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Abstract: Owing to the advantages of quaternion in describing vector sensor array data, a quaternion model of uniform cocentered
loop and dipole (CLD) pair circular array is deduced and constructed in this paper. Two sets of synchronous time data are used to
construct correlation matrix. According to the relationships of the two sets data and that of the two steering vectors, the array steering
vector and the frequency of signals are obtained. The direction of arrival (DOA) is derived by dot division operation andthe least square
method. The polarization parameters are obtained using therelationship between the dipole steering vector and magnetic loop vector.
Without spectral peak searching and parameter matching, this method gives closed-form solution of frequency, DOA and polarization
parameters. The proposed algorithm results in a reduction by half of memory requirements for representation of data covariance model
and decreases the computational cost. Finally, simulationresults verify that the performance of proposed method is superior to the
long-vector approach because quaternion matrix operations can maintain the vectorial property of the vector sensor and provide a better
subspace approximation than the long-vector approach.
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1 Introduction

Source localization using an electromagnetic vector
sensor (EMVS) arrays are widely used in radar, sonar,
navigation, geophysics, and acoustic tracking [1], since
they have the capability of separating signals based on
their polarization characteristics and spatial diversity. The
problem of estimating signal polarizations along with
arrival angles has been discussed previously in many
literatures. The first direction-finding algorithms,
explicitly exploiting all six electromagnetic components,
have been developed by Nehorai and Paldi [2, 3] and
Li [ 4], respectively. The cross-product-based DOA
estimation algorithm was first adapted to ESPRIT by
Wong and Zoltowski [5–8]. A uni-vector-sensor MUSIC
algorithm was proposed in [9]. Many other algorithms
have been devised to estimate the direction of arrival
(DOA) and polarization parameters of multiple
electromagnetic signals [10,11], the maximum likelihood
approach was presented in [10]; two distinct versions of
estimate signal parameters via rotation invariance

(ESPRIT) estimators were reported in [4] and [7]
respectively; the multiple signal classification (MUSIC)
technique was investigated in [8–11]. However, existing
methods mostly combine the output of a vector sensor
into a long-vector in series, which is called long-vector
mode. This way of processing data originated from
vector-sensors has the main advantage of allowing,
together with a rather complicated parametrization of the
data, the use of well-known matrix algebra techniques
over the real or the complex field. However, the
long-vector approaches have the drawback of destroying
locally the vector-type of the signal and fail in
high-accuracy estimation of DOA and polarization
because of the reorganization of the data into a large
vector. In recent years a few research have been made on
estimating the DOA of EMVS within the algebraic
system theory for quaternion and its extension [12–17].
Quaternion MUSIC (Q-MUSIC) technique was proposed
based on the quaternion formalism of the two component
vector sensor array in [12]. The three component vector
sensor was expressed as a biquaternion number, then
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biquaternion-based MUSIC (BQ-MUSIC) was proposed
in [13]. The six component electromagnetic (EM) vector
sensor array was represented by a quad-quaternion model
in [14].

The advantages of using quaternion for EMVS is that
the local vector nature of a EMVS array is preserved in
multiple imaginary parts, and it could result in a more
compact representation. The use of quaternion allows us
to skip the parametrization step used in long-vector
techniques as it intrinsically includes the vector
dimension in the process. Quaternionic matrix operations
can provide a better subspace approximation than the
long-vector approach. Compared with long-vector
methods, the quaternion and its extension method based
estimators are shown to be more robust to model errors,
while their computation efforts for estimating the data
covariance matrices are lower [12–16].

Comparing with CLD pairs oriented along x axis, y
axis and CDD (cocentered dipole and dipole) pairs, CLL
(cocentered loop and loop) pairs oriented along x and y
axis respectively, we can see that CLD pairs along the z
axis is more easier to realize the decoupling of
polarization and angle of arrival parameters because of its
simple structure [18–24]. A frequency, DOA and
polarization joint estimation method of uniform CLD pair
circular array based on quaternion-ESPRIT is proposed in
this paper. Two sets of synchronous time data are used to
construct correlation matrix. According to the subspace
theory, the array steering vector and the frequency of
signals are obtained. The spatial steering vector
composed of phase differences between adjacent array
elements is estimated by dot division of the array steering
vectors. The direction of arrival (DOA) is derived by the
least square method. The key components of the proposed
approach and results :1) can decouple frequency, DOA
estimation from the polarization estimations, errors of
frequency, DOA and polarization herein do not cumulate;
2) have lower computational efforts and higher accuracy
estimations of DOA and polarization than that of
long-vector methods;3) have the advantage of parameter
automatic matching and without spectral peak searching.

2 Quaternion and Array Models

2.1 Quaternion [17]

Quaternion is developed by William Hamilton in 1843.
The quaternion has four components, i.e., one real part
and three imaginary parts and can be represented in
Cartesian form as:

q = a+ ib+ jc+ kd a,b,c,d ∈ R (1)

where a, b, c and d are real numbers and i, j and k are
complex operators which obey the following rules.

ij =−ji = k jk =−kj = i
ki =−ik = j i2 = j2 = k2 =−1

(2)

From formulas (1) and (2), quaternion can also be
expressed as the following form:

q = a+ ib+(c+ id) j = α +β j (3)

The quaternion expressed in equation (3) is also
known as the ”Cayley-Dickson representation”. The
quaternion conjugate and the quaternion modulus are
respectively given by

q∗ = a− ib− jc− kd
‖q‖=

√
a2+ b2+ c2+ d2 (4)

The addition of two quaternions can be given by the
addition of their corresponding real and imaginary parts,
which satisfies the commutative property. However the
multiplication is not commutative.

2.2 Signal and array models

K narrowband completely polarized electromagnetic
plane wave source signals from far-field, impinge upon a
uniform circular array (UCA), which is composed of
N(N > K) identical CLD pairs. The center of the UCA is
the origin of the Cartesian coordinates. The radiusR of
the circle satisfies the Nyquist sampling criterion of
R/λmin ≤ 1/

(
4sin

(
2π
N

))
, that is to say inter-element

spacing less than or equal to half of minimal wavelength,
whereλmin refers to the minimal signals wavelength of
the incident signal andλk =

c
fk

, with fk be the frequency
of signal. The zero CLD pair located on the cross point of
the circle and the positive x-axis, along the anti-clockwise
direction is respectively the zero, first ,second,...(N−1)
th CLD pair. as shown in Figure1. For the CLD pairs, the
dipoles parallel to the z-axis is referred to as the z-axis
dipoles and the loops parallel to the x-y plane as the x-y
plane loops, respectively measuring the electric field
components and the magnetic field components. The
CLD pairs steering vector of the kth(1≤ k ≤ K)!
unit-power electromagnetic source signal is the following
2×1 vector [4,23]:

[
hkz
ekz

]

=

[
0 sinθk
−sinθk 0

][
cosγk

sinγkejηk

]

(5)

where θk ∈ [0,π/2] is the signals elevation angle
measured from the positivez−axis,γk ∈ [0,π/2] represents
the auxiliary polarization angle, andηk ∈ [−π ,π]
symbolizes the polarization phase difference. Thez−axis
electric fieldekz and thez−axis magnetic fieldhkz both
involve the same factor sinθk , so polarization estimation
based on CLD pairs is independent of the sources
direction of arrival and it requires no prior information of
azimuth and elevation angles.

The ekz and hkz can be expressed as follows with a
quaternionck :

ck = ekz + ihkz =−sinθksinγke
jηk + isinθkcosγk (6)
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Fig. 1: Uniform circular array geometry.

The output of array response for the kth incident signal
can be expressed as follows:

xk (t) = ckq (θk,φk)
︸ ︷︷ ︸

a1(θk,φk ,γk,ηk)

sk (t) (7)

where φk(0≤ φk ≤ 2π) is the azimuth of the kth incident
signal,sk (t) is the kth incident signal, withq(θk,φk) is the
spatial steering vector constituted by the phase differences
between the array elements and the origin, i.e.,

q
(
θk ,φk

)
=






ej2πRsinθkcos(φk−ϕ0)/λk

...
ej2πRsinθkcos(φk−ϕN−1)/λk




 (8)

According to equation (8), the phase ofq
(
θk ,φk

)
can be

expressed as:

arg[q(θk,φk)] =
2πR
λk







βk
αksin∆ +βkcos∆

...
αksin[(N−1)∆ ]+βkcos[(N−1)∆ ]







(9)
where ∆ = 2π/

N, αk = sinθksinφk, βk = sinθkcosφk.
Now suppose the following matrix

W =
2πR
λk







0 1
sin∆ cos∆

...
...

sin[(N −1)∆ ] cos[(N−1)∆ ]







(10)

Then formula (9) can be rewritten as:

arg[q(θk,φk)] = W ·
[

αk
βk

]

(11)

For the sake of simplicity, letqk denotesq(θk,φk) .
Now let

q1k = qk (1,N−1) ,q2k = qk (2,N) (12)

whereq1k andq2k are the first and the last N-1 elements of
qk , respectively.

Define
∆qk = [q2k./q1k] (13)

where./ denotes dot division which is the division of the
corresponding elements of two vectors. From equations (8)
and (13), the phase of∆qk can be expressed as:

arg[∆qk] = ∆W ·
[

αk
βk

]

(14)

where ∆W = W2 − W1 ,W1 = W (1 : N−1, :)
,W2 = W (2 : N, :) , with W1 andW2 are the first and the
last N-1 rows ofW , respectively.

3 Quaternion-ESPRIT Algorithm

The received data collected by the CLD UCA at timet can
be represented as

X1 (t) = A1S(t)+N1(t) (15)

The received data collected by the CLD UCA at timet +
∆T can be represented as

X2 (t) = A2S(t)+N2(t)=A1ΦS(t)+N2(t) (16)

Φ =






ej2π f1∆T

. . .
ej2π fK∆T




 (17)

whereXi (t) , S(t), Ni (t) andAi is the received data, the
incident signals, the zero-mean additive complex Gaussian
noise and the steering vector matrix of incident signals,
respectively, i.e.,

Xi (t) =







xi,0 (t)
xi,1 (t)
...
xi,M−1 (t)







, S(t) =







s1 (t)
s2 (t)
...
sK (t)







Ni (t) =







ni,0 (t)
ni,1 (t)
...
ni,M−1 (t)







, Ai
T =








aT
i (θ1,φ1,γ1,η1)

aT
i (θ2,φ2,γ2,η2)

...
aT

i (θK ,φK ,γK ,ηK)








with ∆T is the constant time delay between the two sets
of time samples.

The received data of overall array is

Z (t) =

[
A1
A2

]

S(t)+N(t) = AS(t)+N(t) (18)

where A = [a(θ1,φ1,γ1,η1) , · · · ,a(θK ,φK ,γK ,ηK)]
,with

a(θk,φk,γk,ηk) =
[
aT

1 (θk,φk,γk,ηk) ,aT
2 (θk,φk,γk,ηk)

]T

a2(θk,φk,γk,ηk) = a1 (θk,φk,γk,ηk)ej2π fk∆T

k = 1, · · · ,K
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The correlation matrix of received data Z(t) is

Rz = E
[
ZZH]= ARsAH +σ2I (19)

with E[·] symbolizing the statistical mean,(·)H denoting
the complex conjugate transpose,σ2 indicating the white
noise power andRs = E

[
S(t)SH (t)

]
representing the

source covariance matrix. LetEs be the N× K matrix
composed of theK eigenvectors corresponding to theK
largest eigenvalues ofRz and let En denote the
N × (N−K) matrix composed of the remaining N−K
eigenvectors ofRz . According to the subspace theory,
there existsK ×K nonsingular matrixT , and the signal
subspace can be expressed explicitly as

Es = AT (20)

According to the definition of signal subspace, the
relationship between signal subspace and steering vector
can be expressed explicitly as

E1 = A1T E2 = A2T = A1ΦT (21)

The following expression can be obtained by
crunching matrix operation

E#
1E2T−1 = T−1Φ (22)

whereE#
1 =

(
EH

1 E1
)−1

EH
1

Let ψ=E#
1E2 =

(
EH

1 E1
)−1EH

1 E2, then equation (22)
can be rewritten as

ψT−1 = T−1Φ (23)

Equation (23) implies that the estimation ofΦ is a matrix
whose diagonal elements are composed of the K
eigenvalues of matrixψ and the full-rank matrix is
composed of the K eigenvectors of matrixψ . The
estimations ofA1, A2 andA can be obtained:

A1=E1T−1, A2 = E2T−1, A=EsT−1 (24)

From the formula (17), the estimation of frequency is
given as:

fk = sin−1
[

1
2π∆T

arg
(
Φ̂kk

)
]

(25)

3.1 The estimations of DOA

The estimations of DOA can be got fromA1 as following
procedure. Base on the subspace theory and formula (7),
the following equation can be obtained:

A1k./qk = δ δ is constant.
Let

Q1k = [A1k (2 : N)] ,Q2k = [A1k (1 : N−1)] ,Qk = [Q2k./Q1k]
(26)

The estimation of spatial steering vector∆ q̂k is
obtained:

∆ q̂k = [Q2k./Q1k] (27)

According to equation (13), ∆ q̂k in equation (27) can
be expressed as follows:

Ω = arg[∆ q̂k] = ∆W ·
[

α̂k

β̂k

]

(28)

The estimations ofαk andβk can be got from (28), i.e.,

[
α̂k

β̂k

]

= [∆W]#Ω (29)

where[∆W]# =
[

(∆W)H∆W
]−1

(∆W)H

From formula (29) the estimation of signals are
obtained:







θ̂k = arcsin(
√

α̂2
k + β̂ 2

k )





φ̂k = arctan
(

α̂k

β̂k

)

, β̂k ≥ 0

φ̂k = π +arctan
(

α̂k

β̂k

)

, β̂k < 0

(30)

3.2 The estimations of DOA

From formulas (7) and (18), the matrix A1 can be
expressed as another form:

A1=Ae + iAh (31)

From the equation (6), (7) and (19), it can be seen that:

Ae = AhΩ (32)

where

Ω =






−tanγ1ejη1

. . .
−tanγKejηK




 (33)

According to equation (33), the polarization
parameters estimation are presented as

γk = tan−1 (|Ωkk|)ηk = arg(−Ωkk) (34)

According to the quaternion structure characteristics of
uniform CLD pair circular array steering vector, the dipole
and magnetic loop steering vectors are obtained, then the
estimation of polarization parameters are got by formulas
(32) and (33).
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4 Comparison of the computational costs

A full estimation of the computational complexity of the
methods is difficult as it is dependent on hardware and
software. Consequently, we only focus on one aspect of
the algorithm: the estimation of the covariance matrix.
This procedure, as it implies repetitive operations, best
illustrates the complexity difference between the two
algorithms. For a vector sensor array composed by N
CLD pairs, M snapshot data is used to estimate
covariance matrices:

RQ =
1
M

M

∑
i=1

XQiXH
Qi

=
1
M

M

∑
i=1

RQi (35)

RC =
1
M

M

∑
i=1

XCiXH
Ci =

1
M

M

∑
i=1

RCi (36)

whereRQi = XQiXH
Qi andRCi = XCiXH

Ci .
For the quaternion representationXQi ∈ HN , the

matrix RQi has N2 quaternionic entries and can be
represented at machine memory level on4N2 real fields.
The multiplication of two quaternions implies 16 real
multiplications and 12 real additions, that is a total of
16N2 real multiplications andN2 real additions for a
matrix RQi . The estimate ofRQ needs 16N2M real
multiplications,12N2M+(M −1)4N2= 16N2M −4N2

real additions and4N2 real numbers divisions. For the
long-vector representationXCi ∈ C2N , the matrix has4N2

complex entries and can be represented at machine
memory level on8N2 real fields. The multiplication of
two complexes implies 4 real multiplications and 2 real
additions, that is a total of16N2 real multiplications and
8N2 real additions for a matrixRCi . The estimate ofRC
needs16N2M real multiplications,8N2M+(M −1)8N2

= 16N2M −8N2 real additions, 8N2 real numbers
divisions. According to the above analysis, the quaternion
algorithm can reduce half of the memory requirements for
data covariance model representation. The quaternionic
approach demands4N2 real numbers additions more than
and4N2 real numbers divisions less than the long-vector
method. The computational complexity for division is
several times more than for addition, implying higher
computational cost for long-vector.

5 Simulation Results

In this section, some simulations are conducted to
evaluate the performances on DOA and polarization
estimation by the proposed method. Two uncorrelated
equal-powered signals with parameters(θ1,φ1,γ1,η1)
= (72◦,85◦,30◦,120◦) and (θ2,φ2,γ2,η2) =
(30◦,43◦,67◦,80◦) impinging upon the UCA with N=14
CLD pair sensors. The radius of UCA is 0.5λmin . The
frequency ratio of two signals are

(
f1
/

fs, f2
/

fs
)

= (0.2,0.4) . The signal-to-noise ratio (SNR) is from 0 to
45dB, 1024 snapshots are used in each of the 500
independent Monte Carlo simulation experiments. The
results are shown in figures 2-11.

Experiment 1: the performance of RMSE.
The dotted line with star and solid line with circular

data points in Figs. 2-5 respectively plot the root mean
squared error (RMES) of azimuth, elevation, polarization
phase difference (PPD) and auxiliary polarization angle
(APA), respectively estimated by long-vector and the
proposed quaternion method, at various signal-to-noise
ratio (SNR) levels. The proposed quaternion procedure is
better than long vector. The estimation precision at 0dB
based on the quaternion model has improved larger than
0.14◦ for azimuth, 0.79◦ for elevation, 0.43◦ for PPD,
0.2◦ for APA, compared with that of the long-vector
method. Moreover, the RMSE of azimuth, elevation, PPD
and APA are reduced evidently as the SNR increases
using the quaternion method. The enhanced performance
is rooted in the special data model of quaternion. When
under low SNR conditions, the proposed algorithm can
has better performance than that of long-vector methods.
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Fig. 2: RMSE of azimuth versus SNR.
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Fig. 3: RMSE of elevation versus SNR.

Experiment 2: the scatter diagrams plotted by the long
vector and the proposed quaternion method.
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Fig. 4: RMSE of PPD versus SNR.
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Fig. 5: RMSE of APA versus SNR.

In this experiment we show the scatter diagrams of
DOA and polarization. Without loss of generality, the
SNR is set at 15dB. The simulation results are shown in
Figs. 6-9.
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Fig. 6: Scatter diagram of DOA by long vector method.

Figs. 7 and 9 show that almost all estimated values are
located in the vicinity of actual values under the
application of proposed quaternion algorithm, the DOA
and polarization estimated value errors are only 0.16◦ and
0.25◦ , respectively. On the contrary, in Fig. 6 and 8 the
DOA and polarization estimated value errors with the
long vector method are 0.63◦ and 0.7◦ , respectively. The
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Fig. 7: Scatter diagram of DOA by quaternion method.
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Fig. 8: Scatter diagram of polarization by long vector method.
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Fig. 9: Scatter diagram of polarization by quaternion method.

performance of quaternion algorithm is much better than
that of long vector algorithm.

Experiment 3: the probability of success plotted by the
long vector and the proposed quaternion method..

The probability of success of DOA and polarization
estimations are given in this experiment. The result is
shown in Figs 10-11.

The curves with star and circular data points in Figs.
10-11 respectively plot the probability of success of DOA
and polarization, respectively estimated by the proposed
long vector and quaternion method, at various
signal-to-noise ratio (SNR) levels. The proposed
quaternion procedure is better and more robust than long
vector procedure.
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Fig. 10: Probability of exact recovery of DOA versus SNR.
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Fig. 11: Probability of exact recovery of polarization versus
SNR.

6 Conclusions

The quaternion-ESPRIT algorithm for estimating
frequency, DOA and polarization using UCA is proposed
in this paper. The proposed algorithm can decouple
frequency, DOA estimations from the polarization
estimation, errors of frequency, DOA and polarization
herein do not cumulate. The new method can obtain
higher precision parameters than the traditional long
vector data model method, because quaternion-ESPRIT
algorithm retains the vector nature of vector sensor and
provides a better subspace approximation. The
computation efforts for estimating the data covariance
matrices are lower than that of long-vector method.
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