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Abstract: In this paper, a new class of distribution called the exptiated Kumaraswamy linear exponential distribution hasnbe
proposed. This class of distribution contains severakribigions such as linear exponential, Kumaraswamy line@oeential and
exponentiated linear exponential as sub-models. The lnssfiof the new distribution was illustrated using reahdxzet.
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1 Introduction generalization of the LE distribution and called it the
Kumaraswamy linear exponential distribution.

Myriad of existing statistical distributions have been In this paper, a new five-parameter distribution

modified in the literature in order to make them more function called the exponentiated Kumaraswamy linear

flexible in modeling lifetime data with both monotonic exponential (EKLE) distribution have been developed.

and non-monotonic failure rates. The linear exponential

(LE) distribution is one of such distributions that have

been modified by a number of researchers in the statisticap Exponentiated Kumaraswamy Linear

literature.The LE distribution has two parameters which Exponential Distribution

are both scale parameters. However, in order to mode

data t_hat exh?bit different degr_ee§ O.f skewness andA non-negative random variab}¥ has EKLE distribution
kurtosis, there is a need for the distribution to have shapg;it, parameterd, 8, a, b > 0 anda > 0 if its cumulative
parameters. Thus, most modifications of the LE gistribution function (CDF) is

distribution are carried out by adding extra shape
parameters to the distribution to make it more suitable for 02\ A\ P

modeling phenomenon with decreasing, increasing, FEkLE(XA,68,8,b,a) = [1— (1— <1—ef('\x+7>) )] :
non-monotonic failure rates such as the bathtub, unimodal o
or modified unimodal, which are common in firmware

reliability modeling and biological studies (s&&,[[9)]). for x > 0. The parameterd and 6 are scale parameters
[7] developed a three parameter modification of thewhile a, b anda are shape parameters. The corresponding

LE distribution and called it the generalized linear fadlur probability density function (PDF) of EKLE distribution is

rate distribution. 3] proposed another generalized linear

exponential distribution. 6] also developed a new  fexe(xA.6.aba)=

generalization of the LE distribution and called it aab() + e - &) (Leﬂmﬁzx%))a’l

exponentiated generalized linear exponential distrdouti

[8] developed a new four parameter generalization of the (1, (kefWﬁTﬁ)a)l’b [1, (1, (kefuxﬁTx%)a)T

linear exponential distribution.4] developed another
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for x > 0. One advantage of the EKLE distribution is, it It follows from (7) that
has a closed form CDF, which enables us to easily generate

; ; ; ) 22 (-1)r(a+1)r(b(k+1))
random numbers from it using the relation fexie(xA.0,a,b,a) = ghk; R+ D (e R Bcr =R
h % x fete (XA, 0,a(j +1)). 8)
B > T
At [A°-26In |1 <1 (1 U a) > Whena is an integer, the indekk stops ato — 1, whereas

the indexj stops ab(k+ 1) — 1 if b > O is an integer.

X= 5 ,
)

whereU is uniformly distributed on the intervel0, 1). 2.1 Sub-models

The relation can be used to generate random samples o ,
from EKLE distribution. The EKLE distribution is a very flexible model that

The hazard rate function of EKLE distribution is converges to different distributions when it parameter

given by values are changed. The EKLE distribution contains as
hexie (XA, 6,8,b,a) = special models the following distributions displayed in
02 o2 \ a1 02\ @ b-1 Tablel
aab(A + 8x)e M+ 77) l—e’(“*T)> (1— <l—e’(“*T)> )
a 1-a a a ’
{17 (17 (ke*m%xz)) )b} {17 {17 (17 (17e*W+Q§>> )T }
Table 1: Sub-models of EKLE distribution
“ Distribution a b a6 A
for x > 0. The reverse hazard rate function has been shownKumaraswamy linear exponential 1 - - - -
to play a useful role in reliability analysid]. It is given Kumaraswamy exponential 1 - - 0 -
by Kumaraswamy Rayleigh 1 - - -0
fekie (XA, 60,a,b,a) Exponentiated Kumaraswamy exponential - - - 0 -
Teke(XA,0,ab0) = —— —————= . .
Fexie(xA,0.a.b,a) Exponentiated Kumaraswamy Rayleigh - - - -0
aab(A +9X)e—(/\x+%‘g) (Pefuﬁizi))a’l Exponentiated exponential 11 - 0 -
- 5 ~. Exponentiated Rayleigh 11 - -0
(17 (17@“”&?)) ) {17 (17 (Lef(m%x“) ) } Exponentiated linear exponential 11 - - -
Exponential 111 0 -
forx> 0. Rayleigh 1 11 - 0
The PDF and hazard rate function of EKLE _Linear exponential 111 - -

distribution for different parameter values are displayed

Figure 1 and 2 respectively. From the figures, it is clear

that the PDF can be decreasing or unimodal and the

hazard rate function can be increasing, constant and so on

depending on the parameter values. ~ The PDF of the 2 Quantile, Median and Mode

EKLE distribution can be written as a linear combination

of the PDF of an exponentiated linear exponential (ELE)The EKLE quatile function, sayQ(p) = F~(p), can

distribution.  This result is important to provide easjly be computed by inverting) Thus, we have
mathematical properties of the EKLE model directly from

those properties of ELE distribution. Fdr> 0, a series

D=

expansion fo(1—2z)9-1, for | z|< 1is A+ |a2—26In|1- <1_ (1_ pl)%)
hd d-1
d-1_ w(_1\k
-2 to 5 k()2 ‘o ! |

o 9

_§ LT, © ©
S KMd—k) 7 wherep € (0,1). Using ©), the median of EKLE can be

obatined as

X2
wherer (-) is the gamma function. Since9e~ M%) <
1, forx > 0, then using expansioB)in (2) yields

1
a

A+ |A2—20In|1— (1— (1—0.53)%>

fexie(xA,6,a.b,a) = ii(*l)Hk(a;l) (b(k+jl) 71)
P
aba(j+1)(A + 6x) J(A 02, ap 82)) 20T Xo5 = 6 i
—(Ax+ —(Ax+
Te Tz (1—e z ) . @) (10)
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The mode, which is defined as the maximum value of thethen
PDF, denoted byxy can be obtained numerically by © o o K :

solving the following non-linear equatiorlq) since it is Z) 20 Z DHIRr (@ +1)r (b(k+1))ar (a(j +1))
not possible to obtain the explicit solution in the general ikt "' a—Kr(b(k+1)—j)r(a(j+1)—i
case. For different special cases the explicit form may be

obtained. /:’ (A +Bx)e A+ g LI
(@a- 1)(9X0+A)ef<“°+6_25 By A Also, by using Taylor series expansion, we have
1—e*<’\xo+9—§‘% ; 86412 '+1> )
alb—1)(8x9 + A)e (ot F (1 o O w)a ' —%
1__(1_efum+%§)a - Thus

R o) M= wni {)\ / AT g A+ 1)xgy 1 g / Xzé+r+1e4<i+1>xdx}
ab(a —1)(6xg+A)e | Xt F <1 e X0+T> 0 0

— —o. i = g {Ar{%+¢+l) 6FQ€+r+2)}
1 (1_ef<mﬂ%°) R (Y Y (e s
r=12....
(11)
This completes the proof.
The mean of the random variabteis obtained by putting
2.3 Moments r=1in(12). Hence, the mean is

In this subsection, the!" non-central moment for the o | AL(2E+2) or(2¢+3) (14)
EKLE distribution was derived. Moments play important H = rij (A(i+1)2+2  (A(i+1))%+3]"

role in any statistical analysis, especially in applicasio

They are used for finding measures of central tendencyl' he second non-central moment of the random varixble
dispersion, skewness and kurtosis among othersis obtained by putting = 2 in (12). Hence, the second
Theorem 1. If X has EKLE distribution, then thet" non-central moment is

non-central moment of is given by the following ) AT (20+3) or (20+4)
= i . - . (15
e {AH%+H4) ore+r+2) ) Ha E“[Mo+nyﬂ3 @o+nyﬂ4 (15)
r — Wrijk : 20 1 : 20 2| =%
A +1)=es - A+ D))= 12) The variance of the random variaties given by
where 02 = oy AI.'(2€+ 3) GIT(2€+4) 2
FLAG+1)23 7 (A +1))2+4
Wijk = (16)
e (1) D (a+ 1) (b(k+ 1)) (a(j +1) +1)(8(i + 1))
m;:o ikt (j+ 112 (a =K (b(k+1) = r@aj+1-i) - Based on the first four non-central moments of the EKLE

distribution, the coefficient of skewness and kurtosis can
Proof. Let X be a random variable having the density pe obtained as

function @). The r" non-central moment of EKLE

random variable is given by Skweness- %
ur’ = /Om X fekle (XA, 0,a, b, a)dx. and
Using () and @) Kurosis— 4= W+ Okpit”— 3"
o= ébéo kli;ﬂ;k rlfl(—;oi)lr) (bi?jﬁ)l? i respectively.
/wa' fere (A, 0,a(] + 1))dx. 13)

. 24 M t ting Function
Using the fact that oment Generating Functio
,nali) -1 o 1y , In this subsection, the moment generating function of the
(1—e*<’\x+9%)) 20 : g (x50 random variableX having an EKLE distribution was
S 1T (a +1 = derived.
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Theorem 2.If X has EKLE distribution, then the moment
generating functioMy (t) has the form

My (1) = Al (20+s+1) Or(20+s+2)
X (1) = Wyijk (A(i+1))204s+1 7 (A (i + 1))20+s+2
(17)
where
(‘)géijk:
e (=)D (a4 1) (b(k+ 1) (a(j +1) +1)(8(i+ 1))

o IKASI(j+ 112 (a — k)T (b(k+1) — ) @(j+1)—i)

s«.i.,Zk:

Proof. Let X be a random variable having density functi@), (
then by definition the moment generating functionxofs given

by

My (t) = E(eX) = /O S feie (XA, 0, b, a)dx.

tSXs

=Yc0 4 - Thus,

Using Taylor series expansiogX

tS 00
Mx(t):E(etX):;Jg/o fexkLe(XA, 6,ab,a)dx

AT (2045+1)

e Or (20+s+2)
= Wyijk {(A(i T 1))2sil

(A (l + 1))2@+S+2

(18)

This completes the proof.

2.5 Incompl ete Moment

In this subsection, the incomplete moment for a random bbgia
X having an EKLE distribution was derived. The incomplete
moment is useful in calculating the mean and median devsitio
and measures of inequalities such as the Lorenz and Baorfierrr
curves.

Thereom 3. 1f X has EKLE distribution, then the incomplete
momentM; (z) has the form

Ay(20+r+1, A+
(A (| + 1))21+f+1

1)2)  Oyl+r+2,A(i+1)z

<)\ <| + 1))2l+r+2

M (2) = wijk [
r=12.., 19)

where y(8,2) = [§x?~le™dx is the lower incomplete
gamma function.

Proof. Let X be a random variable having density function
(2). The incomplete moment of EKLE distribution is given

by
v4
M,(z):/ X fekLe (XA, 0,a,b, o)dx
0

Using (7) and @),

9=3 3

/x'fELE(x;)\,G,a(j+1))dx
0

1)i+kbr (o + 1) (b(k+ 1))
T (a—Kr bkt —])

(20)

It follows that
M (2)
Ai+1)z
- 2(+r —A (i+1)x
Wrijk {)\/O X dX+9/

1)2)

2(+r+1e A(i+1) de:|

1)2] 1

AY(2l4r+1, A%+
<)\ <| + l))ZH»H»l

Oy(20+r+2,A(i+
(A (| + l))2f+r+2

wmk[

r=1,2....

This completes the proof.

2.6 Mean and Median Deviations

Let X ~ EKLE(A, 6, a, b, 8). The amount of scatter X

is evidently measured to extent by the totality of
deviations from the mean and median. They are known as
the mean deviation and median deviation: defined by
(X)) = Jo | x—=p | fexte(xA,0,a,b,a)dx and
52(X) = fgo | X — ¢ | fEKLE(x;)\,G,a,b,a)dx ,
respectively,u = E(X) and ¢ is the median ofX. The
measure 4 (X) and J&(x) can be determined by
01(X) = 2UFekie(M) — 2M1 (M) anddy(x) = p — 2M1 ().

Itis easy to comput®l; (1) andMy(¢) from (19).

2.7 Mean Residual Lifetime

The mean residual lifetime (MRL) at a given time
measures the expected remaining lifetime of an individual
of agex. It is also known as the life expectancy and plays
a useful role in reliability analysis.

Theorem 4.1f random variableX has EKLE distribution,
then the MRLK (x) is given by

K(x) =
O [Aye2A(+1)%) | 8y(20+3,A (i+1)X)
[“_“’f”k{ (1072 T (A (11)7 73 ” Ly
S(x) ’
(21)

where S(x) = 1 — FekLe(X;A,0,a,b,a) is the survival
function.

Proof. The MRL is given by

1
%(H —My(x)) —

wher M1 (X) is the first incomplete moment, which can
easily be obtained fronig).

K(x) =

X,

2.8 Inequality Measures

The Lorenz and Bonferroni curves are the widely used
inequality measures in income and wealth distribution.
Lorenz curvelg(x) can be defined as the proportion of
total income volume accumulated by those units with

(@© 2018 NSP
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income lower than or equal to the volume, and Bonferroniwe have

curve,Bg(X) is the scaled conditional mean curve, that is

the ratio of group mean income of the population.

Theorem 5. If the random variableX has EKLE
distribution, then the Lorenz cunig (x) is given by

Ay(26+2, A (i+1)x)
(,\ (i+1))2”2

u

0y(20+3, A (i+1)x)
()\ (i+1))2é+3

Wi jk +

} . (22)

Le (X) =

Proof. By definition, the Lorenz curve can be obtained

using the relationship

St t)dt
BT

The integral [{tf(t)dt is the first incomplete moment
which can be obtained froni9). Thus, this completes the
proof.

Theorem 6. If the random variableX has EKLE
distribution, then the Bonferrroni cunie (x) is given by

Le (X) =

AY@LE2 A1) 9y(2/4+3,)\(i+1)x)}
(A(i+1))27+2 AG+1)ZT3 23)

HFekLe(XA,60,a,b, a)

Proof. The proof can easily be obtained from the

relationship

3 Order Statistics

In this section, the PDF of the" order statistics of a
random sample from EKLE distribution was derived.

Theorem 7.Let Xp, X, ..., Xy be a random sample from
EKLE distribution andX;n < Xon < ... < Xn:n denote the

corresponding order statistics obtained from the sample.’©

Then the PDFf;.n(x), of ther!" order statistic; . is given
by

o "< abr(n+1)r (a(r+k))r(b(j+1))
Zkzoj i 1) (a(r+k) — ) (b(j +1)_|)X

feLe(%A,0,a(i+1)). (24)
Proof. The PDF ofX;.n,r =1,2, ...,

fI’l’l

nis given by

fenl) = gy PO - F OO0,

whereF (x) and f(x) are the CDF and PDF given byt)(
and @), respectively and@(-, -) is the beta function. Since
0 < F(x) <1 for x> 0, by using the binomial series
expansion ofl — F(x)]"", given by

1-Foor =5 (-0, ") Feolk

ten0 = gy 2 (04" O,

B(r,n—r+1) kZO
(25)

substituting 1) and @) into (25), we have
> "' ablf(n+ 1) (a(r+k)r(b(j+1))
)= 20 T+ DI @+ = ) (b + D —1)

fELE(X,)\ s G,a( + 1))

frn

This completes the proof.
Theorem 8.The p" moment of order statistiX;., is

o [Ar(2s+p+1) . O (2s+p+2)
Hr:n” = Wsyijk A0+ 1)l T (A((+ 1))’
p=1,2,..., (26)
where
Wi jk =
@ N (1)t bl (n+ 1) (a(r + k) ( D) (al +1 +1 (6(¢+1))°
ZJ% TSAG D)2 (@ (r+K) = I ( ) (@i +1) 1)

Proof. The general definition of thg!" moment of order
statisticX;-p, is

P = / Pfa(xA 0.aba)dx  (27)
0

Substituting 24) into (27), we have

ur:(r?) =

o & (Y Rabr (n D (a(r + Kb +1)
(

mz:mgo PA+DI (alr+K) — Hr(b(j+1)—i)

/ XPeLe (XA, 6, a(i +1))dx.

(28)

Since the integral in38) is the p" non-central moment of
the fele(xA,60,a(i + 1)), using similar proof as in
theorem 1 we obtain the results iB6) which completes
the proof.

4 Maximum Likelihood Estimation

In this section, the maximum likelihood estimators of the
parameters of the EKLE distribution were derived. Let
X1, X2, ..., Xn be a random sample of sizefrom EKLE

2
distribution. Let z = —(Ax + 9%), then the
log-likelihood function for the vector of parameters
©=(a,ab,A,0)is

¢ =nIn(aab) +iz +iln()\ +6%)+(a-1) iln(l—ezi )+

(b—1) im[k (1) +(a 71)‘i|n[17 (1-(1-€)3P.  (29)

(@© 2018 NSP
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The log-likelihood can be maximized either directly or by 12
solving the non-linear likelihood equations obtained by
differentiating 9). The components of the score vector

are given by 0817
9 g g/
In1—(1— (1 & 30 =
2oy ; LN )N
o
ot - D (1_eZi)a|n(1_eZi) — o=1.5,a=1.5,b=0.5,1=0.5,6=0.4 = o=2.5,a=0.5,b=1.5,4=0.5,6=0.4
da +Zl|n (1-€*)—(b— )|; 1-(1-e7)2 * —— oe0.5,0=2 5b=0.50=1.5,8=1.8 3,542, 50=1 0)=1 58=1.3
n b(l—e‘) ( _(1_@)3)1371'”(1_62‘) o=1.0,a=1.0,b=10,=0.3,8=0.0
@2 1-(1- (1 e&)p -G
Fig. 1: Plot of density function of the EKLE distribution
o¢ n 2
— == In[1—(1-€%)3—
75~ p+ 2Nl (1=
L [1-(1-(1-€)*°In[1— (1-€)? -
(a—l)i; 1-(1—(1—er)a)p ’ ! = | —T7
32) | L1
a2 1 n N xel °';
— = Xi+((@-1 — "
oA .21"“9"' i; '+ ).= 1-e& 4 DR ,
ae2| 1 eZ| — o=l .51 S_h:ﬂﬂ,R:l;S_B:DJ \F:f,Fﬂﬁ,h:llﬂ,A:U‘:_ﬁzﬂi7;"5‘&:2 5b=0 5A=1 5,8=18
b 1 Z‘L 1 1 e2| o=3.5,8=2. 5b=1.0A=1.56=1 § o=1.0,a=1.0,b=101=0.8,8=0.0
N abe(1—e%)21(1— (1—¢e?)?)P1x
(a—-1) i; 1—(1—(1—en)a)b ’ Fig. 2: Plot of hazard rate function of the EKLE distribution
(33)
5 a,a,b,A and 6 are given by:d + Z;1/152(@), 4+
(a-1) e Ay 3 i A
ae Zl)\+9x. le 22(1 &) Zy\ 1 (©),b + 25 /1(©), A +25,/1,1(&) and
— . . th
(b-1) N ax?e? ( 1 e‘)a axer (1)t G:I:Z% ,'/IGQ(G) respectively, wher&y is theuppeﬁ’T
2(1 €4)2) percentile of the standard normal distribution. The
n 2  znva-1/1_ (1 _ azyayb—1 likelihood ratio (LR) test can be used to compare the fit of
(a 1)ziabx e‘(l )1 (_]'a beﬁ) ) . the EKLE distribution with that of its sub-models by
i= 21-(1-(1-e)3)P computing the maximized unrestricted and restricted

(34)  log-likelihood for a given data set. For example, to test

. . . , . o =1, the LR test statistic is
Using the Fisher information matrix (FIM), the

asymptotic confidence intervals for the parameters of the w=2[((a, 4 b, 3\, é) —0(1, 4 b, 3\, é)].
EKLE d|str|but|on can be obtained numerically. Let

6 N (a, b)‘ 10) be the r/naX|mum likelihood asxd,Wheredisthedegreeoffreedom The LR rejects the
estimates ofe = (a,a,b,A,0), under the usual

regularity conditions and that the parameters are in th ngll h/ypothetslls If(;)ti X hd' Wherexd dtdgntotes the upper
interior of the parameter space, but not on the boundary1 Oy% quantile of the chi-square distribution
we obtain: \/_(6 o) 4 Ns(0,171(@)), wherel (@) is

the expected FIM. The asymptotic behavior is still valid if g Application
1(@) is replaced by the observed information matrix

evaluated at @, that is I(O). The approximate In this section, a real data set was used to demonstrate the
1001 — n)% two-sided confidence intervals for application of the EKLE distribution. The performance of

The test statistiev is asymptotically(n — o) distributed

(@© 2018 NSP
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° — : ,?—t”"w 0229  —2707x10°° 8.898x10°% 1.410x10 % —2.038x 102

w ] . “ Al —2.707x 1072 3.024x 103 —3.096x 10°° 1.427x 10°° —2.261x 10°
“ AN ° b |"1=| 8.898x 103 —3.096x 105 5531x 104 1.982x 104 —9.121x10°5|.

/ X 4 1.410x 1073 1.427x10°° 1.982x10* 3.592x 104 —1.515x 1073

Y = ~2.038x 103-2.261x 10°~9.121x 10°°-1.515x 103 1.161x 103

CDF

o
,f Therefore, the 95% confidence interval ra, b, A
& _‘/' and 6 are [2.020,3.894],[1.203 1.419,[0.183 0.277
e e e [1.370,1.444 and [1.058 1.192 respectively. The LR
test statistic to test the hypothedik : a = 1 versus
Hi:a # lisw=4.69>3.841= x{ s SO we reject the
null hypothesis. In order to compare the distributions,
Fig. 3: Empirical, fitted densities and CDF plots criteria like the Akaike information criterion (AIC),
corrected Akaike information criterion (AlCc) and2/
were used. Also, the goodness-of-fit test of the
distributions were compared using the
the EKLE was compared with the LE, ELE and Kolmogorov-Smirnov  (K-S5)  stafistic. The _better
Kumaraswamy linear exponential (KLE) distributions. distribution corresponds to the smaller AIC, AlCe2¢
The real data set corresponds to an uncensored data d K-S va]ueg. The values in TatBendmates that the
from [5] on breaking stress of carbon fibres (in Gba): K\LE distribution leads to a better fit than the other
3.70, 2.74, 2.73. 2.50, 3.60, 3.11, 3.27, 2.87. 1.47, 3.11r"nodels. Figure 3 displays the empirical density, the fitted
4.42,2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.90,
3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.53, 2.67, 2.93, 3.22,
339, 281, 420, 333, 255, 331, 331, 285, 256, 356, Table 3: Estimated parameters of fitted models
3.15, 2.35, 2.55, 2.59, 2.38, 2.81, 2.77, 2.17, 2.83, 1.92odei o7 AIC AlCC KS  Pvaue
1.41, 3.68, 2.97, 1.36, 0.98, 2.76, 4.91, 3.68, 1.84, 1.59; 1 509002 303.002 303126 0.139 0.042
3.19, 1.57, 0.81, 5.56, 1.73, 1.59, 2.00, 1.22, 1.12, 1.71, g g 283.066 289.066 289316 0076 0.607
2.17,1.17,5.08, 2.48, 1.18, 3.51, 2.17, 1.69, 1.25, 4.38, KLE 282584 290.584 291.005 0.081 0.527
1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.80, EKLE 277.894 287.894 288.532 0.065 0.796
1.57,1.08,2.03,1.61,2.12,1.89, 2.88, 2.82, 2.05, 3.65.

Table 2 shows the parameter estimates of the modelglensities, the empirical CDF and the fitted cumulative
fitted to the above data. The asymptotic distribution functions.

Table 2: Estimated parameters of fitted models 6 Conclusion

Model Parameter Estimates  Standard Error —/

In this article, a new model has been proposed, the so

_ 9
LE A *éiooxzé(j %%i% 149.501 called exponentiated Kumaraswamy linear exponential
- - : distribution which extends the linear exponential
ELE a4=2198 1.367 141533 (istribution in analysis of data. Various statistical
A =0.082 0.3 properties of the new distribution such as moments,
6 =0344 0.085 moment generating function and incomplete moment
KLE a=2717 6.358 141.292  have been derived. The estimation of parameters of this
b=3.779 2.646 new distribution was approached by the method of
A =0.166 61.144 maximum likelihood. An application of the exponentiated
6 =0.093 95.487 Kumaraswamy linear exponential distribution to real data
EKLE & —2957 0.478 138.947 set revealed that the new distribution can be used quite
4= 1311 0.055 effectively to provide better fits than its sub-models.
b=0.230 0.024
A =1.407 0.019
6=1125 0.034 Acknowledgment
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