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Abstract: In this paper, we obtain some new results for perfect numbersand generalized perfect numbers connected with the
relationship among arithmetic functionsσ , φ andψ. These arithmetic functions and their compositions play vital role in this work.
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1 Introduction

For a natural numbern, we denote the sum of positive
divisors of n by σ(n) = ∑d|n d and the sum of proper
positive divisors ofn by ρ(n) = σ(n) − n. A natural
number n is called a perfect number ifρ(n) = n or
equivalentlyσ(n) = 2n. The first few perfect numbers are
6, 28, 496, 8128..... (Sloanes A000396 [13]). Euclid
discovered that the first four perfect numbers are
generated by the formula 2n−1(2n − 1) about 300 B.C.
[8]. He also noticed that 2n − 1 is a prime number for
every instance, and in PropositionIX .36 of Elements
gave the proof, that the discovered formula gives an even
perfect number whenever 2n − 1 is prime. In order for
2n − 1 to be a prime,n must itself to be a prime. A
Mersenne prime is a prime number of the form 2p − 1,
wherep must also be a prime number. Any even perfect
numbern is of the formn = 2p−1(2p −1), where 2p −1 is
a Mersenne prime. Perfect numbers are intimately
connected with these primes, since there is a concrete
one-to-one association between even perfect numbers and
Mersenne primes. The fact that Euclids formula gives all
possible even perfect numbers was proved by Euler two
millennia after the formula was discovered. There are
only 48 known Mersenne primes (2013 [12]) and hence
only 48 even perfect numbers are known. There is a
conjecture that there are infinitely many perfect numbers.
The search for new ones is to keep on going by search
program via the Internet; named GIMPS (Great Internet
Mersenne Prime Search). It is not known if any odd
perfect number exists, although numbers up to 10300 have

been checked without success [2]. Recently T. Goto, Y.
Ohno [3], D. Ianucci [5,6], K. G. Hare [4] established
several results on odd perfect numbers. A positive integer
n is called superperfect number ifσ(σ(n)) = 2n. The
notion of these numbers was introduced by D.
Suryanarayana [11] in 1969. Even superperfect numbers
are of the form 2p−1, where 2p − 1 is a Mersenne prime.
The first few superperfect numbers are 2, 4, 16, 64, 4096,
65536, 262144..... It is not known whether there are any
odd superperfect numbers. An odd superperfect numbern
would have to be a square number such that eithern or
σ(n) is divisible by at least three distinct primes [7].

A positive integern is calledk-hyperperfect number if

σ(n) =
k+1

k
n+

k−1
k

. On can remark that a number is

perfect iff it is 1-hyperperfect. The concept of
k-hyperperfect number was given by Minoli and Bear
[10] and they also conjecture that there arek-hyperperfect
numbers for everyk. All hyperperfect numbers less than
1011 have been computed by J.S. Craine [9]. Bege and
Fogarasi [1] introduced the concept of super-hyperperfect
number. A positive integern is called super-hyperperfect

number if σ(σ(n)) =
k+1

k
n +

k−1
k

. They have

conjectured that all super-hyperperfect numbers are of the

form 3p−1, where p and
3p −1

2
are primes. For any

natural numbern, Eulers phi-function and Dedekinds

Arithmetic function are given byφ(n) = n∏p|n(1−
1
p
)
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and ψ(n) = n∏p|n(1+
1
p
) respectively, wherep runs

through the distinct prime divisors ofn.

2 Main Results

Theorem 2.1. If k > 1,1+ 2+ 4+ 8+ ...+ k = 2k − 1,
where 2k−1 is a prime andk(2k−1) is a perfect number,
then(φ ◦ψ ◦σ)(k(2k−1)) = 2(φ ◦ψ)(k(2k−1)).
Proof: It is clear that(k,2k−1) = 1, andk is even and of
the form 2n,n ≥ 1. Since bothφ andψ are multiplicative
functions,

(φ ◦ψ ◦σ)(k(2k−1)) = φ(ψ(σ(k(2k−1))))

= φ(ψ(2k(2k−1)))

= φ(ψ(2k)ψ(2k−1))

= φ(2k(1+1/2)2k)

= 2.2k2(1−1/2)

= 2k2 (1)

Also

(φ ◦ψ)(k(2k−1)) = φ(ψ(k(2k−1)))

= φ(ψ(k)ψ(2k−1))

= φ(k(1+1/2)2k)

= φ(3k2)

= φ(3φ(k2)) = k2 (2)

(1) and (2) give the result.
Theorem 2.2. If k > 1,1+ 2+ 4+ 8+ ...+ k = 2k − 1,
where 2k−1 is a prime andk(2k−1) is a perfect number,
then(2φ)n(φ(ψ(k(2k−1)))) = k2, n ≥ 0.
Proof: We prove the result by applying induction onn.
By equation (2 ), the result is true forn = 0. Lets assume
the result is true for any positive integern > 0. Then
(2φ)n(φ(ψ(k(2k−1)))) = k2

Now,

(2φ)n+1(φ(ψ(k(2k−1)))) = 2φ((2φ)n(φ(ψ(k(2k−1)))))

= 2φ(k2) (By hypothesis)

= 2k2(1−1/2) = k2

Hence the theorem follows.
Theorem 2.3. If k > 1,1+ 2+ 4+ 8+ ...+ k = 2k − 1,
where 2k−1 is a prime andk(2k−1) is a perfect number,
then(φ ◦2ψ)n ◦ (φ ◦ψ)(k(2k−1)) = k2, n ≥ 0.
Proof: We prove the result by applying induction onn. By
equation (2), the result is true forn = 0. Lets assume the
result is true forn > 0. Then
(φ ◦2ψ)n ◦ (φ ◦ψ)(k(2k−1)) = k2

Now

(φ ◦2ψ)n+1◦ (φ ◦ψ)(k(2k−1))

= (φ ◦ 2ψ)((φ ◦2ψ)n ◦ (φ ◦ψ)(k(2k−1)))

= φ(2ψ(k2)) (By hypothesis)

= φ(3k2) = k2

Hence the theorem follows.

Corollary 2.4. If k > 1,1+ 2+ 4+ 8+ ...+ k = 2k − 1,
where 2k−1 is a prime andk(2k−1) is a perfect number,
then

(2φ)n◦(φ ◦ψ)(k(2k−1))= (φ ◦2ψ)n◦(φ ◦ψ)(k(2k−1)),

n ≥ 0

Theorem 2.5. If k > 1,1+ 2+ 4+ 8+ ...+ k = 2k − 1,
where 2k−1 is a prime andk(2k−1) is a perfect number,
thenψn(k(2k−1)) = 3.2n−1k2, n ≥ 1.

Proof: It is clear that(k,2k−1) = 1, andk is even and of
the form 2m, m ≥ 1. Sinceψ is multiplicative function,

ψ(k(2k−1)) = ψ(k)ψ(2k−1) = 3k2

Thus the result is true forn = 1.
Suppose the result is true forn > 1. Then
ψn(k(2k−1)) = 3.2n−1k2

Now

ψn+1(k(2k−1)) = ψ(3.2n−1k2)

= ψ(3.22m+n−1),

= ψ(3)ψ(22m+n−1)

= 4.22m+n−1(1+1/2)

= 3.22m+n = 3.2nk2

Hence the theorem follows.

Theorem 2.6. For any even perfect numbern,

(φ ◦ρ)(n) =
(φ ◦σ)(n)

2

Proof An even perfect numbern is of the form 2p−1(2p −
1), where 2p −1 is a Mersenne prime.
Now

(φ ◦ρ)(n) = φ(ρ(n)) = φ(n) = φ(2p−1(2p −1))

= 2p−1(1−
1
2
)(2p −2)

= 2p−1(2p−1−1)

Again,

(φ ◦σ)(n) = φ(σ(n)) = φ(2n) = φ(2p(2p −1))

= 2p(1−
1
2
)(2p −2)

= 2p(2p−1−1)

Thus(φ ◦ρ)(n) =
(φ ◦σ)(n)

2

Theorem 2.7. If n = pk−1(pk − p+1) wherep and pk −
p+1 are primes, thenn is (p−1)-hyperperfect number.
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Proof: From definition and basic results of the divisor
functionσ , it follows that:

σ(n) = σ(pk−1)σ(pk − p+1)

=
pk −1
p−1

(pk − p+2)

=
pk(pk − p+1)+ p−2

p−1

=
p

p−1
pk−1(pk − p+1)+

p−2
p−1

=
p

p−1
n+

p−2
p−1

Hencen is (p−1)-hyperperfect number.

We generalize conjecture 2 introduced by Antal Bege and
Kinga Fogarasi in [1] as follows:
Conjecture 1. All (p−1)-hyperperfect numbers are of the

form n = pk−1(pk − p+ 1), wherep and pk − p+ 1 are
primes.
We proof the next theorem by assuming the conjecture 1
to be true.

Theorem 2.8. If n is a (p−1)- hyperperfect number and
m = pk − p+1,k is a a positive integer, then

(i) ψ(n) = (1−
1
p2 )(

m+ p−1
m+ p−2

)σ(n)

(ii) φ(n) =
(p−1)(m−1)
(p+1)(m+1)

ψ(n)

(iii) σ(n) = (
p

p−1
)2(

m+1
m−1

)(
m+ p−2
m+ p−1

)φ(n)

Proof: By assuming the conjecture 1 to be true, we can
write n = pk−1(pk − p+1), wherepk − p+1 is a prime.

Thusn = pk−1m =
m(m+ p−1

p
with m = pk − p+1 is a

prime.
Now,

σ(n) = σ(pk−1)σ(m) =
pk −1
p−1

(m+1)

=
(m+1)(m+ p−2)

p−1
(3)

φ(n) = φ(pk−1)φ(m)

= pk−1(1−
1
p
)(m−1)

=
(p−1)(m−1)(m+ p−1)

p2 (4)

ψ(n) = ψ(pk−1)ψ(m) = pk−1(1+
1
p
)(m+1)

=
(p+1)(m+1)(m+ p−1)

p2 (5)

(3) and (5) give,

ψ(n) = (1−
1
p2 )(

m+ p−1
m+ p−2

)σ(n) (6)

(4) and (5) give,

φ(n) =
(p−1)(m−1)
(p+1)(m+1)

ψ(n) (7)

(6) and (7)give,

φ(n) =
(p−1)(m−1)
(p+1)(m+1)

(1−
1
p2 )(

m+ p−1
m+ p−2

)σ(n)

This gives,

σ(n) = (
p

p−1
)2(

m+1
m−1

)(
m+ p−2
m+ p−1

)φ(n) (8)

For 2-hyperperfect numbern, and m = 3k − 2, one can
easily obtain the following result as a particular case of
the theorem 2.8.

(i) ψ(n) =
8
9
(

m+2
m+1

)σ(n)

(ii) φ(n) =
1
2
(

m−1
m+1

)ψ(n)

(iii) σ(n) =
9
4

(m+1)2

(m−1)(m+2)
φ(n)

Theorem 2.9. If n is a(p−1)- hyperperfect number, then
(i) φ(n2) = nφ(n)
(ii) ψ(n2) = nψ(n)
Proof: Sincen is a(p−1)- hyperperfect number,

n = pk−1(pk − p+1)

Wherepk − p+1 is a prime.
Now

φ(n) = φ(pk−1(pk − p+1))

= φ(pk−1)φ(pk − p+1)

= pk−1(1−
1
p
)(pk − p)

= pk−1(p−1)(pk−1−1)

Also

ψ(n) = ψ(pk−1(pk − p+1))

= ψ(pk−1)ψ(pk − p+1)

= pk−1(1+
1
p
)(pk − p+2)

= pk−2(p+1)(pk − p+2)

(i)

φ(n2) = φ(p2k−2)φ((pk − p+1)2)

= p2k−2(1−
1
p
)(pk − p+1)2(1−

1
pk − p+1

)

= pk−1(pk − p+1).pk−1(p−1)(pk−1−1)

= nφ(n)
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(ii)

ψ(n2) = ψ(p2k−2)ψ((pk − p+1)2)

= p2k−2(1+
1
p
)(pk − p+1)2(1+

1
pk − p+1

)

= pk−1(pk − p+1).pk−1(p+1)(pk − p+2)

= nψ(n)

Theorem 2.10. If n is a super perect number, then
(i) ψ(n) = 3φ(n)
(ii) σ(n) = 4φ(n)−1

Proof: Let n be an even super perfect number. Thenn =
2p−1, where 2p −1 is Mersenne prime.
Now

ψ(n) = 3.2p−2 =
3
2

n (9)

φ(n) = 2p−2 =
1
2

n (10)

σ(n) = 2p −1= 2n−1 (11)

(9) and (10giveψ(n) = 3φ(n)
Also, (10) and (11) giveσ(n) = 4φ(n)−1

Theorem 2.11. If n is a super hyperperect number, then
(i) ψ(n) = 2φ(n)

(ii)σ(n) =
3
4
(
3n−1

n
)φ(n)

Proof: Let n be a super hyperperfect number. Thenn =

3p−1, wherep and
3p −1

2
are prime numbers.

Now
ψ(n) = 4.3p−2 (12)

φ(n) = 2.3p−2 (13)

σ(n) =
3p −1

2
=

3n−1
2

(14)

From (12) and (13), we obtainψ(n) = 2φ(n)

Also, from(13)and(14), we obtainσ(n) =
3
4
(
3n−1

n
)φ(n).

Proposition 2.12 If n is 2-hyperperfect number then
n(σ(n)−1) is n-th pentagonal number.

Proof: Let n be a 2-hyperperfect number. Then

σ(n) =
3
2

n+
1
2

Now

n(σ(n)−1) = n(
3
2

n+
1
2
−1) =

n(3n−1)
n

= Pn

Hence the result follows.

Proposition 2.13. If n is super hyperperfect number then
nσ(n) is n-th pentagonal number.

Proof: Let n be a super hyperperfect number. Thenn =

3p−1, wherep and
3p −1

2
are prime numbers.

Now

σ(n) =
3p −1

2
=

3n−1
2

⇒ nσ(n) =
n(3n−1)

2
= Pn

Hence the result follows.

Proposition 2.14. If n is an even super perfect number then
n
2
(σ(n)+ n) is n-th pentagonal number.

Proof: Let n be an even super perfect number. Thenn =
2p−1, where 2p −1 is Mersenne prime.
Now
σ(n) = 2p −1= 2n−1

⇒
n
2
(σ(n)+ n) =

n(3n−1)
2

= Pn

Hence the result follows.
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