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Abstract: In this paper, the Elzaki transform and Adomian decomposition method are coupled and used to determine the analytical
solution of both linear and nonlinear Schrodinger differential equations in what is termed as Elzaki decomposition method. The
proposed method worked perfectly without any need of linearization or discretization in comparison with other methods. The solutions
obtained for the problems considered are in full agreement with their corresponding exact solutions in literature.
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1 Introduction

Linear and nonlinear Schrodinger equations often arise in
many branches of physics and engineering science such
as in quantum mechanics, optics and plasma physics
among others. The study of these equations and their
solutions has become of great interest to many
researchers due to its various applications. To cite a few,
Wazwaz [1] utilized the Adomian decomposition method
as a reliable technique for treatment of Schrodinger
equations. In Wazwaz [2], the variational iteration method
was used to determine the exact solutions for both linear
and nonlinear Schrodinger equations. Also, Zhang et al
[3] used the He’s frequency formulation as a method to
search for the solutions of Schrodinger equations, and the
solutions determined turn out to be in good agreement
with the results determined in [1,2]. However, we intend
to couple the Elzaki transform established recently by
Elzaki [4] with the celebrated method of the 80th; the
Adomian decomposition method [5,6]. The Elzaki
transform is known for its effectiveness in solving linear
ordinary differential equations, linear partial differential
equation and integral equations among its competing
transforms as demonstrated in [7,8,9] While on the other
hand, the Adomian decomposition method [5,6] is a
well-known method for solving linear and nonlinear,
homogeneous and nonhomogeneous differential and
partial differential equations, integro-differential and
fractional differential equations that gives exact solutions

in form of a convergent series. Further, the Adomian
decomposition method is also proven be to an effective
and powerful method for treating the afore mentioned
equations after the successes recorded by many
researches such as in [10,11,12,13,14,15,16].

It is expected in the end of this study that this
coupling, the Elzaki decomposition method would give
exact solutions for the linear and nonlinear Schrodinger
equations under consideration in relation to other
decompositions methods that also work perfectly in other
settings such as in Laplace decomposition method [17],
Sumudu decomposition method [18], Natural
decomposition method [19], Aboodh decomposition
method [20] and other couplings available in the literature
as the effectiveness of both the Elzaki transform and the
Adomian decomposition method cannot be
overestimated. perspective.

2 Elzaki Transform

The Elzaki transform of the functions belonging to a class
A, where
A= {u(t) : ∃M,k1,k2 > 0 such that |u(t)|< Me|t|/k j , i f t ∈
(−1) j × [0,∞)} whereu(t) is denoted byE[u(t)] = U(v)
and defined as

E[u(t)] = v
∫ ∞

0
u(t)e−

t
v dt =U(v), v ∈ (k1,k2). (1)
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Following are some of the properties of Elzaki transform

1.E{tn}= n! vn+2, n ≥ 0

2.E{e−at}= v2

1+av

3.E{sinat}= av3

1+a2v2

4.E{u(t)}= U(v)
v − vu(0)

5.E{un(t)}= U(v)
vn −∑n−1

k=0 v2−n+kuk(0),

3 Elzaki Adomian Decomposition Method

We consider the more general form of the nonlinear
Schrodinger differential equation given in the complex
valued functionu of the form

iut + uxx +λ |u|2ru = 0, r > 1, i =
√
−1 (2)

with the following initial and boundary conditions given
by

u(x,0) = f (x) and u(0, t) = g(x) & ux(0, t) = h(x). (3)

Clearly, whenλ = 0 in Eq.(2) we then obtain the linear
version of the Schodinger equation Eq.(2), i.e,

iut + uxx = 0. (4)

Now, to present the Elzaki decomposition method on the
more general Schrodinger equation given in Eq.(2), we
first rewrite Eq.(2) as

ut = iuxx + iλ |u|2ru. (5)

We then use the Elzaki transform defined in Eq.(1) of both
sides of Eq.(5);

E[ut ] = E[iuxx]+E[iλ |u|2ru]. (6)

Using the differentiation property of Elzaki transform and
the initial condition we get

1
v

E[u]− v f (x) = iE[uxx]+ iλ E[|u|2ru]. (7)

E[u] = v2 f (x)+ ivE[uxx]+ iλ vE[|u|2ru]. (8)

Next step is to replace the unknown functionu by an
infinite series given by

u =
∞

∑
m=0

um(x, t), (9)

and we replace the nonlinear termNu= |u|2ru by the series

Nu =
∞

∑
m=0

Am(u0,u1, ...), (10)

whereAm(u0,u1, ...)
′s are the Adomian polynomials [5,6]

to be determined recurrently by the formula

An =
1
n!

dn

dλ n

[

N
( n

∑
i=0

λ iui

)]

λ=0
, n = 0,1,2, ... (11)

Thus, on substituting Eq.(9) , Eq.(10) and Eq.(11) into
Eq.(8) we get

E
[ ∞

∑
m=0

um(x, t)
]

= v2 f (x)+ ivE
[ ∞

∑
m=0

umxx

]

+ iλ vE
[ ∞

∑
m=0

Am

]

(12)

∞

∑
m=0

E[um(x, t)] = v2 f (x)+ ivE
[ ∞

∑
m=0

umxx

]

+ iλ vE
[ ∞

∑
m=0

Am

]

.

(13)
Thus, on comparing both sides of Eq.(13) and then taking
the inverse Elzaki transform; we finally obtain the general
solution of Eq.(2) given recursively as:

u0(x, t) = f (x),

u1(x, t) = iE−1
[

vE[u0xx ]
]

+ iλ E−1
[

vE[A0]
]

,

u2(x, t) = iE−1
[

vE[u1xx ]
]

+ iλ E−1
[

vE[A1]
]

,

u3(x, t) = iE−1
[

vE[u2xx ]
]

+ iλ E−1
[

vE[A2]
]

,

u4(x, t) = iE−1
[

vE[u3xx ]
]

+ iλ E−1
[

vE[A3]
]

,

...

(14)

and so on. Where,f (x) is the prescribed initial condition,
andAn’s are the Adomian polynomials to be determined
from Eq.(11). Thus, Eq.(14) can be written in compact
form as

u0(x, t) = f (x),

un+1(x, t) = iE−1
[

vE[unxx ]
]

+ iλ E−1
[

vE[An]
]

,n > 0.

4 Application of the Method

Here, we consider the following examples in order to
demonstrate the effectiveness of the method described
above.

4.1 Example One

Consider the linear Schrodinger differential equation with
λ = 0

iut + uxx = 0, (15)

with the initial condition given by

u(x,0) = aeikx, with a & k constants. (16)
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Applying th Elzaki transform to Eq.(15)

1
v

E[u(x, t)]− vu(x,0) = iE[uxx] (17)

E[u(x, t)] = v2u(x,0)+ ivE[uxx]. (18)

On using the initial condition given in Eq.(16),

E[u(x, t)] = v2aeikx + ivE[uxx]. (19)

Now, applying the inverse Elzaki transform to Eq.(19), we
get

u(x, t) = aeikx +E−1
[

ivE[uxx]
]

. (20)

Assuming the infinite series solution of the unknown
function u and comparing both sides of Eq.(20) as
described above, we thus obtain the general solution
recursively as

u0(x, t) = aeikx,

un+1(x, t) = iE−1
[

vE[unxx ],n > 0.
(21)

The first few components ofu(x, t) are given by

u0(x, t) = aeikx, (22)

u1(x, t) = iE−1
[

vE[u0xx ]
]

= iE−1
[

− ak2v3eikx
]

,

=−aik2teikx,

(23)

u2(x, t) = iE−1
[

vE[u1xx ]
]

= E−1
[

− ak4v4eikx
]

,

=
−ak4t2eikx

2!
,

(24)

u3(x, t) = iE−1
[

vE[u2xx]
]

= iE−1
[

ak6v5eikx
]

,

=
iak6t3eikx

3!
,

(25)

and so on. Thus, on taking the sum of the above iterations
we obtain

u(x, t) = aeikx
(

1−(ik2t)+
(ik2t)2

2!
− (ik2t)3

3!
+ . . .

)

, (26)

which is leading to the exact solution

u(x, t) = aeik(x−kt). (27)

4.2 Example Two

Let us consider the linear Schrodinger differential equation
with λ = 0 again

iut + uxx = 0, (28)

but with the initial condition given by

u(x,0) = cosh(3x). (29)

Applying th Elzaki decomposition method to Eq.(28) and
initial condition given in Eq.(29), we get the recurrence
relation given by:

u0(x, t) = cosh(3x),

un+1(x, t) = iE−1
[

vE[unxx]
]

,n > 0.
(30)

We express few components as

u0(x, t) = cosh(3x), (31)

u1(x, t) = iE−1
[

vE[u0xx ]
]

= iE−1
[

9v3cosh(3x)
]

,

= 9icosh(3x),

(32)

u2(x, t) = iE−1
[

vE[u1xx ]
]

= iE−1
[

81iv4cosh(3x)
]

,

=−81
2!

t2cosh(3x),

(33)

u3(x, t) = iE−1
[

vE[u2xx ]
]

= iE−1
[729

2!
i2v5cosh(3x)

]

,

=−i
729
3!

t3cosh(3x),

(34)

and so on. Thus, on summing the above iterations we
obtain

u(x, t) = cosh(3x)
(

1+(9it)+
(9it)2

2!
+

(9it)3

3!
+ . . .

)

,

(35)
which is leading to the exact solution

u(x, t) = cosh(3x)e9it . (36)

4.3 Example Three

We consider the nonlinear Schrodinger differential
equation withλ =−2 andr = 1

iut + uxx −2|u|2u = 0, (37)
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with the initial condition given by

u(x,0) = eix. (38)

As explained above in the Elzaki decomposition method,
Eq.(37) with the initial condition in Eq.(38) have the
general solution given by recursively as

u0(x, t) = eix,

un+1(x, t) = iE−1
[

vE[unxx ]
]

−2iE−1
[

vE[An]
]

,n > 0,

(39)

where An’s are the Adomian polynomials to be
determined from the nonlinear term

Nu = |u|2u = u2u, (40)

whereu is the conjugate ofu, with few terms using the
formula in Eq.(11) expressed as:

A0 = u2
0u0,

A1 = 2u0u1u0+ u2
0u1,

A2 = 2u0u2u0+ u2
1u0+2u0u1u1+ u2

0u2,

. . .

(41)

and so on. Now, the few components are as follows:

u0(x, t) = eix, (42)

u1(x, t) = iE−1
[

vE[u0xx ]
]

−2iE−1
[

vE[A0]
]

= iE−1
[

i2v3eix]
]

−2iE−1
[

v3eix]
]

,

=−3iteix,

(43)

u2(x, t) = iE−1
[

vE[u1xx ]
]

−2iE−1
[

vE[A1]
]

= iE−1
[

3iv4eix]
]

−2iE−1
[

−3iv4eix]
]

,

=
−9t2eix

2!
,

(44)

u3(x, t) = iE−1
[

vE[u2xx ]
]

−2iE−1
[

vE[A2]
]

= iE−1
[

9v5eix
]

−2iE−1
[

−9v5eix
]

,

=
27it3eix

3!
,

(45)

and so on. Thus, on summing up the above iterations we
get

u(x, t) = eix
(

1− (3it)+
(3it)2

2!
− (3it)3

3!
+ . . .

)

, (46)

which is leading to the exact solution

u(x, t) = ei(x−3t). (47)

4.4 Example Four

Let us again consider the nonlinear Schrodinger
differential equation withλ = 2 andr = 1

iut + uxx +2|u|2u = 0, (48)

with the initial condition given by

u(x,0) = eix. (49)

As in the above example, we obtain the general solution
recursively given by

u0(x, t) = eix,

un+1(x, t) = iE−1
[

vE[unxx ]
]

+2iE−1
[

vE[An]
]

,n > 0,

(50)

whereAn’s are the Adomian polynomials for the nonlinear
term given in Eq.(41).
We now express the few components as follows:

u0(x, t) = eix, (51)

u1(x, t) = iE−1
[

vE[u0xx ]
]

+2iE−1
[

vE[A0]
]

= iE−1
[

i2v3eix]
]

+2iE−1
[

v3eix]
]

,

= iteix,

(52)

u2(x, t) = iE−1
[

vE[u1xx ]
]

+2iE−1
[

vE[A1]
]

= iE−1
[

i3v4eix]
]

+2iE−1
[

iv4eix]
]

,

=
−t2eix

2!
,

(53)

u3(x, t) = iE−1
[

vE[u2xx ]
]

+2iE−1
[

vE[A2]
]

= iE−1
[

v5eix
]

+2iE−1
[

− v5eix
]

,

=
−it3eix

3!
,

(54)

and so on. Thus, summing the above iterations we obtain

u(x, t) = eix
(

1+(it)+
(it)2

2!
+

(it)3

3!
+ . . .

)

, (55)

which is leading to the exact solution

u(x, t) = ei(x+t). (56)

5 Conclusion

In conclusion, the Elzaki transform and Adomian
decomposition method are coupled and utilized to treat
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linear and nonlinear Schrodinger differential equations in
what is known as Elzaki decomposition method. The
method works perfectly as the solutions obtained yield
remarkable exact solutions for all the four numerical
problems considered; and in all the four problems, the
solutions obtained turn out to be in full agreement with
the famous results in the literature.
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