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Abstract: We define the generalized odd log-logistic Maxwell distribution and propose a parametric regression model based on the new

distribution with three systematic components for its parameters. Some properties and maximum likelihood estimation are addressed

and various simulations for different parameter settings, systematic components and sample sizes are performed. Three applications to

real data sets in engineering (strength and mechanics of materials) empirically prove the usefulness of the proposed models.
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The Maxwell (or Maxwell-Boltzmann) distribution is
an important model in physics, chemistry and statistical
mechanics. It forms the basis of the kinetic energy of
gases and explains several fundamental properties of
gases including pressure and diffusion. In statistical
mechanics, it is related to properties of molecules in
thermal equilibrium from the microscopic perspective.
The Maxwell distribution is also important in kinetic
translational energies for molecules. For example, [1]
discussed this distribution for chemical reactions in gases
and [2] addressed its deviations in granular gases with
constant coefficient of restitution.

Recently, the Maxwell distribution has been used to
model failure times in survival and reliability analysis and
some of its extended forms have been investigated.
Krishna and Malik [3] addressed reliability estimation in
the Maxwell distribution with progressively type-II
censored data, [4] explored a heterogeneous population
by means of two mixture components of Maxwell
distributions, [5] considered point and interval estimation
procedures for the Maxwell distribution in the presence of
type-I progressively hybrid censored data, [6] presented
its structural properties and different methods of
estimation, [7] defined the gamma-Maxwell distribution,
and more recently [8] proposed the transmuted
exponentiated Maxwell distribution. However, none of
these papers deal with bimodality as real data and do not

even present regression models for the extensions of the
Maxwell distribution. We aim to fill up this gap.

Many scientific studies involve data with bimodal
characteristics of continuous random variables, in which
the usual choice is to employ a mixture of distributions.
However, the most common mixtures of distributions
have a large number of parameters, so their estimation is
complicated. For example, engineers study materials to
learn their properties and the problems they cause. In this
respect, ceramic materials are generally composed of a
combination of metallic and non-metallic elements
(forming oxides, nitrides and carbides), and are more
resistant to high temperatures and severe environments
than metals and polymers. In the applications, we study
chemical compounds with four levels (ZrO2, ZrO2-TiB2,
Si3N4 and glass). The behavior of each level is shown in
Figure 1, where the asymmetry and bimodality of the data
can be noted.

Cordeiro et al. [9] proposed a family of distributions
called generalized odd log-logistic family which is very
flexible and has been used to analyze and model different
sets of data. For example, [10] introduced a new
three-parameter exponential distribution called the
modified generalized odd log-logistic exponential
distribution, [11] proposed the generalized odd
log-logistic flexible Weibull regression with applications
in repairable systems and [12] defined the generalized
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Fig. 1: Histograms and empirical densities. (a) ZrO2. (b) ZrO2-

TiB2. (c) Si3N4. (d) Glass.

odd log-logistic exponential distribution based on
complete and censored samples. Recently, Prataviera [13]
proposed the generalized odd log-logistic log-Weibull
regression to modelling non-proportional hazards for
survival data and [14] proposed the additive partial linear
regressions based on the generalized odd log-logistic
log-normal distribution.

In this context, we define a new distribution called the
generalized odd log-logistic Maxwell (“GOLLMax” for
short), whose main advantage related to other competitive
distributions as modeling bimodal, asymmetric and heavy
tails data. It includes as special cases the Maxwell,
exponentiated Maxwell (EMax) and odd log-logistic
Maxwell (OLLMax) distributions. Note that the proposed
GOLLMax distribution with three parameters has the
advantage to model different forms of failure rate, such as
increasing, decreasing, unimodal, U-shape and
bimodal.We derive some mathematical properties of the
proposed distribution. In practice, it is quite common
situations where there are some explanatory variables
associated with the response random variable. For
example, in industry, the failure time of an equipment can
be influenced by the voltage level to which the equipment
is subjected. In the medical field, a patient’s survival time
can be related to the type of tumor and the amount of
hemoglobin in the blood. In general, we study the effects
of these explanatory variables on the response variable by
means of a regression model.

In the second part of this paper, we propose a
regression model based on the new distribution and
present some global influence measures. In addition, we
develop residual analysis based on quantile residuals. For
different parameter settings and sample sizes, various
simulation studies are performed and the empirical
distribution of these residuals is compared with the
standard normal distribution. The simulation results
indicate that the empirical distribution of the quantile
residuals is consistent with the standard normal
distribution.

The rest of the paper is organized as follows: In
Section 1, we introduce the new distribution. We propose
the GOLLMax regression model with three systematic
structures in Section 2. In Section 3, we evaluate the
performance of the maximum likelihood estimators
(MLEs) by means of a simulation study. In Section 4, we
investigate the case-deletion diagnostic measure and
define quantile residuals for the fitted model. In Section 5,
we provide three applications to real data to illustrate the
flexibility of the new models. Some concluding remarks
are offered in Section 6. Finally, we obtain some
mathematical properties of the GOLLMax distribution in
the Appendix 1.

1 The model definition

The cumulative distribution function (cdf) of the Maxwell
random variable W is given by

G(w; µ) = γ1

(
3

2
,

w2

µ2

)
, x > 0, (1)

where w denotes the molecule speed, µ > 0 is a scale
parameter depending on three quantities (Boltzmann
constant, temperature and mass of a molecule),
γ1(p,y) = γ(p,y)/Γ (p) is the incomplete gamma
function ratio, γ(p,y) =

∫ u
0 vp−1e−vdv is the incomplete

gamma function and Γ (·) is the gamma function.
The probability density function (pdf) of W is given by

g(w; µ) =
4√
π

w2

µ3
exp

(
−w2

µ2

)
. (2)

The expectation and the variance of W are E(W ) =
2µ

√
π and Var(W ) = (3π − 8)µ2/(2π).

The idea of the GOLLMax distribution follows the
generator. Let G(x;γ) be a baseline cdf having a p × 1
vector γ of unknown parameters. [9] defined the cdf of a
wider generator called the generalized odd log-logistic-G

(“GOLL-G”) family by integrating the log-logistic
density function, namely

F(x;σ ,ν,γ )=
∫

G(x;γ )σ

1−G(x;γ )σ

0
ν wν−1

(1+wν )2
dw=

G(x;γ )σν

G(x;γ )σν+[1−G(x;γ )σ ]ν
, (3)

where σ > 0 and ν > 0 are two extra shape parameters.
Equation (3) includes as special cases the odd
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log-logistic-G (OLL-G) family introduced by [15] and the
exponentiated-G (exp-G) class when σ = 1 and ν = 1,
respectively. Furthermore, the G distribution is the basic
exemplar when σ = ν = 1.

We define the cdf of the three-parameter GOLLMax
distribution by inserting (1) in equation (3)

F(x;µ,σ ,ν)=
γσν
1

(3/2,x2/µ2)

γσν
1

(3/2,x2/µ2)+[1−γσ
1
(3/2,x2/µ2)]

ν . (4)

Henceforth, if X is a random variable with cdf (4), we write
X ∼GOLLMax(µ ,σ ,ν).

By differentiating (3) and inserting (1) and (2), we
obtain the density function of X (for x > 0) as

f (x;µ,σ ,ν) = 4σν√
πµ3 x2 exp

(
− x2

µ2

)
×

γσν−1
1

(3/2,x2/µ2)[1−γσ
1
(3/2,x2/µ2)]

ν−1

{
γσν
1

(3/2,x2/µ2)+[1−γσ
1
(3/2,x2/µ2)]

ν}2 . (5)

The hazard rate function (hrf) of X is h(x) = f (x)/[1−
F(x)]. The GOLLMax model contains as special cases the
following distributions:

–For σ = 1, it gives the (new) OLLMax distribution.
–For ν = 1, it yields the (new) EMax distribution.
–The Maxwell distribution is as a basic exemplar when
σ = ν = 1.

Some plots of the density and hrf of X for selected
parameter values, including well-known distributions, are
displayed in Figures 2 and 3, respectively. A
characteristic of the proposed distribution is that its hrf
can be bathtub shaped, monotonically (increasing or
decreasing), unimodal, increasing-decreasing-increasing
shaped depending basically on the parameter values.
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Fig. 2: Plots of the GOLLMax density for some parameter

values. (a) For different values of ν with σ = 3.45 and µ = 0.15.

(b) For different values of ν and σ with µ = 0.15.

Equation (4) has tractable properties especially for
simulations, since its quantile function (qf) takes the
simple form

x = QMax (εσ ;ν (u); µ) , (6)
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Fig. 3: Plots of the GOLLMax hrf for some parameter values. (a)

For different values of ν with σ = 9.00 and µ = 0.20. (b) For

different values of ν and σ with µ = 0.07.

where QMax(εσ ;ν (u); µ) = G−1(εσ ;ν(u); µ) is the qf of
the Maxwell distribution and

εσ ,ν(u) =

[
u1/ν

(1−u)1/ν+u1/ν

]1/σ

.

Further, we can write

x = QMax(εσ ,ν(u); µ) = µ

√
γ−1

1 (3/2,εσ ,ν(u)), (7)

where γ−1
1 (3/2,εσ ,ν(u)) is the inverse of the upper gamma

regularized function. For more details, see
http://functions.wolfram.com/GammaBetaErf/InverseGammaRegularized/.

In Appendix 1, we derive some mathematical
properties of the GOLLMax distribution including a
linear representation for its density function and explicit
expressions for the ordinary and incomplete moments,
mean deviations and generating function.

2 The GOLLMax regression model

Regression analysis involves specifications of the
distribution of X given a vector v = (v1, · · · ,vp)

T of
explanatory variables. In this section, we adopt systematic
components for the three parameters in density (5) to
allow them to vary across the observations (for
i = 1, . . . ,n) as

g1(µi) = vT
i β 1, g2(σi) = vT

i β 2, g3(νi) = vT
i β 3, (8)

where gk : [0,∞) → R for k = 1,2,3 are known
one-to-one link functions continuously twice
differentiables, vT

i = (vi1, · · · ,vip) is a vector of known
explanatory variables for the ith observation, and
β 1 = (β11, · · · ,β1p)

T , β 2 = (β21, · · · ,β2p)
T and

β 3 = (β31, · · · ,β3p)
T are parameter vectors of dimension

p. Then, g1(µ) = Vβ 1, g2(σ) = Vβ 2, g3(ν) = Vβ 3,
where µ = (µ1, · · · ,µn)

T , σ = (σ1, · · · ,σn)
T ,

ν = (ν1, · · · ,νn)
T , and V = (v1, · · · ,vn)

T is a specified
n× p matrix of full column rank p < n. It is assumed that
β 1, β 2 and β 3 are functionally independent. The
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GOLLMax regression aims to select the explanatory
variables in V which model µ , σ and ν .

Consider a sample (x1,v1), · · · ,(xn,vn) of n

independent observations. Conventional likelihood
estimation techniques can be applied here. The total
log-likelihood function for the vector of parameters

ψ = (β T
1 ,β

T
2 ,β

T
3 )

T from model (8) takes the form

l(ψ) = n log

(
4√
π

)
+

n

∑
i=1

log(νi)+
n

∑
i=1

log(σi)+

n

∑
i=1

log

(
x2

i

µ3
i

)
−

n

∑
i=1

(
x2

i

µ2
i

)
+

(σi νi − 1)
n

∑
i=1

log
[
γ1(3/2,x2

i /µ2
i )
]
+

(νi − 1)
n

∑
i=1

log
[
1− γ1(3/2,x2

i /µ2
i )
]
−

2
n

∑
i=1

log
{

ai +[1− bi]
νi
}
, (9)

where ai = γσi νi
1 (3/2,x2

i /µ2
i ) and bi = γσi

1 (3/2,x2
i /µ2

i ).
The MLE ψ̂ of ψ can be calculated by maximizing the

log-likelihood (9). The numerical maximization of (9) can
be done in R software (gamlss package). Moreover, we
can construct likelihood ratio (LR) statistics for comparing
some sub-models with the GOLLMax regression model in
the classical way.

3 Simulation study for the regression model

We study the performance of the MLEs in the GOLLMax
regression model based on 1,000 replications from the
true parameters β10 = 2.45, β11 = −0.35, β20 = 0.15,
β21 = 0.50, β30 = −0.55 and β31 = 0.20 for different
sample sizes (n = 100,350,850) using optim package in
R software by BFGS method. We consider three different
scenarios for the systematic components:

–scenario 1: log(µi) = β10 + β11v1i,
log(σi) = β20 +β21v1i, log(νi) = β30 +β31v1i.

–scenario 2: log(µi) = β10 + β11v2i,
log(σi) = β20 +β21v2i, log(νi) = β30 +β31v2i.

–scenario 3: log(µi) = β10 + β11v1i,
log(σi) = β20 +β21v2i, log(νi) = β30 +β31v1i,

where v1i ∼ Binomial(1,0.5) by considering two groups
(0 and 1) and v2i ∼ Normal(0,0.5).

The response variables x1, · · · ,xn are generated from
the GOLLMax regression model (8) as follow:

1.Generate v1i and v2i.
2.Estimate µi, σi and νi for the fixed scenario.

3.Generate ui ∼ U(0,1).
4.Use the steps i., ii. and iii. to calculate the observations

xi’s from (6).

Tables 1, 2 and 3 give the average estimates (AEs),
biases, mean squared errors (MSEs) of the MLEs, their
average lengths (ALs) and the empirical coverage
probabilities (CPs), say C(ψ), corresponding to the 95%
confidence intervals calculated from the simulations for
the parameters ψ=(β10, β11, β20, β21, β30, β31)T . We
verify that the AEs tend to be closer to the true parameter
values and the MSEs, as well as biases of the sample
estimates decay toward zero when the sample size n

increases as expected under first-order asymptotic theory.
The figures in Tables 1, 2 and 3 indicate that the CPs are
close to the nominal level and ALs decrease substantially
when n increases, respectively.

Table 1: AEs, Biases, MSEs, ALs and CPs of the parameters for

the GOLLMax regression model for scenario 1.

n ψ AEs Biases MSEs ALs C(ψ)

β10 2.437 -0.013 0.174 1.495 0.898

β11 -0.314 0.036 0.373 2.334 0.981

100 β20 0.353 0.203 0.847 1.355 0.891

β21 0.484 -0.016 1.855 5.146 0.918

β30 -0.636 -0.086 0.413 2.354 0.909

β31 0.245 0.045 0.817 3.417 0.947

β10 2.479 0.029 0.067 0.883 0.922

β11 -0.333 0.017 0.153 1.272 0.970

350 β20 0.140 -0.009 0.320 2.049 0.910

β21 0.472 -0.028 0.790 3.071 0.913

β30 -0.525 0.025 0.167 1.454 0.911

β31 0.224 0.024 0.355 2.035 0.928

β10 2.452 0.002 0.021 0.545 0.937

β11 -0.344 0.005 0.044 0.740 0.967

850 β20 0.168 0.018 0.126 1.355 0.935

β21 0.490 -0.009 0.293 1.995 0.949

β30 -0.557 -0.007 0.062 0.949 0.930

β31 0.211 0.011 0.124 1.297 0.952

Due to the difficulty of working analytically with the
proposed model, the regularity conditions are verified on
the basis of the qq-plots of the sample estimates. In
Appendix 2 the Figures 11-16, for n= 850, are presented
to better visualize and understand the behavior of the
asymptotic distribution of the MLEs. These plots reveal
empirically that the asymptotic distributions of the MLEs
tend to the normal distribution (as expected) when the
sample size increases. This fact asserts that the
asymptotic normal distribution provides an adequate
approximation to the finite sample distribution of the
estimates.
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Table 2: AEs, Biases, MSEs, ALs and CPs of the parameters for

the GOLLMax regression model for scenario 2.

n ψ AEs Biases MSEs ALs C(ψ)

β10 2.450 0.000 0.111 1.042 0.880

β11 -0.297 0.053 0.156 1.205 0.784

100 β20 0.300 0.150 0.532 2.387 0.833

β21 0.410 -0.090 0.952 2.997 0.769

β30 -0.604 -0.054 0.258 1.686 0.853

β31 0.301 0.101 0.458 2.084 0.778

β10 2.460 0.010 0.030 0.601 0.919

β11 -0.322 0.028 0.058 0.793 0.861

350 β20 0.164 0.014 0.169 1.459 0.913

β21 0.453 -0.047 0.357 1.991 0.843

β30 -0.547 0.003 0.082 1.024 0.916

β31 0.254 0.054 0.176 1.381 0.848

β10 2.453 0.003 0.011 0.387 0.935

β11 -0.326 0.024 0.028 0.569 0.888

850 β20 0.157 0.007 0.068 0.971 0.929

β21 0.451 -0.049 0.184 1.475 0.879

β30 -0.550 0.000 0.033 0.677 0.931

β31 0.241 0.041 0.088 1.013 0.876

Table 3: AEs, Biases, MSEs, ALs and CPs of the parameters for

the GOLLMax regression model for scenario 3.

n ψ AEs Biases MSEs ALs C(ψ)

β10 2.431 -0.019 0.120 1.148 0.881

β11 -0.337 0.013 0.014 0.430 0.923

100 β20 0.316 0.166 0.614 2.624 0.855

β21 0.546 0.046 0.102 1.107 0.906

β30 -0.610 -0.060 0.302 1.878 0.871

β31 0.215 0.015 0.047 0.757 0.910

β10 2.436 -0.014 0.027 0.607 0.921

β11 -0.347 0.003 0.004 0.229 0.947

350 β20 0.213 0.063 0.162 1.493 0.914

β21 0.509 0.009 0.025 0.571 0.923

β30 -0.581 -0.031 0.082 1.057 0.915

β31 0.204 0.004 0.012 0.397 0.937

β10 2.446 -0.004 0.010 0.387 0.933

β11 -0.350 0.000 0.001 0.147 0.947

850 β20 0.173 0.023 0.061 0.973 0.936

β21 0.506 0.006 0.009 0.363 0.924

β30 -0.559 -0.009 0.032 0.685 0.931

β31 0.199 -0.001 0.004 0.254 0.951

4 Diagnostic and residual analysis

We adopt diagnostic measures based on case deletion
(global influence) to detect influential observations in the
proposed regression model. The case-deletion model with
systematic structures (8) is

g1(µl) = vT
l β 1, g2(σl) = vT

l β 2, g3(νl) = vT
l β 3

l = 1, . . . ,n, l 6= i. (10)

In the following, a quantity with subscript “(i)” means the
original quantity with the ith observation deleted. For
model (10), the log-likelihood function for ψ is denoted

by l(i)(ψ). Let ψ̂(i) = (β̂ 1

T

(i), β̂ 2

T

(i), β̂ 3

T

(i))
T be the MLE of

ψ from l(i)(ψ). To assess the influence of the ith

observation on the MLEs ψ̂ = (β̂ 1

T
, β̂ 2

T
, β̂ 3

T
)T , we can

compare the difference between ψ̂(i) and ψ̂ . If deletion of

an observation seriously influences the estimates, more
attention should be paid to that observation. Hence, if ψ̂(i)

is far from ψ̂ , the ith observation can be regarded as
influential. A first measure of the global influence is
defined as the standardized norm of ψ̂(i)− ψ̂ (generalized

Cook distance), namely

GDi = (ψ̂(i)− ψ̂)T
[
L̈(ψ̂)

]
(ψ̂(i)− ψ̂). (11)

Another popular measure of the difference between
ψ̂(i) and ψ̂ is the likelihood distance given by

LDi = 2
{

l(ψ̂)− l(ψ̂(i))
}
. (12)

We can study departures from the error assumption as
well as the presence of outliers for various residuals
introduced in the literature but we consider the quantile

residuals (qr’s). For the new regression model, they are
defined by

q̂ri=Φ−1





γ
σ̂i ν̂i
1

(3/2,x2
i /µ̂2

i )

γ
σ̂i ν̂i
1

(3/2,x2
i
/µ̂2

i
)+

[
1−γ

σ̂i
1

(3/2,x2
i
/µ̂2

i
)

]ν̂i




, (13)

where Φ−1(·) is the inverse cumulative standard normal
distribution.

We built envelopes to allow better interpretation of the
probability normal plot of the residuals. These envelopes
are simulated confidence bands described by [16] and
contain the residuals, such that if the model is well-fitted,
the majority of points will be randomly distributed within
these bands.

5 Applications

In this section, we perform three applications in the
engineering area and analyze three real data sets. In the
first and second applications, we fit the Maxwell, EMax,
OLLGMax and GOLLMax (nested models). In addition,
we analyze the data sets using non-nested alternative
models. We consider the cdf of the gamma-Maxwell
(GMax) distribution [7] given by

F(x) =
γ
(
δ ,− log

(
1− 2

π γ
(

3
2
,µx2

)))

Γ (δ )
, x > 0, (14)

where µ > 0 is a scale parameter and δ > 0 is a shape
parameter.

The cdf of the three-parameter transmuted
exponentiated Maxwell (TEMax) distribution [8] is given
by

F(x) = (1−λ )G(x)δ −λ G(x)2δ , x > 0, (15)

where µ > 0 is a scale parameter, δ > 0 is a shape
parameter, |λ | ≤ 1 is a parameter that makes the
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asymmetry more flexible and G(x) = G(x; µ) is the
Maxwell cdf given by (1).

The beta-Weibull (BW) distribution (with four positive
parameters) α > 0 , λ > 0, a > 0 and b > 0 [17] is (for
x > 0)

F(x) = IGα,λ (x)(a,b) =
1

B(a,b)

∫ Gα,λ (x)

0
wa−1(1−w)b−1dw,(16)

where B(a,b) = Γ (a + b)/[Γ (a)Γ (b)] is the beta
function, Γ (a) =

∫ ∞
0 za−1 e−zdz is the gamma function

and Iy(a,b) = B(a,b)−1
∫ y

0 za−1(1 − z)b−1dz is the
incomplete beta function ratio.

Finally, the fourth generalization is the
Kumaraswamy-Weibull (KwW) distribution (with four
positive parameters) defined from [18] family by the cdf

F(x) = 1−
{

1−Gα ,λ(x)
a
}b

, x > 0. (17)

For both BW and KwW distributions,the base cdf
Gα ,λ (x) is given by Weibull distribution as

Gα ,λ (x) = 1− exp{−(λ x)α} , λ ,α,x > 0. (18)

In the applications, we define the MLEs and their
estimated standard errors (SEs) (given in parentheses) of
the model parameters and the values of the Akaike
Information Criterion (AIC), Bayesian Information
Criterion (BIC), Cramér-von Mises (W ∗), Anderson
Darling (A∗) and Kolmogorov-Smirnov (KS) statistics for
the fitted models. The lower the values of these measures,
the better the fit. For all distributions, the parameters are
estimated by maximum likelihood. We adopt the
AdequacyModel script BFGS and CG algorithms for
the first two applications, whereas the gamlss function
by RS method described by [19] in the R software is used
for the third application.

5.1 Application 1: Strength data

The data set with 49 observations presented by [20] was
obtained from a process of manufacturing a plastic
laminate whose resistance must exceed a few pounds per
square inch (psi). We calculate the MLEs of the model
parameters and the above-mentioned statistics for each
model fitted to these data. The results are presented in
Tables 4 and 5. The five statistical measures are favorable
to the GOLLMax distribution, which can be chosen as the
best distribution to explain the current data.

Formal tests to verify the inclusion or not of the
additional parameters σ and ν in the proposed
distribution can be done based on the LR statistics as
listed in Table 6. We reject the null hypotheses in the
three tests in favor of the GOLLMax distribution. The
rejection is significant and provides clear evidence of the
flexibility of the shape parameters σ and ν when
modeling real data with bimodal characteristics. More
information is provided by a visual comparison of the
data histogram and fitted density functions. The plots of

Table 4: MLEs of the model parameters, their SEs (given in

parentheses) for the strength data.

Model µ σ ν
GOLLMax 21.416 18.819 0.311

(0.001) (0.002) (0.037)

OLLMax 40.603 1 1.216

(2.097) (-) (0.153

EMax 36.332 1.561 1

(2.768) (0.351) (-)

Maxwell 40.988 1 1

(2.390) (-) (-)

Model µ δ λ
GMax 34.578 1.485

(3.502) (0.305)

TEMax 38.676 1.626 0.409

(0.001) (0.281) (0.293)

Model λ α a b

BW 0.263 0.673 615.67 0.477

(0.023) (0.0005) (0.013) (0.001)

KwW 0.106 1.432 92.091 0.164

(0.001) (0.002) (0.003) (0.002)

Weibull 52.945 2.890 1 1

(2.777) ( 0.304) (-) (-)

Table 5: The statistics AIC, BIC, W ∗, A∗ and KS (p-value

associated in parentheses) for the strength data.

Model AIC BIC W ∗ A∗ KS

GOLLMax 411.9 417.6 0.038 0.255 0.085

(0.836)

OLLMax 417.5 421.3 0.120 0.7397 0.094

(0.732)

EMax 416.2 420.0 0.114 0.700 0.137

(0.289)

Maxwell 418.0 419.9 0.1214 0.744 0.133

(0.317)

Model AIC BIC W ∗ A∗ KS

GMax 416.6 420.4 0.119 0.733 0.133

(0.314)

TEMax 417.3 422.9 0.100 0.618 0.131

(0.334)

Model AIC BIC W ∗ A∗ KS

BW 416.5 424.1 0.053 0.357 0.107

(0.581)

KwW 414.8 422.4 0.040 0.275 0.072

(0.940)

Weibull 420.1 423.9 0.158 0.968 0.114

(0.504)

the fitted GOLLMax, TEMax and Weibull densities are
displayed in Figure 4a. The estimated GOLLMax density
provides the closest fit to the histogram of the data.

To assess if the model is appropriate, the plots of the
fitted GOLLMax, TEMax and Weibull cumulative
distributions and the empirical cdf are displayed in Figure
4b. They also indicate that the wider distribution provides
a good fit to these data.
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Table 6: LR tests for strength data.

Models Hypotheses Statistic w p-value

GOLLMax vs

OLLMax

H0 : σ = 1 vs H1 :

H0 is false

7.5 0.006

GOLLMax vs

EMax

H0 : ν = 1 vs H1 :

H0 is false

6.3 0.012

GOLLMax vs

Maxwell

H0 : σ = ν = 1 vs

H1 : H0 is false

10.0 0.006
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Fig. 4: (a) Estimated densities of the GOLLMax, TEMax and

Weibull models for strength data. (b) Estimated cumulative

functions of the GOLLMax, TEMax and Weibull models for

strength data.

5.2 Application 2: Image data

The data set was extracted from an image of Foulum
(Denmark) obtained by the EMISAR sensor Lee and
Pottier [21]) jointly built by the Electro Magnetics
Institute (EMI), the Technical University of Denmark
(TUD), and its Danish Centre for Remote Sensing
(DCRS), operated at C- and L-bands (though not
simultaneously) with quad-polarizations. The data are
retrieved from
http://earth.eo.esa.int/polsarpro/datasets.html by means of
the PolSARpro software. For each geographic position,
each element consists in norm squared of a complex
number, which represents the information of the
polarization channel resulting of a pulse transmitted and
recorded in horizontal direction. A scenario of this data
set is presented in [22].

We calculate the MLEs of the model parameters and
the above-mentioned statistics for the fitted models to
these data. The results are reported in Tables 7 and 8. The
five statistics agree with the suitability of the proposed
model. In fact, the lowest values of them indicate that the
GOLLMax distribution could be chosen as the best model
to these data.

Formal tests to verify the inclusion or not of the
additional parameters σ and ν in the proposed
distribution can be performed based on the LR statistics
given in Table 9. We reject the null hypotheses in the

Table 7: MLEs of the model parameters, their SEs (given in

parentheses) for the image data.

Model µ σ ν
GOLLMax 0.065 4.687 0.184

(0.013) (2.205) (0.075)

OLLMax 0.110 1 0.517 2

(0.006) (-) (0.048)

EMax 0.170 0.422 1

(0.0122) (0.050) (-)

Maxwell 0.129 1 1

(0.005) (-) (-)

Model µ δ λ
GMax 0.187 0.422

(0.015) (0.051)

TEMax 0.174 0.442 0.158

(0.017) (0.061) (0.304)

Model λ α a b

BW 1.479 2.062 0.623 61.586

(0.001) (0.0001) (0.005) (0.615)

KwW 1.438 5.210 0.284 29.078

(0.001) (0.029) (0.0002) (0.035)

Weibull 0.145 1.505 1 1

(0.478) (0.119) (-) (-)

Table 8: The statistics AIC, BIC, W ∗, A∗ and KS (p-value

associated in parentheses) for the image data.

Model AIC BIC W ∗ A∗ KS

GOLLMax -243.0 -235.1 0.064 0.437 0.057

(0.887)

OLLMax -233.4 -228.2 0.208 1.176 0.116

(0.130)

EMax -226.9 -221.7 0.287 1.614 0.128

(0.071)

Maxwell -165.4 -162.8 0.297 1.671 0.307

(<0.001)

Model AIC BIC W ∗ A∗ KS

GMax -226.4 -221.2 0.293 1.650 0.129

(0.068)

TEMax -225.2 -217.3 0.285 1.598 0.123

(0.093)

Model AIC BIC W ∗ A∗ KS

BW -222.5 -212.1 0.292 1.644 0.128

(0.072)

KwW -222.8 -212.35 0.290 1.622 0.119

(0.111)

Weibull -226.3 -221.1 0.294 1.648 0.118

(0.115)

three tests in favor of the GOLLMax distribution. The
rejection is significant and provides clear evidence of the
flexibility of the shape parameters σ and ν for modeling
real data with bimodal characteristics. More information
is provided by a visual comparison of the data histogram
and adjusted densities. Figure 5a displays the plots of the
estimated GOLLMax, OLLMax and Weibull densities.
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Table 9: LR tests for the image data.

Models Hypotheses Statistic w p-value

GOLLMax vs

OLLMax

H0 : σ = 1 vs H1 :

H0 is false

11.6 0.001

GOLLMax vs

EMax

H0 : ν = 1 vs H1 :

H0 is false

18.2 <0.001

GOLLMax vs

Maxwell

H0 : σ = ν = 1 vs

H1 : H0 is false

81.6 <0.001

The estimated GOLLMax density provides the closest fit
to the histogram of these data.

To assess if the model is appropriate, the plots of the
estimated cdfs of the GOLLMax, OLLMax and Weibull
distributions and the empirical cdf are displayed in Figure
5b. They also support that the GOLLMax distribution
provides a good fit to these data.
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Fig. 5: (a) Estimated densities of the GOLLMax, OLLMax and

Weibull models to the image data. (b) Estimated cumulative

functions of the GOLLMax, OLLMax and Weibull models to the

image data.

5.3 Application 3: Brittle materials

Basu et al. [23] presented a detailed analysis of the data
on resistance measurements (in MPa) for different
components of ceramic materials and a glass material. In
this way, the data set is divided into four subsets with
measurements of materials with different chemical
compositions, such as, ZrO2, ZrO2 − TiB2, Si3N4 and
Glass (with unknown composition). The interest is to
verify the strength properties of solid materials, extremely
brittle as glass and the most resistant as the materials to
be made of ZrO2 and Si3N4.

The Weibull distribution is an alternative in
applications involving resistance studies of brittle
materials, for example, in [24]. Basu et al. [23] proposed
the Weibull distribution for an alternative modeling and

compared it with other two-parameter distributions.
However, in the application, the analyses are performed
considering the compositions separately. Here, we
propose a joint analysis by considering a regression
model with three systematic components given by (8).

The explanatory variables are:

–xi -observed value of the strength of the material (until
rupture or crack occurs);

–vi - chemical compounds of materials with four levels
(ZrO2, ZrO2 −TiB2, Si3N4 and Glass) are defined by
dummy variables: ZrO2 (vi1 = 0, vi2 = 0 and vi3 = 0),
ZrO2−TiB2 (vi1 = 1, vi2 = 0 and vi3 = 0), Si3N4 (vi1 =
0, vi2 = 1 and vi3 = 0) and Glass Si3N4 (vi1 = 0, vi2 = 0
and vi3 = 1).

First, we perform an exploratory analysis for these
data. We can verify by means of Figure 6 that the
different groups of chemical compounds have bimodality
and asymmetry. This behavior indicates that a more
flexible model, for example, the GOLLMax distribution
can be more adequate than the most popular gamma,
exponential, log-normal and Weibull distributions.
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Fig. 6: Plots for brittle materials data. (a) ZrO2. (b) ZrO2-TiB2.

(c) Si3N4. (d) Glass.

Considering only the response variable xi, we verify
the suitability of the proposed model and compare it with
the Weibull distribution. Tables 10 and 11 give the MLEs
and their SEs (in parentheses) and the AIC, BIC, W ∗, A∗

and KS statistics.
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Table 10: MLEs of the model parameters for brittle materials

data, their SEs (given in parentheses) and the AIC, BIC, W ∗, A∗

and KS statistics.

Model µ σ ν
GOLLMax 230.073 3.679 0.099

(0.029) (0.017) (0.007)

λ α
Weibull 591.012 1.032

(56.592) (0.082)

Table 11: The statistics AIC, BIC, W ∗, A∗ and KS for brittle

materials data

Model AIC BIC W ∗ A∗ KS

GOLLMax 1623.6 1631.8 0.541 4.077 0.152

(0.010)

AIC BIC W ∗ A∗ KS

Weibull 1669.5 1674.9 1.080 7.202 0.242

(<0.001)

Figure 7a displays the estimated GOLLMax and
Weibull densities and the histogram to verify which
model is more appropriate. As an alternative to check the
quality fit, Figure 7b displays the hrfs of the GOLLMax
and Weibull models and the empirical hazard function.
We conclude that the GOLLMax distribution provides a
better fit to these data.
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Fig. 7: (a) Estimated densities of the GOLLMax and Weibull

models for brittle materials data. (b) Estimated cumulative

functions of the GOLLMax and Weibull models for brittle

materials data.

We consider the following systematic structures:

µi = exp(β10 +β11vi1 +β12vi2 +β13vi3),

σi = exp(β20 +β21vi1 +β22vi2 +β23vi3)

and
νi = exp(β10 +β11vi1 +β12vi2 +β13vi3),

Table 12: MLEs, SEs and p-values for the fitted GOLLMax

regression model to the brittle materials data.

Parameters Estimates SEs p-values

β10 5.9882 0.0673 < 0.0001

β11 1.0437 0.0816 < 0.0001

β12 -0.4956 0.0857 < 0.0001

β13 -2.1062 0.0695 < 0.0001

β20 2.6242 0.2220 < 0.0001

β21 -2.8636 0.2362 < 0.0001

β22 1.4901 0.3797 0.0001

β23 -2.1661 0.2286 < 0.0001

β30 -1.2495 0.1784 < 0.0001

β31 2.3455 0.2241 < 0.0001

β32 0.0570 0.3064 0.8530

β33 2.4431 0.2597 < 0.0001

for i = 1, . . . ,113.
In addition, we present the estimates of the

parameters, SEs and the associated p-values of the MLEs
in Table 12. The figures in this table give evidence that
the presence of the covariate vi2 (Si3N4) is insignificant at
a significance level of 5% in the regression structure for
the parameter τi in relation to the ZrO2 level. This fact
confirms the exploratory analysis shown in Figure 6 in
which the groups ZrO2 in Figure 6a and Si3N4 in Figure
6c present similar bimodal forms, which contribute to the
non-significance.

Model checking
The next step is to detect possible influential points in

the GOLLMax regression model. The generalized Cook
distance and likelihood distance are displayed in Figure 8.
These plots reveal that the cases 29 and 56 are possible
influential observations.
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Fig. 8: (a) Generalized Cook distance for the GOLLMax

regression model to the brittle materials data. (b) Likelihood

distance for the GOLLMax regression model to the brittle

materials data.

Furthermore, we verify the quality of the adjustment
of the GOLLMax regression by constructing the normal
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probability plot for the qr’s for the waste diversion with
simulated envelope. There is evidence of a good fit of the
GOLLMax regression model as illustrated in Figures 9a
and 9b.
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Fig. 9: (a) Index plot of the qr’s from the fitted GOLLMax

regression model to brittle materials data. (b) Normal probability

plot for the qr’s with envelopes.

In this analysis, we make an analogy with the
methodology of survival analysis. We consider that the
event of interest is the breaking or rupture of the material.

The survival function corresponding to (5) is

S(x) = 1− γσν
1 (3/2,x2/µ2)

γσν
1 (3/2,x2/µ2)+

[
1− γσ

1 (3/2,x2/µ2)
]ν .(19)

Table 12 suggests that the materials ZrO2 − TiB2,
Si3N4 and glass are statistically different from the ZrO2

material in all structures, except as mentioned above. This
fact reveals the modeling ability of the proposed structure
to model the scale of the data using the parameter µi and
asymmetry and bimodality through the parameters σi and
νi, respectively.

In Figure 10a, we display the Kaplan-Meier empirical
curves and estimated survival functions defined from (8).
Note that glass is the weakest material with least
resistance. For a strength of 800 MPa the probabilities
that in the materials ZrO2, ZrO2 −TiB2 and Si3N4 do not
occur the event of interest are 0.4912, 0.9446 and 0.1633,
respectively. In Figure 10b, we give the estimated hrf for
each material and verify the presence of different forms
for this function. Based on this figure, we note that both
models show satisfactory fits. However, the GOLLMax
regression model presents a better fit to the current data.

6 Concluding Remarks

We proposed a three-parameter model called the
generalized odd log-logistic Maxwell (GOLLMax)
distribution, which includes as special cases the odd
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Fig. 10: The GOLLMax regression model. (a) Estimated survival

functions and the empirical survival for the brittle materials data.

(b) Estimated hrf for the brittle materials data.

log-logistic Maxwell (OLLMax), exponentiated Maxwell
(EMax) and Maxwell distributions. We provide some of
its mathematical properties. We define a GOLLMax
regression model with three systematic components based
on the new distribution. The proposed regression serves
as an important extension to several existing regression
models and could be a valuable addition to the literature.
The maximum likelihood method is described for
estimating the model parameters. Some simulations are
performed for different parameter settings and sample
sizes to evaluate the precision of the maximum likelihood
estimates. Diagnostic analysis is presented to assess
global influences. We also discuss the sensitivity of the
estimates from the fitted model via quantile residuals. The
utility of the introduced models was discussed by means
of three real data sets.
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Appendix 1: Structural properties

We derive here some mathematical properties of
X ∼GOLLMax(µ ,σ ,ν). First, we introduce some

notation. Let Π(x; µ ,k,β ) = γ1

(
k, [ x

µ ]
β
)

(for x > 0) be

the cdf of the generalized gamma (GG) distribution [25]
with shape parameters k > 0 and β > 0 and scale
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parameter µ > 0. The corresponding density function, say
π(x; µ ,k,β ), is

π(x,µ ,k,β ) =
β

µ Γ (k)

(
x

µ

)kβ−1

exp

[
−
(

x

µ

)β
]
. (20)

Clearly, the Maxwell density (2) follows from (20) as
g(x; µ) = π(x; µ ,3/2,2).

Theorem 1: We can express the density
f (x; µ ,σ ,ν) of X as a linear combination of GG densities

f (x; µ ,σ ,ν) =
∞

∑
m,i=0

pm,i π(x; µ ,k∗,2), (21)

where the GG densities have common parameters µ and 2
and varying shape parameter k∗ = k∗(m, i) = 3(m+1)/2+
i, and the coefficients pm,i = pm,i(µ ,σ ,ν) are functions of
the model quantities (defined below) given by

pm,i =
2(m+ 1)µ3m+2i wm+1 cm,i√

π
Γ

(
3m

2
+ i

)
.

Proof Theorem 1:
For any real non-integer λ > 0, the generalized

binomial theorem

γ1(3/2,x2/µ2)λ =
[
1−
{

1− γ1(3/2,x2/µ2)
}]λ

=
∞

∑
j=0

(−1) j

(
λ

j

){
1− γ1(3/2,x2/µ2)

} j
,

holds, and it is always convergent since
0 < γ1(3/2,x2/µ2)< 1. Hence,

γ1(3/2,x2/µ2)λ=∑∞
j=0 ∑

j
m=0(−1) j+m(λ

j)(
j

m)γ1(3/2,x2/µ2)m.

Substituting ∑∞
j=0 ∑

j
m=0 for ∑∞

m=0 ∑∞
j=m and after some

algebra, we obtain

γ1(3/2,x2/µ2)λ =
∞

∑
m=0

sm(λ )γ1(3/2,x2/µ2)m, (22)

where (for m ≥ 0)

sm(λ ) =
∞

∑
j=m

(−1)r+m

(
λ

j

)(
j

m

)
.

Using (22), the numerator of (4) can be expanded as

γσν
1 (3/2,x2/µ2) =

∞

∑
m=0

sm(σν)γ1(3/2,x2/µ2)m (23)

where sm(σν) comes from a previous quantity. Using the
generalized binomial theorem and (22), one part of the
denominator (4) can be written as

[1−γσ
1 (3/2,x2/µ2)]

ν = 1+
∞

∑
j=1

(−1) j

(
ν

j

)
γ

jσ
1 (3/2,x2/µ2)

= 1+
∞

∑
m=0

tm(σ ,ν)γ1(3/2,x2/µ2)m,

where tm(σ ,ν) = ∑∞
j=1(−1) j

(
ν
j

)
sm( jσ).

The denominator of (4) can be defined from (23) and
the last power series as

γσν
1 (3/2,x2/µ2)+[1−γσ

1 (3/2,x2/µ2)]
ν
=

∑∞
m=0 vm(σν)γ1(3/2,x2/µ2)m, (24)

where v0(σ ,ν) = 1+ s0(σν) + t0(σ ,ν) and vm(σ ,ν) =
sm(σν)+ tm(σ ,ν) for m ≥ 1.

Combining (23) and (24), we can express (4) as

F(x; µ ,σ ,ν) =
∑∞

m=0 sm(σν)γ1(3/2,x2/µ2)m

∑∞
m=0 vm(σ ,ν)γ1(3/2,x2/µ2)m

.

The ratio of the two power series in the last equation
reduces to

F(x; µ ,σ ,ν) =
∞

∑
m=0

wm γ1(3/2,x2/µ2)m, (25)

where the coefficients wm’s (for m ≥ 1) are determined
from the recurrence equation

wm=wm(σ ,ν)=v0(σ ,ν)−1 [sm(σν)−∑m
r=1 vr(σ ,ν)wm−r(σ ,ν)]

and w0 = w0(σ ,ν) = s0(σν)/v0(σ ,ν).
Differentiating (25), we can rewrite (5) as

f (x; µ ,σ ,ν) =
∞

∑
m=0

wm+1 hm+1(x; µ), (26)

where hm+1(x; µ) = (m+ 1)g(x; µ)γ1(3/2,x2/µ2)m is the
EMax density with power parameter (m+ 1) (for m ≥ 0).
Then, we have

hm+1(x; µ) =
4(m+ 1)√

π µ3
x2 exp

(
− x2

µ2

)
γ1(3/2,x2/µ2)m.

In addition, we adopt the power series for the
incomplete gamma function ratio

γ1(3/2,x2/µ2) =
∞

∑
i=0

ai x2i+3, (27)

where ai = ai(µ) =
(−1)i

(3/2+i)µ2i+3 Γ (3/2) i!
(for i ≥ 0).

By application of an equation in Section 0.314 of [26]
for power series raised to powers, we can write (for any m

positive integer)
(

∞

∑
i=0

ai zi

)m

=
∞

∑
i=0

cm,i z
i, (28)

where the coefficients cm,i = cm,i(µ) are determined by
cm,0 = am

0 and, for i = 1,2, . . ., from the recurrence
relation

cm,i = (ia0)
−1

i

∑
r=1

[(m+ 1)r− i]ar cm,i−r.

Thus, the coefficient cm,i can follow from cm,0, · · · ,cm,i−1

and then from a0, · · · ,a j.
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Furthermore, we have from equation (28)

γ1(3/2,x2/µ2)m =
∞

∑
i=0

cm,i x3m+2i. (29)

Combining (22) and (29), the EMax density can be
expanded as

hm+1(x; µ)=
4√

π µ3

∞

∑
i=0

(m+1)cm,i x3m+2i+2 exp

(
− x2

µ2

)
.

Inserting this expression in Equation (26) gives

f (x;µ,σ ,ν)= 4√
π µ3 ∑∞

m,i=0(m+1)wm+1 cm,i x3m+2i+2 exp

(
− x2

µ2

)
.

Finally, we can rewrite f (x; µ ,σ ,ν) as a linear
combination of GG densities with two common
parameters 2 and µ and the third parameter
k∗ = k∗(m, i) = 3(m + 1)/2 + i as in (21), and the
coefficients pm,i = pm,i(µ ,σ ,ν) are functions of previous
quantities given by

pm,i =
2(m+ 1)µ3m+2i

√
π

Γ (3m/2+ i) wm+1 cm,i. �

The linear representation (21) becomes very useful in
deriving some mathematical properties for the GOLLMax
distribution using well-known GG properties. We can
adopt at most ten terms in (21) to provide accurate results
in most analytical platforms.

Corollary 1 The nth moment of X takes the form

µ ′
n=E(Xn)=µn ∑∞

m,i=0 pm,i
Γ (3[m+1]/2+i+n/2)

Γ (3[m+1]/2+i)
. (30)

Proof Corollary 1:

The nth ordinary moment of the GG pdf π(x; µ ,k,β ) is
known to be δ ′

n,GG = µn Γ (k+ n/β )/Γ (k). Then, the nth
moment of X can be defined from (21) as

µ ′
n=E(Xn)=µn ∑∞

m,i=0 pm,i
Γ (3[m+1]/2+i+n/2)

Γ (3[m+1]/2+i)
. � (31)

Some of the most important features and characteristics of
a distribution can be investigated through moments (e.g.
tendency, dispersion, skewness and kurtosis). The central
moments and cumulants of X can be determined from the
ordinary moments in (30) using well-known formulae.

Corollary 2 The nth incomplete of X can be
expressed as

Mn(s)=
∫ s

0 xn f (x;µ,σ ,ν)dx=∑∞
m,i=0 pm,i In(s;µ,k∗,2).

Proof Corollary 2:

The nth incomplete moment In(s; µ ,k,2) =∫ s
0 xn π(x; µ ,k,2)dx of π(x; µ ,k,2) is easily found by

transforming variables z = (t/µ)2 as

In(s; µ ,k,2) =
µn

Γ (k)
γ(n/2+ k,(s/µ)2).

Hence, the nth incomplete of X follows from Equation
(21) as

Mn(s)=
∫ s

0 xn f (x;µ,σ ,ν)dx=∑∞
m,i=0 pm,i In(s;µ,k∗,2). �

The first incomplete moment M1(s) plays an
important role in measuring inequality such as the mean
deviations and Lorenz and Bonferroni curves. First, the
mean deviations about the mean τ ′1 = E(X) and the
median m of X are determined from
δ1 = 2τ ′1 F(τ ′1)− 2M1(τ

′
1) and δ2 = τ ′1 − 2M1(m), where

F(τ ′1) and F(m) are easily calculated from (4).
Another application of M1(s) refers to the Bonferroni

and Lorenz curves of X . These curves are very useful in
economics, reliability, demography, insurance and
medicine. For a given probability π , the Bonferroni and
Lorenz curves are given by B(π) = M1(p)/(pτ ′1) and

L(p) = M1(p)/τ ′1, where p = Q(π) = F−1(π) can be
computed from (6).

Corollary 3 The moment generating function (mgf)
of X can be reduced to

M(s) =
∞

∑
m,i=0

pm,i Mµ,k∗,2(s),

where Mµ,k∗,2(s) is the mgf of π(x; µ ,k∗,2).
Proof Corollary 3:
The mgf of π(x; µ ,k∗,2) follows from [20] as

Mµ,k∗,2(s) =
1

Γ (k∗) 1Ψ0

[
(1,1/2)

− ; µ s

]
, (32)

where 1Ψ0 is the Wright generalized hypergeometric
function defined by

pΨq

[ (
µ1,A1

)
, · · · ,

(
µp,Ap

)
(
β1,B1

)
, · · · ,

(
βq,Bq)

;x

]
=∑∞

m=0

p

∏
j=1

Γ (µ j +A j m)

q

∏
j=1

Γ (β j +B j m)

xm

m!
.

Hence, the mgf of X can be determined from (21) and
(32) as

M(s)=E(esX)=1Ψ0

[
(1,1/2)

− ;µ s

]
∑∞

m,i=0

pm,i

Γ

(
3[m+1]/2+i

) . �

Appendix 2: Plots for checking the regularity

conditions
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