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Abstract: In this paper, a new class of distribution called the exponentiated Kumaraswamy linear exponential distribution has been
proposed. This class of distribution contains several distributions such as linear exponential, Kumaraswamy linear exponential and
exponentiated linear exponential as sub-models. The usefulness of the new distribution was illustrated using real data set.
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1 Introduction

Myriad of existing statistical distributions have been
modified in the literature in order to make them more
flexible in modeling lifetime data with both monotonic
and non-monotonic failure rates. The linear exponential
(LE) distribution is one of such distributions that have
been modified by a number of researchers in the statistical
literature.The LE distribution has two parameters which
are both scale parameters. However, in order to model
data that exhibit different degrees of skewness and
kurtosis, there is a need for the distribution to have shape
parameters. Thus, most modifications of the LE
distribution are carried out by adding extra shape
parameters to the distribution to make it more suitable for
modeling phenomenon with decreasing, increasing,
non-monotonic failure rates such as the bathtub, unimodal
or modified unimodal, which are common in firmware
reliability modeling and biological studies (see [2], [9]).

[7] developed a three parameter modification of the
LE distribution and called it the generalized linear failure
rate distribution. [3] proposed another generalized linear
exponential distribution. [6] also developed a new
generalization of the LE distribution and called it
exponentiated generalized linear exponential distribution.
[8] developed a new four parameter generalization of the
linear exponential distribution. [4] developed another

generalization of the LE distribution and called it the
Kumaraswamy linear exponential distribution.

In this paper, a new five-parameter distribution
function called the exponentiated Kumaraswamy linear
exponential (EKLE) distribution have been developed.

2 Exponentiated Kumaraswamy Linear
Exponential Distribution

A non-negative random variableX has EKLE distribution
with parametersλ , θ , a, b > 0 andα > 0 if its cumulative
distribution function (CDF) is

FEKLE(x;λ ,θ ,a,b,α) =

[

1−
(

1−
(

1−e−(λx+ θ x2

2 )

)a)b
]α

,

(1)

for x > 0. The parametersλ andθ are scale parameters
while a, b andα are shape parameters. The corresponding
probability density function (PDF) of EKLE distribution is

fEKLE (x;λ ,θ ,a,b,α) =

αab(λ +θx)e−(λ x+ θ x2
2 )

(

1− e−(λ x+ θ x2
2 )

)a−1

(

1−
(

1− e−(λ x+ θ x2
2 )

)a)1−b
[

1−
(

1−
(

1− e−(λ x+ θ x2
2 )

)a)b
]1−α , (2)
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for x > 0. One advantage of the EKLE distribution is, it
has a closed form CDF, which enables us to easily generate
random numbers from it using the relation

x =

−λ +

√

√

√

√

√λ 2−2θ ln



1−
(

1−
(

1−U
1
α
)

1
b
)

1
a





θ
,

(3)

whereU is uniformly distributed on the interval(0, 1).
The relation can be used to generate random samples
from EKLE distribution.

The hazard rate function of EKLE distribution is
given by

hEKLE (x;λ ,θ ,a,b,α) =

αab(λ +θx)e−(λ x+ θ x2
2 )

(

1− e−(λ x+ θ x2
2 )

)a−1(

1−
(

1− e−(λ x+ θ x2
2 )

)a)b−1

[

1−
(

1−
(

1− e−(λ x+ θ x2
2 )

)a)b
]1−α {

1−
[

1−
(

1−
(

1− e−(λ x+ θ x2
2 )

)a)b
]α} ,

(4)

for x > 0. The reverse hazard rate function has been shown
to play a useful role in reliability analysis [1]. It is given
by

τEKLE (x;λ ,θ ,a,b,α) =
fEKLE (x;λ ,θ ,a,b,α)

FEKLE (x;λ ,θ ,a,b,α)

=

αab(λ +θx)e−(λ x+ θ x2
2 )

(

1− e−(λ x+ θ x2
2 )

)a−1

(

1−
(

1− e−(λ x+ θ x2
2 )

)a)1−b
{

1−
(

1−
(

1− e−(λ x+ θ x2
2 )

)a)b
} , (5)

for x > 0.
The PDF and hazard rate function of EKLE

distribution for different parameter values are displayedin
Figure 1 and 2 respectively. From the figures, it is clear
that the PDF can be decreasing or unimodal and the
hazard rate function can be increasing, constant and so on
depending on the parameter values. The PDF of the
EKLE distribution can be written as a linear combination
of the PDF of an exponentiated linear exponential (ELE)
distribution. This result is important to provide
mathematical properties of the EKLE model directly from
those properties of ELE distribution. Ford > 0, a series
expansion for(1− z)d−1, for | z |< 1 is

(1− z)d−1 =
∞

∑
k=1

(−1)k
(

d−1
k

)

zk

=
∞

∑
k=1

(−1)kΓ (d)
k!Γ (d− k)

zk, (6)

whereΓ (·) is the gamma function. Since 0< e−(λ x+ θx2
2 ) <

1, for x > 0, then using expansion (6) in (2) yields

fEKLE (x;λ ,θ ,a,b,α) =
∞

∑
j=0

∞

∑
k=0

(−1) j+k

(

a−1
k

)(

b(k+1)−1
j

)

× αba( j+1)(λ +θx)
( j+1)

e−(λ x+ θ x2
2 )

(

1− e−(λ x+ θ x2
2 )

)a( j+1)−1

. (7)

It follows from (7) that

fEKLE (x;λ ,θ ,a,b,α) =
∞

∑
j=0

∞

∑
k=0

(−1) j+kbΓ (α +1)Γ (b(k+1))
k!( j+1)!Γ (α − k)Γ (b(k+1)− j)k!

× fELE (x;λ ,θ ,a( j+1)). (8)

Whenα is an integer, the indexk stops atα −1, whereas
the indexj stops atb(k+1)−1 if b > 0 is an integer.

2.1 Sub-models

The EKLE distribution is a very flexible model that
converges to different distributions when it parameter
values are changed. The EKLE distribution contains as
special models the following distributions displayed in
Table1.

Table 1: Sub-models of EKLE distribution
Distribution α b a θ λ
Kumaraswamy linear exponential 1 - - - -
Kumaraswamy exponential 1 - - 0 -
Kumaraswamy Rayleigh 1 - - - 0
Exponentiated Kumaraswamy exponential - - - 0 -
Exponentiated Kumaraswamy Rayleigh - - - - 0
Exponentiated exponential 1 1 - 0 -
Exponentiated Rayleigh 1 1 - - 0
Exponentiated linear exponential 1 1 - - -
Exponential 1 1 1 0 -
Rayleigh 1 1 1 - 0
Linear exponential 1 1 1 - -

2.2 Quantile, Median and Mode

The EKLE quatile function, sayQ(p) = F−1(p), can
easily be computed by inverting (1). Thus, we have

xp =

−λ +

√

√

√

√

√λ 2−2θ ln



1−
(

1−
(

1− p
1
α

) 1
b
)

1
a





θ
,

(9)

wherep ∈ (0,1). Using (9), the median of EKLE can be
obatined as

x0.5 =

−λ +

√

√

√

√

√λ 2−2θ ln



1−
(

1−
(

1−0.5
1
α

) 1
b
)

1
a





θ
.

(10)
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The mode, which is defined as the maximum value of the
PDF, denoted byx0 can be obtained numerically by
solving the following non-linear equation (11) since it is
not possible to obtain the explicit solution in the general
case. For different special cases the explicit form may be
obtained.

(a−1)(θx0+λ )e−(λx0+
θ x2

0
2

1−e−(λx0+
θ x2

0
2

−θx0−λ−

a(b−1)(θx0 +λ )e−(λx0+
θ x2

0
2

(

1−e−(λx0+
θ x2

0
2

)a−1

1−
(

1−e−(λx0+
θ x2

0
2

)a −

ab(α −1)(θx0+λ )e−(λx0+
θ x2

0
2

(

1−e−(λx0+
θ x2

0
2

)ab−1

1−
(

1−e−(λx0+
θ x2

0
2

)ab
= 0.

(11)

2.3 Moments

In this subsection, therth non-central moment for the
EKLE distribution was derived. Moments play important
role in any statistical analysis, especially in applications.
They are used for finding measures of central tendency,
dispersion, skewness and kurtosis among others.
Theorem 1. If X has EKLE distribution, then therth

non-central moment ofX is given by the following

µ
′
r = ωℓi jk

[

λΓ (2ℓ+ r+1)
(λ (i+1))2ℓ+r+1 +

θΓ (2ℓ+ r+2)
(λ (i+1))2ℓ+r+2

]

,r = 1, 2, . . . ,

(12)

where

ωℓi jk =

∞

∑
ℓ,i, j,k=0

(−1)ℓ+i+ j+kbΓ (α +1)Γ (b(k+1))Γ (a( j+1)+1)(θ(i+1))ℓ

i!k!ℓ!( j+1)!2ℓΓ (α − k)Γ (b(k+1)− j)Γ (a( j+1)− i)
.

Proof. Let X be a random variable having the density

function (2). The rth non-central moment of EKLE
random variable is given by

µ
′
r =

∫ ∞

0
xr fEKLE (x;λ ,θ ,a,b,α)dx.

Using (7) and (8),

µ
′
r =

∞

∑
j=0

∞

∑
k=0

(−1) j+kbΓ (α +1)Γ (b(k+1))
k!( j+1)!Γ (α − k)Γ (b(k+1)− j)

×
∫ ∞

0
xr fELE (x;λ ,θ ,a( j+1))dx. (13)

Using the fact that

(

1−e−(λx+ θ x2

2 )

)a( j+1)−1

=
∞

∑
i=0

(−1)iΓ (a( j+1)
i!Γ (a( j+1)− i

e−(λx+ θ x2

2 )i,

then

µ
′
r =

∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

(−1)i+ j+kbΓ (α +1)Γ (b(k+1))aΓ (a( j+1))
i!k! j!Γ (α −k)Γ (b(k+1)− j)Γ (a( j+1)− i)

×
∫ ∞

0
xr(λ +θx)e−λ (i+1)e−

θ (i+1)x2

2 dx.

Also, by using Taylor series expansion, we have

e−
θ (i+1)x2

2 =
∞

∑
ℓ=0

(−1)ℓ( θ(i+1)x2

ℓ! )ℓ

ℓ!
.

Thus,

µ
′
r = ωℓi jk

[

λ
∫ ∞

0
x2ℓ+re−λ (i+1)xdx+θ

∫ ∞

0
x2ℓ+r+1e−λ (i+1)xdx

]

µ
′
r = ωℓi jk

[

λΓ (2ℓ+ r+1)
(λ (i+1))2ℓ+r+1 +

θΓ (2ℓ+ r+2)
(λ (i+1))2ℓ+r+2

]

,

r = 1, 2, . . . .

This completes the proof.
The mean of the random variableX is obtained by putting
r = 1 in (12). Hence, the mean is

µ = ωℓi jk

[

λΓ (2ℓ+2)
(λ (i+1))2ℓ+2 +

θΓ (2ℓ+3)
(λ (i+1))2ℓ+3

]

. (14)

The second non-central moment of the random variableX
is obtained by puttingr = 2 in (12). Hence, the second
non-central moment is

µ
′
2 = ωℓi jk

[

λΓ (2ℓ+3)
(λ (i+1))2ℓ+3 +

θΓ (2ℓ+4)
(λ (i+1))2ℓ+4

]

. (15)

The variance of the random variableX is given by

σ2 = ωℓi jk

[

λΓ (2ℓ+3)
(λ (i+1))2ℓ+3 +

θΓ (2ℓ+4)
(λ (i+1))2ℓ+4

]

− µ2.

(16)

Based on the first four non-central moments of the EKLE
distribution, the coefficient of skewness and kurtosis can
be obtained as

Skweness=
µ ′

3−3µ ′
2µ +2µ3

σ2

and

Kurtosis=
µ ′

4−4µ ′
3µ +6µ ′

2µ2−3µ4

σ4

respectively.

2.4 Moment Generating Function

In this subsection, the moment generating function of the
random variableX having an EKLE distribution was
derived.
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Theorem 2.If X has EKLE distribution, then the moment
generating functionMX(t) has the form

MX (t) = ω∗
sℓi jk

[

λΓ (2ℓ+ s+1)
(λ (i+1))2ℓ+s+1 +

θΓ (2ℓ+ s+2)
(λ (i+1))2ℓ+s+2

]

ts,

(17)

where

ω∗
sℓi jk =

∞

∑
sℓ,i, j,k=0

(−1)ℓ+i+ j+kbΓ (α +1)Γ (b(k+1))Γ (a( j+1)+1)(θ(i+1))ℓ

i!k!ℓ!s!( j+1)!2ℓΓ (α − k)Γ (b(k+1)− j)Γ (a( j+1)− i)
.

Proof. Let X be a random variable having density function (2),

then by definition the moment generating function ofX is given
by

MX (t) = E(etX ) =

∫ ∞

0
etx fEKLE(x;λ ,θ ,a,b,α)dx.

Using Taylor series expansion,etX = ∑∞
s=0

tsX s

s! . Thus,

MX (t) = E(etX ) =
∞

∑
s=0

ts

s!

∫ ∞

0
xs fEKLE(x;λ ,θ ,a,b,α)dx

= ω∗
sℓi jk

[

λΓ (2ℓ+ s+1)
(λ (i+1))2ℓ+s+1 +

θΓ (2ℓ+ s+2)
(λ (i+1))2ℓ+s+2

]

ts.

(18)

This completes the proof.

2.5 Incomplete Moment

In this subsection, the incomplete moment for a random variable
X having an EKLE distribution was derived. The incomplete
moment is useful in calculating the mean and median devaitions,
and measures of inequalities such as the Lorenz and Bonferrroni
curves.
Thereom 3. If X has EKLE distribution, then the incomplete
momentMr(z) has the form

Mr(z) = ωℓi jk

[

λγ(2ℓ+ r+1, λ (i+1)z)
(λ (i+1))2ℓ+r+1 +

θγ(2ℓ+ r+2, λ (i+1)z
(λ (i+1))2ℓ+r+2

]

,

r = 1, 2, . . . , (19)

where γ(ϑ , z) =
∫ z

0 xϑ−1e−xdx is the lower incomplete
gamma function.

Proof. Let X be a random variable having density function
(2). The incomplete moment of EKLE distribution is given
by

Mr(z) =
∫ z

0
xr fEKLE(x;λ ,θ ,a,b,α)dx

Using (7) and (8),

Mr(z) =
∞

∑
j=0

∞

∑
k=0

(−1) j+kbΓ (α +1)Γ (b(k+1))
k!( j+1)!Γ (α − k)Γ (b(k+1)− j)

×
∫ z

0
xr fELE (x;λ ,θ ,a( j+1))dx (20)

It follows that

Mr(z) =

ωℓi jk

[

λ
∫ λ (i+1)z

0
x2ℓ+re−λ (i+1)xdx+θ

∫ λ (i+1)z

0
x2ℓ+r+1e−λ (i+1)xdx

]

= ωℓi jk

[

λγ(2ℓ+ r+1, λ (i+1)z)
(λ (i+1))2ℓ+r+1 +

θγ(2ℓ+ r+2, λ (i+1)z
(λ (i+1))2ℓ+r+2

]

,

r = 1, 2, . . . .

This completes the proof.

2.6 Mean and Median Deviations

Let X ∼ EKLE(λ , θ , a, b, θ ). The amount of scatter inX
is evidently measured to extent by the totality of
deviations from the mean and median. They are known as
the mean deviation and median deviation: defined by
δ1(x) =

∫ ∞
0 | x − µ | fEKLE (x;λ ,θ ,a,b,α)dx and

δ2(x) =
∫ ∞

0 | x − ϕ | fEKLE(x;λ ,θ ,a,b,α)dx ,
respectively,µ = E(X) and ϕ is the median ofX . The
measure δ1(x) and δ2(x) can be determined by
δ1(x) = 2µFEKLE(µ)−2M1(µ) andδ2(x) = µ −2M1(ϕ).
It is easy to computeM1(µ) andM1(ϕ) from (19).

2.7 Mean Residual Lifetime

The mean residual lifetime (MRL) at a given timex
measures the expected remaining lifetime of an individual
of agex. It is also known as the life expectancy and plays
a useful role in reliability analysis.

Theorem 4.If random variableX has EKLE distribution,
then the MRLK(x) is given by

K(x) =
[

µ −ωℓi jk

[

λ γ(2ℓ+2,λ (i+1)x)
(λ (i+1)x)2ℓ+2 + θγ(2ℓ+3,λ (i+1)x)

(λ (i+1))2ℓ+3

]]

S(x)
− x,

(21)

where S(x) = 1− FEKLE(x;λ ,θ ,a,b,α) is the survival
function.

Proof. The MRL is given by

K(x) =
1

S(x)
(µ −M1(x))− x,

wher M1(x) is the first incomplete moment, which can
easily be obtained from (19).

2.8 Inequality Measures

The Lorenz and Bonferroni curves are the widely used
inequality measures in income and wealth distribution.
Lorenz curveLF(x) can be defined as the proportion of
total income volume accumulated by those units with

c© 2018 NSP
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income lower than or equal to the volume, and Bonferroni
curve,BF(x) is the scaled conditional mean curve, that is
the ratio of group mean income of the population.
Theorem 5. If the random variableX has EKLE
distribution, then the Lorenz curveLF(x) is given by

LF(x) =
ωℓi jk

[

λ γ(2ℓ+2,λ (i+1)x)
(λ (i+1))2ℓ+2 + θγ(2ℓ+3,λ (i+1)x)

(λ (i+1))2ℓ+3

]

µ
. (22)

Proof. By definition, the Lorenz curve can be obtained
using the relationship

LF(x) =

∫ x
0 t f (t)dt

µ
.

The integral
∫ x

0 t f (t)dt is the first incomplete moment
which can be obtained from (19). Thus, this completes the
proof.
Theorem 6. If the random variableX has EKLE
distribution, then the Bonferrroni curveBF(x) is given by

BF(x) =
ωℓi jk

[

λ γ(2ℓ+2,λ (i+1)x)
(λ (i+1))2ℓ+2 + θγ(2ℓ+3,λ (i+1)x)

(λ (i+1))2ℓ+3

]

µFEKLE(x;λ ,θ ,a,b,α)
(23)

Proof. The proof can easily be obtained from the
relationship

BF(x) =
LF(x)
F(x)

.

3 Order Statistics

In this section, the PDF of therth order statistics of a
random sample from EKLE distribution was derived.
Theorem 7.Let X1, X2, . . . , Xn be a random sample from
EKLE distribution andX1:n < X2:n < .. . < Xn:n denote the
corresponding order statistics obtained from the sample.
Then the PDF,fr:n(x), of therth order statisticXr:n is given
by

fr:n(x) =
∞

∑
i, j=0

n−r

∑
k=0

αbΓ (n+1)Γ (α(r+k))Γ (b( j+1))
j!(i+1)!Γ (α(r+k)− j)Γ (b( j+1)− i)

×

fELE(x;λ ,θ ,a(i+1)). (24)

Proof. The PDF ofXr:n, r = 1, 2, . . . , n is given by

fr:n(x) =
1

B(r, n− r+1)
[F(x)]r−1[1−F(x)]n−r f (x),

whereF(x) and f (x) are the CDF and PDF given by (1)
and (2), respectively andB(·, ·) is the beta function. Since
0 < F(x) < 1 for x > 0, by using the binomial series
expansion of[1−F(x)]n−r, given by

[1−F(x)]n−r =
n−r

∑
k=0

(−1)k
(

n− r
k

)

[F(x)]k,

we have

fr:n(x) =
1

B(r, n− r+1)

n−r

∑
k=0

(−1)k
(

n− r
k

)

[F(x)]r+k−1 f (x).

(25)

substituting (1) and (2) into (25), we have

fr:n(x) =
∞

∑
i, j=0

n−r

∑
k=0

αbΓ (n+1)Γ (α(r+k))Γ (b( j+1))
j!(i+1)!Γ (α(r+k)− j)Γ (b( j+1)− i)

×

fELE(x;λ ,θ ,a(i+1)).

This completes the proof.

Theorem 8.The pth moment of order statisticXr:n is

µ
′(p)
r:n = ϖsℓi jk

[

λΓ (2s+ p+1)
(λ (ℓ+1))2s+p+1 +

θΓ (2s+ p+2)
(λ (ℓ+1))2s+p+2

]

,

p = 1, 2, . . . , (26)

where

ϖsℓi jk =

∞

∑
s,ℓ,i, j

n−r

∑
k=0

(−1)i+ j+k+s+ℓαbΓ (n+1)Γ (α(r+ k))Γ (b( j+1))Γ (a(i+1)+1)(θ(ℓ+1))s

j!s!ℓ!(i+1)!2sΓ (α(r+ k)− j)Γ (b( j+1)− i)Γ (a(i+1)− ℓ)

Proof. The general definition of thepth moment of order

statisticXr:n is

µ
′(p)
r:n =

∫ ∞

0
xp fr:n(x;λ ,θ ,a,b,α)dx (27)

Substituting (24) into (27), we have

µ
′(p)
r:n =

∞

∑
i, j=0

n−r

∑
k=0

(−1)i+ j+kαbΓ (n+1)Γ (α(r+ k))Γ (b( j+1))
j!(i+1)!Γ (α(r+ k)− j)Γ (b( j+1)− i)

×
∫ ∞

0
xp fELE (x;λ ,θ ,a(i+1))dx. (28)

Since the integral in (28) is thepth non-central moment of
the fELE (x;λ ,θ ,a(i + 1)), using similar proof as in
theorem 1 we obtain the results in (26) which completes
the proof.

4 Maximum Likelihood Estimation

In this section, the maximum likelihood estimators of the
parameters of the EKLE distribution were derived. Let
X1, X2, . . . , Xn be a random sample of sizen from EKLE

distribution. Let zi = −(λ xi +
θx2

i
2 ), then the

log-likelihood function for the vector of parameters
ΘΘΘ = (α, a, b, λ , θ )′ is

ℓ= n ln(αab)+
n

∑
i=1

zi +
n

∑
i=1

ln(λ +θxi)+(a−1)
n

∑
i=1

ln(1− ezi )+

(b−1)
n

∑
i=1

ln[1− (1− ezi )a]+(α −1)
n

∑
i=1

ln[1− (1− (1− ezi )a)b]. (29)

c© 2018 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


6 S. Nasiru et al.: Exponentiated Kumaraswamy linear exponential distribution...

The log-likelihood can be maximized either directly or by
solving the non-linear likelihood equations obtained by
differentiating (29). The components of the score vector
are given by

∂ℓ
∂α

=
n
α
+

n

∑
i=1

ln[1− (1− (1− ezi)a)b], (30)

∂ℓ
∂a

=
n
a
+

n

∑
i=1

ln(1−ezi )− (b−1)
n

∑
i=1

(1−ezi )a ln(1−ezi )

1− (1−ezi )a +

(α −1)
n

∑
i=1

b(1−ezi )a(1− (1−ezi )a)b−1 ln(1−ezi )

1− (1− (1−ezi )a)b
, (31)

∂ℓ
∂b

=
n
b
+

n

∑
i=1

ln[1− (1− ezi)a]−

(α −1)
n

∑
i=1

[1− (1− (1− ezi)a)b] ln[1− (1− ezi)a]

1− (1− (1− ezi)a)b ,

(32)

∂ℓ
∂λ

=
n

∑
i=1

1
λ +θxi

−
n

∑
i=1

xi +(a−1)
n

∑
i=1

xiezi

1− ezi
−

(b−1)
n

∑
i=1

aezi(1− ezi)axi

1− (1− ezi)a +

(α −1)
n

∑
i=1

abezi(1− ezi)a−1(1− (1− ezi)a)b−1xi

1− (1− (1− ezi)a)b ,

(33)

∂ℓ
∂θ

=
n

∑
i=1

xi

λ +θxi
−

n

∑
i=1

x2
i

2
+(a−1)

n

∑
i=1

x2
i ezi

2(1− ezi)
−

(b−1)
n

∑
i=1

ax2
i ezi(1− ezi)a−1

2(1− (1− ezi)a)
+

(α −1)
n

∑
i=1

abx2
i ezi(1− ezi)a−1(1− (1− ezi)a)b−1

2[1− (1− (1− ezi)a)b]
.

(34)

Using the Fisher information matrix (FIM), the
asymptotic confidence intervals for the parameters of the
EKLE distribution can be obtained numerically. Let
Θ̂ΘΘ = (α̂, â, b̂, λ̂ , θ̂ )′ be the maximum likelihood
estimates of ΘΘΘ = (α, a, b, λ , θ )′ , under the usual
regularity conditions and that the parameters are in the
interior of the parameter space, but not on the boundary,

we obtain:
√

n(Θ̂ΘΘ −ΘΘΘ)
d−→ N5(000, I−1(ΘΘΘ)), whereI(ΘΘΘ) is

the expected FIM. The asymptotic behavior is still valid if
I(ΘΘΘ) is replaced by the observed information matrix
evaluated at Θ̂ΘΘ , that is I(Θ̂ΘΘ). The approximate
100(1 − η)% two-sided confidence intervals for

Fig. 1: Plot of density function of the EKLE distribution

Fig. 2: Plot of hazard rate function of the EKLE distribution

α, a, b, λ and θ are given by:α̂ ± Z η
2

√

I−1
αα(Θ̂ΘΘ), â ±

Z η
2

√

I−1
aa (Θ̂ΘΘ), b̂ ± Z η

2

√

I−1
bb (Θ̂ΘΘ), λ̂ ± Z η

2

√

I−1
λ λ (Θ̂ΘΘ) and

θ̂ ±Z η
2

√

I−1
θθ (Θ̂ΘΘ) respectively, whereZ η

2
is the upperη

th

2
percentile of the standard normal distribution. The
likelihood ratio (LR) test can be used to compare the fit of
the EKLE distribution with that of its sub-models by
computing the maximized unrestricted and restricted
log-likelihood for a given data set. For example, to test
α = 1, the LR test statistic is

ω = 2[ℓ(α̂, â, b̂, λ̂ , θ̂)− ℓ(1, â, b̂, λ̂ , θ̂ )].

The test statisticω is asymptotically(n → ∞) distributed
asχ2

d , whered is the degree of freedom. The LR rejects the
null hypothesis ifω > χ2

γ,d , whereχ2
γ,d denotes the upper

100γ% quantile of the chi-square distribution.

5 Application

In this section, a real data set was used to demonstrate the
application of the EKLE distribution. The performance of

c© 2018 NSP
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Fig. 3: Empirical, fitted densities and CDF plots

the EKLE was compared with the LE, ELE and
Kumaraswamy linear exponential (KLE) distributions.
The real data set corresponds to an uncensored data set
from [5] on breaking stress of carbon fibres (in Gba):
3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11,
4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.90,
3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.53, 2.67, 2.93, 3.22,
3.39, 2.81, 4.20, 3.33, 2.55, 3.31, 3.31, 2.85, 2.56, 3.56,
3.15, 2.35, 2.55, 2.59, 2.38, 2.81, 2.77, 2.17, 2.83, 1.92,
1.41, 3.68, 2.97, 1.36, 0.98, 2.76, 4.91, 3.68, 1.84, 1.59,
3.19, 1.57, 0.81, 5.56, 1.73, 1.59, 2.00, 1.22, 1.12, 1.71,
2.17, 1.17, 5.08, 2.48, 1.18, 3.51, 2.17, 1.69, 1.25, 4.38,
1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.80,
1.57, 1.08, 2.03, 1.61, 2.12, 1.89, 2.88, 2.82, 2.05, 3.65.

Table2 shows the parameter estimates of the models
fitted to the above data. The asymptotic

Table 2: Estimated parameters of fitted models
Model Parameter Estimates Standard Error −ℓ

LE λ̂ = 1.0×10−9 0.086 149.501
θ̂ = 0.254 0.048

ELE â = 2.198 1.367 141.533
λ̂ = 0.082 0.3
θ̂ = 0.344 0.085

KLE â = 2.717 6.358 141.292
b̂ = 3.779 2.646
λ̂ = 0.166 61.144
θ̂ = 0.093 95.487

EKLE α̂ = 2.957 0.478 138.947
â = 1.311 0.055
b̂ = 0.230 0.024
λ̂ = 1.407 0.019
θ̂ = 1.125 0.034

variance-covariance matrix of the maximum likelihood
estimates of the EKLE distribution is

I−1 =













0.229 −2.707×10−3 8.898×10−3 1.410×10−3 −2.038×10−3

−2.707×10−3 3.024×10−3 −3.096×10−5 1.427×10−5 −2.261×10−5

8.898×10−3 −3.096×10−5 5.531×10−4 1.982×10−4 −9.121×10−5

1.410×10−3 1.427×10−5 1.982×10−4 3.592×10−4 −1.515×10−3

−2.038×10−3−2.261×10−5−9.121×10−5−1.515×10−3 1.161×10−3













.

Therefore, the 95% confidence interval forα, a, b, λ
and θ are [2.020, 3.894], [1.203, 1.419], [0.183, 0.277]
[1.370, 1.444] and [1.058, 1.192] respectively. The LR
test statistic to test the hypothesisH0 : α = 1 versus
H1 : α 6= 1 is ω = 4.69> 3.841= χ2

1,0.05, so we reject the
null hypothesis. In order to compare the distributions,
criteria like the Akaike information criterion (AIC),
corrected Akaike information criterion (AICc) and−2ℓ
were used. Also, the goodness-of-fit test of the
distributions were compared using the
Kolmogorov-Smirnov (K-S) statistic. The better
distribution corresponds to the smaller AIC, AICc,−2ℓ
and K-S values. The values in Table3 indicates that the
EKLE distribution leads to a better fit than the other
models. Figure 3 displays the empirical density, the fitted

Table 3: Estimated parameters of fitted models
Model −2ℓ AIC AICc K-S P-value
LE 299.002 303.002 303.126 0.139 0.042
ELE 283.066 289.066 289.316 0.076 0.607
KLE 282.584 290.584 291.005 0.081 0.527
EKLE 277.894 287.894 288.532 0.065 0.796

densities, the empirical CDF and the fitted cumulative
distribution functions.

6 Conclusion

In this article, a new model has been proposed, the so
called exponentiated Kumaraswamy linear exponential
distribution which extends the linear exponential
distribution in analysis of data. Various statistical
properties of the new distribution such as moments,
moment generating function and incomplete moment
have been derived. The estimation of parameters of this
new distribution was approached by the method of
maximum likelihood. An application of the exponentiated
Kumaraswamy linear exponential distribution to real data
set revealed that the new distribution can be used quite
effectively to provide better fits than its sub-models.
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