )xn−k−1
.

By using(15) , we obtain

x
d
dx

An,m(x) = nAn,m(x)

−n
n−1

∑
k=0

(

n−1
k

)(

m+α
λ −1

Ak,m+1+mAk,m

)

xn−k−1

= nAn,m(x)−n
m+α
λ −1

n−1

∑
k=0

(

n−1
k

)

Ak,m+1xn−k−1

−nm
n−1

∑
k=0

(

n−1
k

)

Ak,mxn−k−1

After some manipulations, we thus find that

xnAn−1,m(x) = nAn,m(x)−n
m+α
λ −1

An−1,m+1(x)

−nmAn−1,m(x) ,

which is obviously equivalent to(16) .
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⊓⊔

As an immediate application of(16) , let us consider
the Lipschitz-Lerch zeta function defined by (see [22,24])

φ (s,a,ξ ) :=
∞

∑
k=0

e2π ikξ

(a+ k)s
(17)

(

a> 0; ℜ(s)> 0 whenξ ∈R\Z; ℜ(s)> 1 whenξ ∈Z
)

.

It is well-known that, if ξ is not an integer, the
Lipschitz-Lerch zeta functionφ (s,a,ξ ) is an entire
function in s ∈ C and also that the values ofφ (s,a,ξ )
whens := −n is nonnegative integer are given in terms of
Eulerian polynomialsHn (x | λ ) by (see [8])

φ (−n,a,ξ ) =
(

1−e2π iξ
)−1

Hn

(

a
∣

∣e−2π iξ
)

.

We now present the following algorithm for
φ (−n,a,ξ ) . We start with the sequenceR0,m := 1 as the
first row of the matrix (Rn,m)n,m≧0. Each entry is
determined recursively by

Rn+1,m= (a+m)Rn,m+
m+1

e−2π iξ −1
Rn,m+1.

Then

φ (−n,a,ξ ) :=
Rn,0

1−e2π iξ , (18)

whereRn,0 are the first column of the matrix(Rn,m)n,m.
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