Hermite-Hadamard-Fejér Type Inequalities for Strongly (s,m)-Convex Functions with Modulus c, in Second Sense

Mireya Bracamonte1, José Giménez2 and Miguel Vivas-Cortez1,3,*

1 Departamento de matemática, Decanato de Ciencias y Tecnología, Universidad Centroccidental Lisandro Alvarado, Barquisimeto, Venezuela
2 Departamento de matemática, Facultad de Ciencias, Universidad de los Andes, Mérida, Venezuela
3 Facultad de Ciencias Naturales y Matemática, Departamento de Matemática, Escuela Superior Politécnica del Litoral (ESPOL), Km 30.5 Vía Perimetral, Campus Gustavo Galindo, Guayaquil Ecuador.

Published online: 1 Nov. 2016

Abstract: We introduce the class of strongly (s,m)-convex functions modulus $c > 0$ in the second sense, and prove inequalities of Hermite-Hadamard-Fejér type for such mappings. This strengthen results given for (s,m)-convex functions in [7].

Keywords: Inequalities of Hermite type, convexity generalized, inequalities of Fejér type

In recent years several generalizations and extensions of the classical notion of convex function have been introduced and the theory of inequalities has produce important contributions in that respect. This research deals with some inequalities related to the renowned works, on classical convexity, of Charles Hermite [11], Jaques Hadamard [12] and Lipót Fejér [9]. The inequalities of Hermite-Hadamard and Fejér have been object of intense investigation and have produce many applications. Proofs of them can be found in the literature (see e.g. [2,3,4,16,23,24,31] and references therein). In this paper we establish some results related with these inequalities for strongly (s,m)-convex functions.

Definition 1. Let I be a real interval and let $f : I \subset \mathbb{R} \rightarrow \mathbb{R}$. If

$$f(tx + (1 - t)y) \leq tf(x) + (1 - t)f(y),$$

for all $x, y \in I$ and $t \in [0,1]$ then f is said to be convex on I.

The Hermite-Hadamard inequality gives us an estimate of the (integral) mean value of a convex function; more precisely:

Theorem 1([1,18,23]). Let f be a convex function on $[a,b]$, with $a < b$. Then

$$f \left(\frac{a + b}{2} \right) \leq \frac{1}{b - a} \int_a^b f(x) \, dx \leq \frac{f(a) + f(b)}{2}. \quad (1)$$

In [9], Fejér gives a generalization of (1) as follows:

Theorem 2. Let $f : I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a convex function and let $a, b \in I$ with $a < b$. Then

$$f \left(\frac{a + b}{2} \right) \int_a^b g(x)dx \leq \int_a^b f(x)g(x)dx \leq \frac{f(a) + f(b)}{2} \int_a^b g(x)dx, \quad (2)$$

where $g : [a,b] \rightarrow \mathbb{R}$ is non negative, integrable and symmetric with respect to $(a + b)/2$, that is, $g(a + b - x) = g(x)$.

Remark. Clearly a 1—convex function is a convex function in the ordinary sense. The 0—convex functions are the “starshaped” functions; that is, those functions that satisfy the inequality $f(tx) \geq tf(x)$, for $t \in [0,1]$.

In 1984, G. Toader [29] introduces the concept of function m-convex. Several papers have been written on functions m-convex and we refer some of them below.

* Corresponding author e-mail: mvivas@ucla.edu.ve

http://dx.doi.org/10.18576/amis/100606
Definition 2([4, 5, 29]). A function \(f : [0, b] \to \mathbb{R} \) is said to be \(m \)-convex, with \(m \in (0, 1] \), if for every \(x, y \in [0, b] \) and \(t \in [0, 1] \), we have:

\[
f(tx + m(1-t)y) \leq tf(x) + m(1-t)f(y).
\]

It is important to note that for \(m \in (0, 1) \) there are continuous and differentiable \(m \)-convex functions which are not convex in the classical sense (see [29]).

In [5], S.S. Dragomir and G. Toader demonstrated the following Hermite-Hadamard type inequality:

\[
\frac{1}{b-a} \int_a^b f(x)dx \leq \min \left\{ \frac{f(a) + mf(b)}{2}, \frac{f(b) + mf(a)}{2} \right\}.
\]

In [15] the reader may find some other generalizations of this inequality.

Another result of this type which holds for convex functions is embodied in the following theorem, in [6].

Theorem 3. Let \(f : [0, \infty) \to \mathbb{R} \) be an \(m \)-convex function, with \(m \in (0, 1] \), and \(a \leq b < \infty \). If \(f \) is \(\mathcal{L}^1[a, b] \), then one has the inequalities

\[
f \left(\frac{a + b}{2} \right) \leq \frac{1}{2(b-a)} \int_a^b \left(t + mf \left(\frac{t}{m} \right) \right) dt \\
\leq \frac{m+1}{4} \left(f(a) + f(b) + mf \left(\frac{a}{m} \right) + mf \left(\frac{b}{m} \right) \right).
\]

Remark. Notice that if we make \(m = 1 \) in (5) we get the left hand side of inequality (1); that is:

\[
f \left(\frac{a + b}{2} \right) \leq \frac{1}{b-a} \int_a^b f(x)dx.
\]

In the year 1966, B.T. Polyak in [26] studied the concept of strongly convex function modulus \(c > 0 \), which is defined as follows:

Definition 3([26]). Let \(C \) be a nonempty convex subset of the normed space \((X, \| \cdot \|) \). A real valued function \(f \) is said to be strongly convex, modulus \(c \), on \(C \) if for each \(x, y \in C \) and \(t \in [0, 1] \)

\[
f(tx + (1-t)y) \leq tf(x) + (1-t)f(y) - ct(1-t)\|x - y\|^2.
\]

Clearly for \(c = 0 \) in (6), \(f \) is just a convex function.

If the inequality in (6) is reversed, then \(f \) is said to be strongly concave, modulus \(c \).

The notion of strongly convex function has many applications in optimization theory and economics (See for example [14, 19, 20, 23, 25, 27, 30]).

More recently, N. Eftekari, in [8], establishes several inequalities for functions whose first derivative in absolute value are \((s, m)\)-convex function. Some estimate to the left hand side of the Hermite-Hadamard type inequality for \((s, m)\)-convex functions in the second sense are given.

Definition 4([7, 8]). A function \(f : [0, b] \to \mathbb{R} \) is said to be \((s, m)\)-convex, where \((s, m) \in (0, 1]^2\), if

\[
f(tx + m(1-t)y) \leq tf(x) + m(1-t)f(y)
\]

for all \(x, y \in [0, b] \) and \(t \in [0, 1] \).

It is readily seen that for \((s, m) \in \{(0,0), (1,1), (1, m)\}\) respectively, one obtains the following classes of functions: increasing, convex and \((s, m)\)-convex functions respectively.

Theorem 5. Let \(f : [a, b] \to \mathbb{R} \), \([a, b] \subset [0, +\infty) \) be a differentiable function on \([a, b]\) such that \(f' \in \mathcal{L}^1[a, b] \). If \(|f'| \) is \((s, m)\)-convex in the second sense on \([a, b]\) for \((s, m) \in (0, 1]^2\), then the following inequality holds:

\[
\left| f \left(\frac{a + b}{2} \right) \right| - \frac{1}{b-a} \int_a^b f(x)dx \\
\leq \frac{b-a}{4(s+2)} \left[|f'(\frac{a+b}{2})| + \frac{m}{s+1} \left(|f'(\frac{a}{m})| + |f'(\frac{b}{m})| \right) \right].
\]

and

\[
\left| f \left(\frac{a + b}{2} \right) \right| - \frac{1}{b-a} \int_a^b f(x)dx \\
\leq \frac{b-a}{2^{s+2}(s+2)} \left[|f'(a)| + |f'(b)| \\
+ \frac{m(2^{s+2}-s+3)}{s+1} \left(|f'(\frac{a}{m})| + |f'(\frac{b}{m})| \right) \right].
\]

1 Some basic properties

For the reader’s convenience, we recall here the definitions of the Gamma function \(\Gamma(x) := \int_0^\infty e^{-tx}t^{x-1}dt \) and the Beta function \(\beta(x, y) := \int_0^1 t^{x-1}(1-t)^{y-1}dt \).

1. \(\beta(x, y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} \),
2. \(\Gamma(x+1) = x\Gamma(x) \), and
3. \(\Gamma(n+1) = n! \), \(n \in \mathbb{N} \).

In this paper we combine the notions of \((s, m)\)-convex function and strongly convex function to define the concept of strongly \((s, m)\)-convex functions with modulus \(c \), in second sense.

Definition 5 A function \(f : [0, b] \to \mathbb{R} \) is said to be strongly \((s, m)\)-convex functions with modulus \(c \) in second sense, where \((s, m) \in (0, 1]^2\), if

\[
f(tx + m(1-t)y) \leq tf(x) + m(1-t)f(y) - ct(1-t)|x - y|^2
\]

holds for all \(x, y \in [0, +\infty) \) and \(t \in [0, 1] \).

Remark. 1. If \(s = 1 \), \(f \) is strongly \(m \)-convex with modulus \(c \) (see [17]).
If \(m = 1 \) and \(h(t) = t^s \), \(f \) strongly \(h \)-convex with modulus \(c \), have been introduced by [10].

In this article we prove some Hermite-Hadamard-Fejér type inequalities for strongly \((s,m)\)-convex functions, modulus \(c \) in the second sense, using similar techniques as those used in [28]. For the sake of brevity we will omit the the word “in the second sense” throughout the rest of this paper. Likewise we will assume that \(c \) is a positive real number.

Proposition 1. Let \(f : [0, \infty) \to \mathbb{R} \) be a strongly \((s,m)\)-convex function of modulus \(c \), where \(s,m \in (0,1) \), and let \(a,b \in [0,\infty) \) be, with \(a < b \). Then for any \(x \in [a,b] \) there is \(t \in [0,1] \) such that

\[
|f(ax + (1-t)b) - f(x)| \leq t^s f(b) + f(a) + m(1-t)^s \left(f \left(\frac{a}{m} \right) + f \left(\frac{b}{m} \right) \right) - f(x) - c(1-t)|x-y|^2
\]

Proof. Since any \(x \in [a,b] \) can be represented as \(x = ta + (1-t)b \), \(t \in [0,1] \), then

\[
f(ax + (1-t)b) = f(b) + f(a) + m(1-t)^s \left(f \left(\frac{a}{m} \right) + f \left(\frac{b}{m} \right) \right) - f(x) - c(1-t)|x-y|^2
\]

Proposition 2. If \(f_i : [0, \infty) \to \mathbb{R} \), \(i = 1, \ldots, n \) are strongly \((s,m)\)-convex functions, modulus \(c_i > 0 \), where \(s,m \in (0,1) \), then the function given by \(f := \max_{i=1,2,\ldots,n} \{f_i\} \) is also strongly \((s,m)\)-convex functions, modulus \(c := \min_{i=1,2,\ldots,n} \{c_i\} > 0 \).

Proposition 3. Let \(f_n : [0, \infty) \to \mathbb{R} \) be a sequence of functions. If \(f_n \) is strongly \((s,m)\)-convex function, modulus \(c_n > 0 \), for all \(n \geq k \), \(f_n(x) \to f(x) \) \((\text{on } [0, \infty)) \) and \(c_n \to c \), then \(f \) is strongly \((s,m)\)-convex functions, modulus \(c \).

Proposition 4. Let \(f : [0, \infty) \to [0, \infty) \) be a strongly \((s_1,m_1)\)-convex function, modulus \(c_1 > 0 \) and let \(g : [0, \infty) \to [0, \infty) \) be a strongly \((s_2,m_2)\)-convex function, modulus \(c_2 > 0 \), where \(s_1, s_2, m_1, m_2 \in (0,1) \). Then \(f + g \) is strongly \((s,m)\)-convex function, modulus \(c_1 + c_2 > 0 \), where \(s = \min \{s_1, s_2\} \).

Proposition 5. Let \(f : [0, \infty) \to \mathbb{R} \) be a strongly \((s,m)\)-convex function, modulus \(c > 0 \), where \(s,m \in (0,1) \). If \(\lambda > 0 \), then \(\lambda f \) is strongly \((s,m)\)-convex function, modulus \(\lambda c > 0 \).

Theorem 6. Let \(f : [a,b] \subset [0, \infty) \to \mathbb{R} \) be a function, \(s,m \in (0,1) \) and \(c \in (0, \infty) \). If the function \(g : [a,b] \to \mathbb{R} \), defined by \(g(x) = f(x) - cx^2 \) is \((s,m)\)-convex then \(f \) is strongly \((s,m)\)-convex with modulus \(c \).

\[c_{2016} \text{NSP}
\]
Proof. Let \(x, y \in [0, +\infty) \) and \(t \in [0, 1] \).

Suppose without loss of generality \(x \leq y \).

\[
\begin{align*}
 f(ty + m(1-t)x) &= g(ty + m(1-t)x) + c(ty + m(1-t)x)^2 \\
 &\leq t^s g(y) + m(1-t)^s g(x) + c(ty + m(1-t)x)^2 \\
 &= t^s g(y) + m(1-t)^s g(x) + c \left(t^2 + 2mt(t-1) + m^2(t-1) \right)^2 \\
 &= t^s g(y) + m(1-t)^s g(x) + c \left(t^2 + 2mt(t-1) + m^2(t-1) \right)^2 \\
 &= \frac{m(b-x)}{2} f(b) + \frac{m}{m} g(b) \\
 &= \frac{m(b-x)}{2} f(b) + m \left(\frac{b-x}{b-a} \right)^s f \left(\frac{a}{m} \right) \\
 &\leq \frac{m(b-x)}{2} f(b) + m \left(\frac{b-x}{b-a} \right)^s f \left(\frac{a}{m} \right) \\
 &\leq \frac{c}{m} \left(b-a \right)^2 + c \left(b-a \right)^2 g(b) dx.
\end{align*}
\]

Proof. Let \(f \) and \(g \) as in the statement of the theorem. Then

\[
\begin{align*}
 f(x)g(x) dx &= \int_a^b f(x)g(x) dx \\
 &= \frac{1}{2} \left(\int_a^b f(x)g(x) dx \right) + \frac{1}{2} \left(\int_a^b f(x)g(x) dx \right) \\
 &= \frac{1}{2} \left(\int_a^b f(x)g(x) dx \right) + \frac{1}{2} \left(\int_a^b f(x)g(x) dx \right) \\
 &= \frac{1}{2} \left(\int_a^b f(x)g(x) dx \right) + \frac{1}{2} \left(\int_a^b f(x)g(x) dx \right) \\
 &\leq \frac{1}{2} \left(\int_a^b f(x)g(x) dx \right) + \frac{1}{2} \left(\int_a^b f(x)g(x) dx \right) \\
 &\leq \frac{1}{2} \left(\int_a^b f(x)g(x) dx \right) + \frac{1}{2} \left(\int_a^b f(x)g(x) dx \right) \\
 &\leq \frac{1}{2} \left(\int_a^b f(x)g(x) dx \right) + \frac{1}{2} \left(\int_a^b f(x)g(x) dx \right).
\end{align*}
\]

2 Inequalities for strongly \((s, m)\)-convex function, modulus \(c > 0 \)

The following results generalize results in [28].

Theorem 7. Let \(f : [0, +\infty) \to \mathbb{R} \) be a strongly \((s, m)\)-convex function, modulus \(c \), where \(m \in (0, 1) \) and let \(a, b \in [0, +\infty) \) with \(a < b \). Suppose that \(f \in L_1[a, b] \) and that \(g : [a, b] \to \mathbb{R} \) is a nonnegative, integrable function which is symmetric with respect to \(a+b \). Then

\[
\begin{align*}
 &\int_a^b f(x)g(x) dx \\
 &\leq \frac{1}{2} \int_a^b f(x)g(x) dx + \frac{1}{2} \int_a^b f(x)g(x) dx \\
 &\int_a^b f(x)g(x) dx + \frac{1}{2} \int_a^b f(x)g(x) dx \\
 &\int_a^b f(x)g(x) dx + \frac{1}{2} \int_a^b f(x)g(x) dx \\
 &\int_a^b f(x)g(x) dx + \frac{1}{2} \int_a^b f(x)g(x) dx \\
 &\int_a^b f(x)g(x) dx + \frac{1}{2} \int_a^b f(x)g(x) dx.
\end{align*}
\]
\[f(b) + f(a) = \frac{b}{2} \int_a^b \frac{(x-a)}{b-a} g(x)dx \]

\[+ \frac{m}{2} \left(f \left(\frac{a}{m} \right) + f \left(\frac{b}{m} \right) \right) \int_a^b \frac{(x-b)}{b-a} g(x)dx \]

\[- \frac{c}{2} \left[b - a \left(\frac{1}{m} \right)^2 \right] \int_a^b \frac{(x-a)}{b-a} g(x)dx. \]

Theorem 8. Let \(f : [0, +\infty) \rightarrow \mathbb{R} \) be a strongly \((s,m)-\)convex function, modulus \(c \), where \(s, m \in (0,1] \), and let \(a, b \in [0, +\infty) \) with \(a < b \). Suppose that \(f \in L_1(a,b) \), and that \(g : [a,b] \rightarrow \mathbb{R} \) is a nonnegative, integrable function which is symmetric with respect to \(a + b \). Then

\[2^-f \left(\frac{a + b}{2} \right) \int_a^b g(x)dx = \int_a^b g(x)dx - \int_a^b \frac{f(x)}{m} g(x)dx \]

\[+ 2^{n-2}c \int_a^b \left| a + b - x \right|^2 g(x)dx \]

\[\leq \int_a^b f(x)g(x)dx. \]

Proof. In this case we have

\[f \left(\frac{a + b}{2} \right) \int_a^b g(x)dx \]

\[= \int_a^b \frac{f(a+b-x) + m \frac{x}{2} f \left(\frac{x}{m} \right) - c \left| a + b - x \right|^2}{2} g(x)dx \]

\[= \int_a^b f(a+b-x)g(x)dx + \frac{m}{2} \int_a^b \frac{x}{m} g(x)dx \]

\[- \frac{c}{4} \int_a^b \left| a + b - x \right|^2 g(x)dx \]

\[= \frac{1}{2} \int_a^b f(a+b-x)g(x)dx + \frac{m}{2} \int_a^b \frac{x}{m} g(x)dx \]

\[- \frac{c}{4} \int_a^b \left| a + b - x \right|^2 g(x)dx \]

\[= \frac{1}{2} \int_a^b f(x)g(x)dx + \frac{m}{2} \int_a^b \frac{x}{m} g(x)dx \]

\[- \frac{c}{4} \int_a^b \left| a + b - x \right|^2 g(x)dx, \]

thus obtaining the required inequality.

Theorem 9. Let \(f, g : [0, +\infty) \rightarrow [0, +\infty) \) be such that \(f, g \in L_1(a,b) \), where \(0 \leq a < b < \infty \). If \(f \) is \((s_1, m_1)-\)strongly convex function, modulus \(c_1 \) and \(g \) is \((s_2, m_2)-\)strongly convex function, modulus \(c_2 \) on \([a,b] \), for some fixed \(m_1, m_2, s_1, s_2 \in (0,1] \), then

\[\frac{1}{b-a} \int_a^b f(x)g(x)dx \leq \min \{ M_1, M_2 \}, \]

where

\[M_1 := \frac{1}{s_1 + s_2 + 1} \left(f(a)g(a) + m_1 m_2 f \left(\frac{b}{m_1} \right) g \left(\frac{b}{m_2} \right) \right) \]

\[+ \frac{(s_1 + s_2 + 1)(s_1 + s_2)}{s_1 s_2 \Gamma(s_1) \Gamma(s_2)} m_2 f(a)g(a) \]

\[+ \frac{(s_1 + s_2 + 1)(s_1 + s_2)}{s_1 s_2 \Gamma(s_1) \Gamma(s_2)} m_1 f \left(\frac{b}{m_1} \right) g(a) \]

\[- \frac{1}{s_1 + (s_1 + 2)} \left(a - b \right)^2 f(a) + m_1 f \left(\frac{b}{m_1} \right) \]

\[- \frac{1}{s_1 + (s_1 + 2)} \left(a - b \right)^2 g(a) + m_2 f \left(\frac{b}{m_2} \right) \]

\[+ c_1 c_2 \frac{1}{30} \left(a - b \right)^2 \left(a - b \right)^2, \]

and

\[M_2 := \frac{1}{s_1 + s_2 + 1} \left(f(b)g(b) + m_1 m_2 f \left(\frac{a}{m_1} \right) g \left(\frac{a}{m_2} \right) \right) \]

\[+ \frac{(s_1 + s_2 + 1)(s_1 + s_2)}{s_1 s_2 \Gamma(s_1) \Gamma(s_2)} m_2 f(b)g(b) \]

\[+ \frac{(s_1 + s_2 + 1)(s_1 + s_2)}{s_1 s_2 \Gamma(s_1) \Gamma(s_2)} m_1 f \left(\frac{a}{m_1} \right) g(b) \]

\[- \frac{a - b}{m_2} \left(s_1 + 3 \right) \left(s_1 + 2 \right) f(b) + m_1 f \left(\frac{a}{m_1} \right) \]

\[- c_1 \left(a - b \right)^2 \left(s_2 + 3 \right) \left(s_2 + 2 \right) g(b) + m_2 f \left(\frac{a}{m_2} \right) \]

\[+ c_1 c_2 \frac{1}{30} \left(a - b \right)^2 \left(a - b \right)^2, \]

Proof. We have

\[f(tx + (1-t)y) \leq t^{s_1} f(x) + (1-t)^{s_1} f \left(\frac{y}{m_1} \right) \]

\[- c_1 t(1-t) \left| x - \frac{y}{m_1} \right|^2, \]

and

\[g(tx + (1-t)y) \leq t^{s_2} g(x) + (1-t)^{s_2} g \left(\frac{y}{m_2} \right) \]

\[- c_2 (1-t) \left| x - \frac{y}{m_2} \right|^2, \]

for all \(t \in [0,1] \). \(f \) and \(g \) are nonnegative, hence
\[f[(a + (1-t)b) \cdot g(ta + (1-t)b) \leq \int f^{1 + \varepsilon} f(a)g(a) + m_2 f^{1 - \varepsilon} f(a)g \left(\frac{b}{m_2} \right) \]

\[-c_2 f^{1 - \varepsilon} f(a)g(a) \left(\frac{b}{m_2} \right) + m_2 f \left(\frac{b}{m_2} \right) m_2 f^{1 - \varepsilon} f(a)g \left(\frac{b}{m_2} \right) \]

\[-m_1 c_2 f^{1 - \varepsilon} f(a)g(a) \left(\frac{b}{m_2} \right) \]

\[-c_1 f^{1 - \varepsilon} f(a)g(a) \left(\frac{b}{m_2} \right) \]

\[= f(a)g(a)B(s_1 + s_2 + 1) + m_2 f(a)g \left(\frac{b}{m_2} \right) B(s_1 + s_2 + 1) \]

\[-c_2 f(a) \left| a - \frac{b}{m_2} \right|^2 B(s_1 + 2, 2) \]

\[+ m_1 f \left(\frac{b}{m_2} \right) g(a)B(s_1 + 1, s_1 + 1) \]

\[-c_1 f(a) \left| a - \frac{b}{m_2} \right|^2 B(s_1 + 2, 2) \]

\[-c_1 f(a) \left| a - \frac{b}{m_2} \right|^2 B(2, s_2 + 2) \]

\[+ c_1 c_2 f(a) \left| a - \frac{b}{m_2} \right|^2 B(3, 3), \]

where \(B \) is Euler's Beta-function.

Then,
\[
\begin{align*}
&= f(a)g(a) \frac{1}{(s_1 + s_2 + 1)} \\
+ &m_2 f(a)g \left(b \frac{m_2}{m_1} \right) (s_1 s_2) \Gamma(s_2) \frac{1}{(s_1 + s_2 + 1)(s_1 + s_2)} \\
+ &b f(a) \left| a - b \frac{m_2}{m_1} \right|^2 \frac{1}{(s_1 + s_2 + 1)(s_1 + s_2)} \\
+ &m_1 \left(b \frac{m_1}{m_2} \right) g(a) \frac{1}{(s_1 + s_2 + 1)(s_1 + s_2)} \\
+ &m_1 m_2 \left(b \frac{m_1}{m_2} \right) g \left(b \frac{m_1}{m_2} \right) \frac{1}{(s_1 + s_2 + 1)} \\
- &m_1 c_2 \left(b \frac{m_2}{m_1} \right) \left| a - b \frac{m_2}{m_1} \right|^2 \frac{1}{(s_1 + s_2 + 1)(s_1 + s_2)} \\
- &c_1 \left| a - b \frac{m_1}{m_2} \right|^2 \frac{1}{(s_1 + s_2 + 1)(s_1 + s_2)} \\
+ &c_1 c_2 \left| a - b \frac{m_1}{m_2} \right|^2 \frac{1}{(s_1 + s_2 + 1)(s_1 + s_2)} \\
+ &m_1 \left(b \frac{m_1}{m_2} \right) g(a)
\end{align*}
\]

By interchanging \(a\) and \(b\), in the same way we obtain

\[
\frac{1}{b-a} \int_a^b f(x)g(x)dx \leq M_2,
\]

hence

\[
\frac{1}{b-a} \int_a^b f(x)g(x)dx \leq \min\{M_1, M_2\}.
\]

3 Applications

As immediate consequences of theorems 7 and 8, we get the following result.

Proposition 6. Let \(f : [0, +\infty) \to \mathbb{R} \) be a strongly \((s, 1)\)-convex function, modulus \(c\), and let \(a, b \in [0, +\infty)\) with \(a < b\). Suppose that \(f \in L_1[a, b] \) and that \(g : [a, b] \to \mathbb{R}\) is a nonnegative, integrable function which is symmetric with respect to \(a + b\). Then

\[
\frac{b}{\int_a^b f(x)g(x)dx} \leq \frac{f(b) + f(a)}{2} \frac{b}{\int_a^b \left[\left(\frac{x-a}{b-a} \right)^s + \left(\frac{b-x}{b-a} \right)^s \right] g(x)dx}.
\]

Proposition 7. Let \(f : [0, +\infty) \to \mathbb{R} \) be a strongly \((1, 1)\)-convex function, modulus \(c\), and let \(a, b \in [0, +\infty)\) with \(a < b\). Then

\[
\frac{1}{b-a} \int_a^b f(x)g(x)dx \leq \frac{f(b) + f(a)}{2} \frac{b}{\int_a^b \left[\left(\frac{x-a}{b-a} \right)^s + \left(\frac{b-x}{b-a} \right)^s \right] g(x)dx}.
\]

Proposition 8. Let \(f : [0, +\infty) \to \mathbb{R} \) be a strongly \((s, m)\)-convex function, modulus \(c\), where \(s, m \in (0, 1]\), and let \(a, b \in [0, +\infty)\) with \(a < b\). Suppose that \(f \in L_1[a, b] \), and that \(g : [a, b] \to \mathbb{R}\) is a nonnegative, integrable function which is symmetric with respect to \(a + b\). Then

\[
\frac{2^s f \left(\frac{a+b}{2} \right)}{\int_a^b f(x)g(x)dx} \leq \frac{f(b) + f(a)}{2} \frac{b}{\int_a^b \left[\left(\frac{x-a}{b-a} \right)^s + \left(\frac{b-x}{b-a} \right)^s \right] g(x)dx}.
\]

4 Comments

The main contributions of this paper have been the introduction of a new class of function of generalized convexity, we have shown that these classes contain some previously known classes as special cases as well as Hermite-Hadamard type inequalities for these functions. We expect that the ideas and techniques used in this paper may inspire interested readers to explore some new applications of these newly introduced functions in various fields of pure and applied sciences.
References

José Giménez received his Ph.D. degree from The University of Iowa in 2000. He is full professor at the Math Department, Faculty of Sciences of Universidad de los Andes, Mérida, Venezuela. His fields of interest are Real and Complex Analysis, Functional Analysis and Operator Theory.

Miguel Vivas Cortez earned his Ph.D. degree from Universidad Central de Venezuela, Caracas, Distrito Capital (2014) in the field Pure Mathematics (Nonlinear Analysis). He has vast experience of teaching and research at university levels. It covers many areas of Mathematical such as Inequalities, Bounded Variation Functions and Ordinary Differential Equations. He has written and published several research articles in reputed international journals of mathematical and textbooks. He is currently Professor in Decanato de Ciencias y Tecnología of Universidad Centroccidental Lisandro Alvarado (UCLA), Barquisimeto, Lara state, and Professor invited in ESPOL (Escuela Superior Politécnica del Litoral), Guayaquil, Ecuador.