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Abstract: This paper analyzed the dynamics of Cournot duopoly gamle avibgarithmic demand function. We assumed that the
owners of both firms played with bounded rationality expgota The existence of equilibrium points and its local #tgbof the
output game are investigated. The complex dynamics, laifimes and chaos are displayed by numerical experimentsieNcal
methods showed that the higher values of speeds of adjuseweon the Nash equilibrium that becomes unstable throwgiogh
doubling bifurcations, more complex attractors are cibar®und it. The chaotic behavior of the game has been ctaurby using
feedback control method. we investigated the mechanisatsgtind the firms to behave in the same way in the long run (sgnization
phenomena).
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1 Introduction limited information about the market, where the market
has linear demand and two firms have the same fixed
Expectations play an important role in modeling marginal cost. Duopolists with dynamic adjustment
economic phenomena. A producer can choose hi®ehavior of bounded rationality based on constant
expectations rules of many available techniques to adjusgonjectural variation have been considered if]. [
his production outputs. There exist three differentDynamics of a four dimensional system which
firms’expectations: naive, bounded rational and adaptivegeneralizes the classical Cournot competition in a local
Recently, several works have considered more realistiovay has been analyzed i]]
mechanisms through which players form their  Currently, under the assumption of bounded
expectations about decisions of competitors, the gameationality, the research result of the duopoly game with
with bounded rationality has been the hot spot of heterogeneous and homogeneous players (as regards the
research. Generalization of the duopoly model of Bowleytype of expectations’ formation) has been widely used in
to the case of cost function with linear terms has beerrealistic problems of quantity competition see ii]([ 8],
discussed in ). The dynamics of a nonlinear Cournot [9], [10], [11] and [12]).
duopoly with managerial delegation and homogeneous The Bertrand’s economic competition model which
players based on the bounded rational expectation hadescribes a duopoly market in which two firms are
been studied by Luciano Fanti and Luca GA&].[The @ competing with each other through a price war for
complex dynamic features of a nonlinear mixed Cournotmaximizing there profits. A duopoly game was modelled
model with bounded rationality where one semipublic by two nonlinear difference equations with bounded
firm endeavors to maximize the weighted average orrational has been done inl(f], [14], [15]). A Bertrand
social welfare and its own profit while the other private duopoly model with heterogeneous players in which each
firm only intends to maximize its own profit has been of duopoly firm sets its optimal product's price by
considered in 3]. Wang and Ma 20134 analyzed the competitors’ price has been formulated idg], [17] and
Cournot-Bertrand mixed duopoly game model with [18§]).
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There exists large number of applications that dealFrom the profit maximization by firm= {1,2}, marginal
with quantity and price competitions of homogeneous orprofits are obtained as:
heterogeneous products in static oligopoly, for examples:
the mechanisms of carbon emission trading is formulated 97& (01, %2) a—b 1 tIn(ai+ ) ) —c1 (5)
in [17], works in topics within electricity market system o1 B 01+ 0o h+a v
literature (fL9, [20]) and airlines’ price competition
modelled in P1]. Mathematical modelling for an 015 (01,02) b g2
economy viewed as a transport network for energy in — g, =a- ( +0p

which the law of motion of capital occurs with a time . , ) .
delay and by choosing time delay as a bifurcation!n order to get the maximum profit, every firm carries out
the output decision-making. In this work, we consider

parameter, se@p]. f ith X S hat th
In the present paper, we endeavor to bring the duopohfVo firm with same expectation. Suppose that the two
irms with bounded rationality adjusts which production

game model of bounded rationality with homogeneousf .
players and set up a logarithmic inverse demand functionbased on a local estimate of the marginal priiaﬂg"—c“).

And the other objective of this paper is to study the  Therefore, given this type of expectations formation
complex dynamic features as (local stability of mechanisms, the two-dimensional system that

equilibrium points, behaviors under some change ofcharacterizes the dynamics of the economic model is the
control parameters of the game, control chaos of thegiowing:

system and the phenomenon of synchronization).

The general scheme of this paper is as follows. In ( qgy(t+1) =y (t) + a10: (t) [a—b<q1q+1q2 +|n(ql+OI2)> —01]
Section ) we determine the dynamical system of a
Cournot duopoly game with bounded rationality by a
two-dimensional map. In Section3)( we study the Gt +1) =G () + a2 (1) [a_b<q1q+zq2+|n(Q1+q2)>_Cz}
existence and local stability of equilibrium points of ()
duopoly game. In Sectiond( we simulate complex wh'ere the parameters;, a, > 0, stand for the rates of
dynamic of this system via changing control parameter2diustment.
of the model. Delay feedback control method is proposed
to control chaos of the system in Sectid).(The aim of ) )
Section 6) is to analyze a synchronization phenomena of3 Dynamics analysis of the model
the model. Finally, conclusions are drawn in Section (

+In(as + Q2)> —C2. (6)

3.1 Existence of the equilibrium points

2 Modd From an economic point of view we are only interested to
. ] study the local stability properties of the unique positive

We assume the existence of an economy model with tWoyytput equilibrium, which is determined by setting

types of agents: firms and consumers. There exists #+1)=qy(t) = quandgp (t+1) = gz (t) = gz in Eq.(7)

duopolistic sector with two firms, firm 1 and firm @very  and solving the following algebraic nonnegative solution:
firm i produces goods which are perfect substitutes in a

oligopoly market. Let the price and the quantity are given _ q P
by pi andg;, respectively with = {1, 2}. ) [a b (QﬁqZ +n(qu+ Q2)) Cl] 0
The nonlinear inverse demand functions of products of (8)

variety 1 and 2 (as a function of quantities) are determined gz (t) [a— b (qlch2 +In(oz + qz)) — Cz} =0
from the logarithmic total supply function

Q(t) = In(qi(t) +q; (1)), i # j andi, j = 1,2 We can have four fixed points: the boundary equilibria
in periodt are given by the following equations: E1(0,0), E; (O, ea_%ﬁ) = <ea_%g70) )
P1(d1,G2) =a—b In(oy + G2), 1)
and the unique Nash equilibriuBx(q;,g3) where,
Pol,G) =a-binlds + ), 2> 0, b>0.  (2) (b—c1 e 5 (btcy—cp)e
. 2l — 2l
The firmi’s cost function is linear and described by: o = ! 22b ;= L 22b
) — e (10)
CI (ql) - CIQI; I = 17 2 (3) provided that
where the positive parametegsare the marginal costs. b>ci—c (11)
The Profits of firmi in every period can be written as b>c,—cy.
follows:

The study of the local stability of fixed points is based
7% (0i,95) = pi (9, 9)) g — Gi(a)- (4) on the localization, on the complex plane of the
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eigenvalues of the Jacobian matrix of
two-dimensional map EdJ. The Jacobian matrix has the
form:

Ji1J
Jara) = [ 11 12] ,where (12)

Jo1 I

Ji=1+0(a—c)

301 qf }
—aib +In(g1+q2) —
! qi+0Q2 (G + ) 01 +02
] _ —0aiboiop
2= "——""7
(Q1+)
3 _ —azbaiop
1= ——
(Qr+0)
Joo =1+ az(a—Cz)
302 q%
—aob +In(g1+q2) —
2 qi+0Q2 (G + ) 01 +02

3.2 Stability analysis of the boundary equilibria

The equilibriumE; has no economic implications, so we
excludeE; from the analysis.

Theorem 1.Both boundary equilibrium Eand B are
unstable.

Proof An equilibrium is stable if and only if all

eigenvalues of the related Jacobian matrix are less than
one in the absolute value. The Jacobian matrix at

equilibriumE; takes the form of

1+ay(b—ci+c 0
I(Ez) = gt 1-amb| 3

which has two eigenvalues

Al=1—aob
Ao=1+ai(b—ci+c)

since the parametess b, ¢;, o; , i = {1,2} are positive
parameters and according to Ed) which obviously
imply, A1 < 1 andA, > 1.Hence the unstable equilibrium
E, is a saddle point. At the same time, equilibrilnone
can get the Jacobian matrix

1—01b 0

J(Eg) = 0 1+ az(b+Cl—Cz)

(14)

We are able to derive two related eigenvalues of such

Jacobian matrix
A1=1-—aib
Ao =1+ az(b—FCl—Cz)

obviously A1 < 1 and A, > 1.Then the unstable
equilibrium Ez is a saddle.

the Theorem 2.The Nash equilibrium point qj,o3) of

systemT) is stable if condition20) defined by
4— (T2 (3b2 (cp— Cz)z) + (%5%2) (1 —cp) >
() (3b2 (c1— Cz)z) - (F32)(c—c) —
9422 (b2~ (c; -~ 2)°) > 0 holds.

ProofOne can simplify the Jacobian matrix at the Nash
equilibrium as follows:

280~ [HE) Safe) | wmere 09
JIi(Eq) = 1—as(b— Cl+C2)[ (b— c1+cZ)]7
J2(Ea) =~y b+CZ_C1 [1 (b= C”Cﬂ, (16)
31 (Es) = —ato (b— Cz+Cl [1 b+c1—c2)}’
Jo2(Eq) = 1 az(b+c1_02)[ (b+01—02)]

The characteristic equations of thé,) has the form
P(A) =A2—Tr(Jg,)A + Det(Jg,) =0

whereTr(Jg,) is the trace aniet(Jg,) is the determinant
of the Jacobian matrix which are given by:

Tr(Jg,) = 2— (O’l;;az) (3b2— (01—02)2)
(2w

Det(Je,) = 1— (0’12;)“2) (30~ (1~ c2)?)

+ <a1;a2> (c1—c2)
+ 82 (07— (01~ )?)

Note thatE, is stable if and only if the following Jury’s
conditions are satisfied p] which are,

{ i) 1—Tr(Jg,) + Det(J,) >

(17)

0
i) 1+Tr(Jg,) + Det(Jg,) > 0
iii ) 1— Det(Jg,) > O.

Then Jury’s conditions become

(18)

i) 20100 (b2 — (¢ — ¢)?) > 0,
i) 4— (Qte) (3b2 (c1— 02)2) +(a1— a2) (c1— )
alaz 2

(b2 (c1—c2)°) >0,
i) (2L:02) (3b2 (01—02)2) -

$(ar— o) (c1—C2)
S (- 0 e

)>0.

(19)
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The first condition is satisfied. Then the second and third 03
conditions become,
07

401t 02) (3b2— (Cl—CZ)Z) G L) (€1-C2) >

4b 2 06

("17;“2) (c1—Cp) — % (b2 —(c1— 02)2) >0 (20) 03

This equation defines a region of stability in the plane 02

of the rates of adjustmeifiry, az).
0.1

. . - 0o T T T T T T
4 Numerical illustration e 01 02 03 04 05

it
The main purpose of this section is to show the qualitative
behavior of the solutions O.f the duopoly game with Fig. 2: Region of stability of Nash equilibrium in the plane of the
homogeneous players described by the dynamic systergapeed of adjustments af & 1,6,=2.
Eq. (7). We just focus on the Nash equilibriuBa (3, 05),
inequality R0) define the region of stability in the plane
of the speed of adjustmentea;,0z). Assume thati = 4,
b=3, ¢c; =0.01, c; = 0.2, then we can get the region of
stability of Nash equilibrium point, which is shown in
Fig. (1). If we set all parameters @as=6,b=4, c; = 1,
Cp = 2 we could see the region of stability in Fi@) (

parameters. Fig3j depicts the bifurcation diagram ofthe
two-dimensional map whea=6,b=4,¢c; =1, ¢, = 2,
such we see that the Nash equilibrium approaches to the
stable fixed point foro; < 0.548(a, = 0.3).

Then if a; > 0.548 the Nash equilibrium becomes
unstable. A flip bifurcation (period doubling) takes place
at the market whenor; = 0.548. Fig. @) shows the
bifurcation diagram fora = 4, b = 3, ¢; = 0.01,
cp = 2,since the Period doubling bifurcations appears at
a1 = 0.658. As long as the parametej increases, the
Nash equilibriumE4(q;,q5) becomes unstable and the
bifurcation scenario occurs and ultimately leads to
unpredictable (chaotic) motions that make decision in the
future for the two firms to their outputs very difficult.

Figures 6 & 6) show the bifurcation diagram with
respect to the parameter, ( speed of adjustment of
bounded rational firm 2). From Fig5) we can see the
orbit with initial values (0.01,0.02) while the other
parametersa = 6, b =4, ¢c; = 1, ¢c; = 2 are fixed
approaches to the stable fixed poﬁt(%eg,geg) for
a, < 050. Then a further increase in the rate of

oo o1 02 03 04 05 08 07 02 adjustment implies to a stable 2-period cycle emerges for
oy a, = 0.50. As long as the parameter, increases a
4-period cycle, cycles of highly periodicity and cascade of
Fig. 1: Region of stability of Nash equilibrium in the plane of the fliP bifurcations that lead to chaotic motion. It means for a
speed of adjustments at € 0.01,¢ = 0.2. large values of speed of adjustment of bounded rational
firm 2, the market converge always to complex dynamics.
Fig. (6) illustrates the behavior of the outputs of the

These figures reveal that the stable area decreases two firms at the parameteas=4,b=3,¢; =0.01, ¢, =2
the direction of(a1, a2) when the two firms increase the with fixed a; = 0.85, we see that the systei) éxhibits a
values of costs. So the higher values of costs and thehaotic behavior to the market. In fact, an increasepf
market capacitya make the region stability area for the and/ora», starting from a set of parameters which ensures
market small. Figures3( & 4) present a bifurcation the local stability of the Nash equilibrium, can bring the
diagram of system7) in (a1 —quqp) plane for varies two firm’s quantities out of the stability region, crossing
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Fig. 3: Bifurcation diagram of the model (7) with respectag
whenay = 0.3.
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Fig. 4: Bifurcation diagram of the model (7) with respectag
whenq =0.01, ¢=2.

the flip bifurcation curve. We will study the phase portrait

of the model {) when the paramete(sr1, a,) varied, one
can consider the initial conditiofu); o, d,0) situated in the
basin of attraction of the Nash poiBj. An attractor fixed
point takes place fon; = 0.3, a, = 0.4, a=6, b = 4,

¢, = 1, co = 2, which means the market orbit is a stable

attractor, as showing in Fig7). In Fig. (8) shows that the

trajectories of the two firms converge to a stable 2- period

cycle whena; = 0.5, a, = 0.6. Fig. (9) shows that the
firms output undergoes a 4- period cycle emergesifor
0.55,a,=06,a=6,b=4,¢c, =0.1, c, = 0.2. A further

increase in the speed of adjustment of bounded rational
firms implies to a highly periodicity and strange attractors

in the market.

In Figures (0 - 12) show the graphs of the strange

attractors for different values ofai,a2). The phase

portrait of Figures 10 & 11) depict the strange attractor show the graph of the strange attractor for the parameters

u.a-T

T i

:
04 g s 03

0 0z

Fig. 5: Bifurcation diagram of the model (7) with respectag
whenaj; = 0.5.
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Fig. 6: Bifurcation diagram of the model (7) with respectag
whenqg =0.01, ¢ = 2.
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Fig. 7: An attractor fixed point of the model (7).

of the two players foa=4,b=3,¢; =0.1, c; = 2. We
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Fig. 9: A four-period cycle foray = 0.55, a = 0.6. Fig. 12: Strange attractor of the model (7) fag = 0.93, ay =

0.7.

(a,,az,a,b,c1,c2) = (0.93,0.7,4,3,0.1,0.2) in Fig. (12).

From these results the structure of the market of duopoly
game becomes complicated through period doublingo
bifurcations and more complex attractors are created . AN 2
round the Nash point so, the complexity of playerst e orbits ofqy, g with initial conditionsg; o = 0.1 and

dynamic output competition can be described a chaotic20 = 0.02, dio = 0.101 and o = 0.02 at
phenomena. (a1,02,a,b,c1c) = (0.9,0.7,4,3,0.01,0.2). As

expected the orbits rapidly separate each other, thus
suggesting the existence of deterministic chaotic ” i.e.
complex dynamics behaviors occur in the market” .

rbits of the variables); and g, which coordinates of
itial conditions differ by 0001. Figures 13,14) depict

065

OB 4
[nEaiag
(=N=H
0451

035
03 F
025

oz 4 a; 1.0;
2 D,Si
q, 0.6 -
. 0,4;
Fig. 10: Strange attractor of the model (7) foy = 0.9, a» = 0.6. —
As known, the sensitivity dependence on initial r
conditions is a characteristic of deterministic chaos. In
order to show the sensitivity dependence on initial , - o N
conditions of system Eq.7|, we have computed two Fig. 13: Sensitive dependence on initial conditions fer g
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=1 ¥ ' | 5 Chaos control
RN )]
| , | . .
.y ‘ i a : l f; ‘ ; ‘ g Chaos in Cournot game means that if one player changes
] ¥ ' ' " its output even slightly then, in the long run large
L) ' ' ' unpredictable changes will occur in the outputs of all

2 nz :] 2y | players. A producer can use a feedback of his
' T decision-making variable to control the adjustment
magnitude. ( see Agiza and Elsadany 201Z3))[ have

considered such a feedback control in their duopoly

o
o
1
. .

02 - game. In order to control chaotic behavior of economic

] , , , , , system {), we apply Pyragas’ method. In Pyragas’

B " oo, ® o » method PR4], control input is based on the difference
between theT- time delayed state and the current

Fig. 14: Sensitive dependence on initial conditions fer g state,wherd denotes a period of the stabilized orbits. So

the controlled system is given by

The largest Lyapunov exponents corresponding to q(t+1) = f(a(t),u(t)) (21)
Fig. (4) are calculated and plotted in Figl5). In the
range 0< o3 < 0.658 the Lyapunov exponents are
negative, corresponding to a stable coexistence of th ; ; o i
system. When 58 < a; < 0.92 most Lyapunov iorltlj?twmg feedback in order to stabilize @&—periodic
exponents are non-negative, and few are negative. This
means that there exist stable fixed points or periodic ut) =K(Qit+1-T)—qt+1); t>T  (22)
windows in the chaotic band.

whereu(t) is the input signalg(t) is the state variable,
and f is a nonlinear vector field. Pyragas proposed the

where T is the time delay anK is the controlling
parameter. We apply this technique to control chaotic
behavior for the dynamic gam&)(We sefT = 1, then the
controlled system can be expressed as follows:

01
t+1 t)+ a—b
| QD) = @) + g0 b
+In(gs+0)) — ¢4
1t 02
t+)=pt)+a a—b
\ A2(t+1) = g2 (t) + a202 () [ (q1+q2
5 ¥ +In(a1+az)) — ¢2 (23)
5 i Then the Jacobian matrix of the controlled syst@g) (
is given by
i _ [ J12(02,G2) J12(01,02)
I (0. G2) = {le(cha(h) Jo2(01,G2) | where (24)
_3_
az az
i 1 1 ! 1 1 | 1 I 1 \] s = 1+— a—C)—(——) *
WO 02 03 o1 05 o5 o7 08 09 11(02, 82) k+ 1( v (k+ 1)
1 3q, 2
* b{ j +In(gy+0q2) — (11 ]7
Fig. 15: Maximal Lyapunov exponent versug corresponding G+ G+
to Fig.4. _ —aiboqi
9 Ji2(0,G2) = ———————,
(k+1) (o +02)
We conclude from the numerical experiments, that theJ1 (g1,02) = ﬂqﬂf,
adjustment speedar;,a2) may change the stability of (01 +02)
the equilibrium and cause a market structure to behave,,(q1,q2) = 1+ a2 (a— c) — a2b*
chaotically. 30 q%
+In(g1+0g2) — .
a1+ Q2 G+ o) 01+ Q2
Substituting by the Nash equilibrium point int@4) and
using the values of parameters
(@© 2015 NSP
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(a1, d2,a,b,c1,¢2) = (0.9,0.7,5,3,0.1,0.2) which chaos converges to the fixed point. So the feedback control
exists in the system7}. and the Nash equilibrium point method is able to control chaos if the two firms of

becomes, bounded rational players utilize this adjustment method,
Es(01,02) = (1.5782384321.476416598 Then the  the market game can switch from a chaotic trajectory to a
Jacobian matrixZ4) has the form: regular periodic orbit or equilibrium state.
_2.06924;)999 —0.6(7425)00002
J , — (k+1 k+1 . 5
(01:%) = | " 5244166669-0.539416665 2>
By applying Jury conditions1@) on the matrix 25) has 15
eigenvalues with an absolute less than one when 1.4
k > 0.4185. Hence whek > 0.4185, all absolute values -
of eigenvalues are less than one, which means that the 1
system is stable around the Nash equilibrium point. U
0.8 <
(R
0.4;
4 0.2 A
2.0
1 u} 20 <40 GID 20 100
1.5 —_
1 Fig. 18: Controlled chaotic orbit of the state varialgje for k =
& ] 0.56.
El.5—:
u} 2IEI 4!‘3 6IEI 8!‘3 IE;EI q
»n 2.0+
1.8 n
Fig. 16: Uncontrolled chaotic orbit of the state variablg q .l
1,4;
X2
]
1.0+
0.8
(R
20 ] .;.,4_7
18 —- 0.2 7-
1a —- ] | = : s |
1 u} 20 40 &0 B0 100
1.4 - 3
e 13 ;
T i Fig. 19: Controlled chaotic orbit of the state varialgje for k =
0 0.56.
0.a —-
D,4—-
D.Z—i
u} 20 <40 GID 20 100

6 synchronization

Fig. 17: Uncontrolled chaotic orbit of the state variable q
In this section, we study the mechanisms which can lead

to the synchronization of the trajectories in duopoly game

From figures{6 & 17) the graphs represent the model. Obviously, we achieve synchronization when on
chaotic orbits of uncontrolled system starts from initial the diagonald there exists a transversely stable orbit (in
values (d1,0,02,0) = (0.01,0.02), we see that the map the sense that it attracts points not belonging to the

stabilizes by the control parametier= 0.56 starts from diagonal itself). Such an attractor can be also coexisting
initial values(qyo,02,0) = (0.01,0.02) in figures (8 & with non synchronizing trajectories and in such a case it
19). These figures show that a controlled behaviorbecomes important to know the initial conditions leading
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to synchronization. The phenomenon of synchronizationwhich conjugate with one-dimensional map:

of a two-dimensional discrete dynamical system: 1
’ =f(g)= —c—b( =+l
TH@).G0) —» (@E+1).eE+1) 6 st {a C <2+ n(Zq(t))():jz)

defined by the iteration of a map of the form Thus, the dynamical behavior of the restrictiorToto

q' = T(q1,q2) and ™ denote the unit time advancement the invariant manifold\, where synchronized dynamics of
operator. The possibility of synchronization arises whent€ identical players take place, can be obtained from the
an invariant one-dimensional sub- manifoldi# exists.  Well-known behavior of the map Eq33).

For several properties of synchronization in two coupled _ [N order to study the transverse stability of the
maps (P5, [26]). The invariant subset on which the attractor of the synchronized system, we consider the

synchronized dynamics is the diagonal Jacobian matrix:

J11(Ts) 12 (T
A ={(q1,02)| 01 = G2} (27) Hy(qra) = [ JEETE; JZ ETj] , where (33)
In this case, the synchronized trajectories are
characterized by Ji1(Ts) =1+ a(a—c)— (ab)
2
(qu (), % (1) = { T (a1(0),6 (0)] cu () = (1)}, ¥t >0 { 39 4 g+ o) — — ]
(28) 01 +02 a1 +0a2
These trajectories are governed by the restrictioh of —aboop
to the invariant sub-manifold on which the synchronizedJlZ(TS) = ﬁ
dynamics occur, given by the one-dimensional map: Gt
I (T = =9 boy o
f=TLA—>A (29) Jal s)—m
A trajectory of T starting outside of is said to Jo2(Ts) =1+a(a—c)—(ab)x
synchronize if|gs (t) —g2(t)] — 0 ast — . In this 3 93
model, the producer labeled tyis characterized by the {Q1+Q2 +In(g1+02) - q1+q2]

two parameterst; andc;, representing the relative speeds )
of adjustment and the marginal costs, respectively. In thdhat computed on the liné assume the structure
case, of identical producers characterized by the same (@) m(q)

value of the parameters: Inaq) = {m(q) Q) } (34)

ai=0a=a andc;=Cc,=¢C (30)

o with 1(q) = 1+ a(a—c) — ab[3;2q+ln(2q)], and
The map has the symmetry property remaining the —ab

same after a reflection through the diagafiaf equation ~ M(A) = =7~

g1 = . Under the assumption Ec3@), the map Eq.7) The eigenvalues of matrix3¢) are
becomes: 7 q
Ay =l@+m(@=1+a(a—c)—ab 2t In(2q) — E]
Gy =G+ a0 [a—b(ql‘?&q2 +In(q1+qz)) —C} (35)
Ts:
) 5 q
G =02+ 0aqz [a— b (qlchz +In(on + QZ)) - c} AL=1(@-m(@=1+a(a-c)—ab 2" In(2q) — E]
(31) : - . .
The equilibrium points of Eq9) and Eq.10) become: For the pointess (7, ") the transverse eigenvalue is,
a—b-c a—b-c E4s — _a_b _ 2a-0-b
E1(0,0), Ezs(0.6"5 ), Eas(e"5°,0) Ae-1-T (3. (38)
and the unique Nash equilibriuBs(q., d3) where, So it is transversely attracting fo;(gll)}?at give bounded
dynamicsom, i.e.forO<ab(3—e 2 ) <4.
. . Hogo The Nash equilibriumEys is asymptotically stable
s =02s= —%— node for
2(a—c)—b .
o o 0< ab(s—e_Zb_) < 4, and a saddle point for
The restrictionTs|, of Tsto A is given by, Zag)—b
4 < ab(S—eT) < 8, with unstable set orthogonal
i 1 a—C)—
q="f(a=qg+aq a—b<§+ln(2q)> —C] to it. Notice that atab (3—eL2b)_b) = 4, we have
(@© 2015 NSP
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Al (Eg) = 0. For sufficiently small values of
2(a—c)-b - .

ab (3— e B any attractor of the restrictiofis|, is

also asymptotically stable attractor also for the

two-dimensional map .

When chaotic synchronization is considered, in this
case the stability condition of a chaotic attractor depends
on the natural transverse Lyapunov exponent

1 X A
AL lim — z In |AJ_ (q (t))| 001 0z 03 U4 05 05 07 05 08
=0 o

N—><>°Nt

7
5 (37) Fig. 21: The natural transverse Lyapunov exponent of the
1+a(a—c)—ab|z+In(q) - g} ‘ synchronized system (32).

1 X
LTI

7 Conclusions

whereq(t) is the corresponding trajectory generated by

; i Thi [ th I i havior of
the mapf = T|,. If A, < O for each trajectory starting 's paper discussed the complex dynamic behavior of &

inside attractor, then the attractor is asymptoticallpkta %%J;ntxhgi];r]n Zgaccllj;reedd getl\gggﬂtmﬁcb?#cggg r?jg?::rl:gy
In this case, the fact that, < 0 for the generic aperiodic ¢ nctions, We showed that two boundary equilibria are
trajectory in the qttractor means, that the attractor isunstable and we mainly addressed the problems of the
transversely attracting on the average. locally asymptotic stability of the unique Nash
equilibrium. some complex dynamic features such as
region of stability for the unique Nash equilibrium, period
doubling bifurcations, strange attractors, Lyapunov
exponent and sensitive dependence on initial conditions.
We demonstrated that the fast increasing of the rates of
adjustment cause the Nash equilibrium becomes unstable
through period doubling bifurcations and the market
structure to behave chaotically. We have stabilized the
chaotic behavior of the model to a stable fixed point by
the delay feedback control method. the paper concerned
the global behavior of the map out of the invariant
manifold where synchronization occurs.

0.8 -
0.7

0.6 —

0.5;
4, 04—-
03—-
0.2;

0.1
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