Appl. Math. Inf. Sci.11, No. 2, 407-416 (2017) %N =¥\ 407

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/110208

Solutions of Singular IVP’s of Lane-Emden type by
Homotopy analysis method with Genetic Algorithm

Waleed Al-Hayani*, Laheeb Alzubaidy and Ahmed Entesar

Department of Mathematics, Department of Software Enginge College of Computer Science and Mathematics, Unityersf
Mosul, Iraq.

Received: 21 Dec. 2016, Revised: 18 Jan. 2017, Acceptedar2 2017
Published online: 1 Mar. 2017

Abstract: In this paper, Homotopy Analysis Method with Genetic Alglom is presented and used for solving Lane-Emden type
singular initial value problems. The method is demonstrébe a variety of problems where approximate-exact sohgtiare obtained.
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1 Introduction Since, Lane-Emden type equations have significant
applications in many fields of the scientific and technical
Various problems arising in the field of mathematical world, a variety of forms off (y) have been investigated
physics and astrophysics can be distinctively formulated aby many researchers. A discussion of the formulation of
equations of Lane-Emden type initial value problem2]  these models and the physical structure of the solutions

3], defined in the form can be found in the literature. Though the numerical
r solutions of Lane-Emden type problems can be easily
y'+ )—(Y'+f(Y)=0, 0<x<1, (1)  obtained by computer, analytical solutions are much
needed for physical understanding.
subject to conditions Various analytical methods have been used to solve
. _ Lane-Emden equations, the main difficulty arises in the
y(0)=A, y(0)=B. (@) singularity of the equation ak = 0. Actually most

wherer, A andB are constants anti(y) is a real-valued t€chniques in use for handling the Lane-Emden-type
continuous function. This equation was used to modelProblems are based on either series solutions or
various phenomena such as the theory of stellar structurd€rturbation techniques. -

the thermal behaviour of a spherical cloud of gas, Recently, Yildirrm andOzis [4] used the variational
isothermal gas spheres and the theory of thermionidteration method (VIM) for solving singular IVPs of

currents 1,2,3]. Lane-Emden. Dehghan and ShakeB8] [applied an
On the other hand, another class of singular IVPs ofexponential transformation to the Lane-Emden equation
Lane-Emden type can also be given in the form: to overcome the difficulty of a singular point:at 0 and
, solved the resulting nonsingular problem by the VIM.
y' + )—(y’+ f(xy)=0g(x),0<x<1 (3)  Approximate solutions to the above problems were

presented by Shawagfe6]] Wazwaz [7,8] and Wazwaz
subject to conditions given in Eqg. (2)f(x,y) is a et. al. B] by applying the Adomian decomposition
continuous real valued function, agdx) € [0,1]. Eq. (3)  method (ADM) which provides a convergent series
differs from the classical Lane-Emden type Eq. (1), for solution. Ramos J(] presented a series approach to the
the function f (x,y) and for the inhomogeneous term Lane-Emden equation and gave the comparison with
g(x). homotopy perturbation method (HPM). Yildirim a@dis
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[11] and also Chowdhury and Hashinlg] gave the properly chosen, the above series (7) converges-atl,
solutions of a class of singular second-order IVPs ofthen we have
Lane-Emden type by using HPM. e

The main objective of this paper is to apply c1y
Homotopy Analysis Method (HAM) to obtain 9061) =vo (X)+ngym(x)’ ©)
approximate-exact solutions for different models of
Lane-Emden type singular IVPs. While the VIM,p] which must be one of the solutions of the original
requires the determination of Lagrange multiplier in its nonlinear equation, as proved by Liald]. If h= -1, Eq.
computational algorithm, HAM is independent of any (5) becomes
such requirements, HAM handles linear and nonlinear
terms in a simple and straightforward manner without any (1 —a)L[@(xq) —Yo(X)] +d[N[@(xq)] —k(x)] =0,
additional requirements. Also, in this paper we apply (10)

Genetic Algorithm (GA) to obtain approximate solution Which is used mostly in the HPMLf. .
of the same equations. According to Eq. (8), the governing equation can be

In what follows, we give a brief review of HAM and deduced from the zero-order deformation equation (5). We
GA. define the vectors

Vi={oX),y1(X),....¥i (X} (11)

2 Analysis of the Homotopy Analysis Method  Differentiating Eq. (5) m times with respect to the
embedding parametgrand then setting = O and finally
To describe the basic ideas of the HAM, we considerdividing them bym!, we have the so-calledth-order
the following differential equation: deformation equation

N[y(x¥)] =k(x), @) L [ym(X) — XmYm-1(X)] =hRn(¥m-1),  (12)

where N is a nonlinear operatorx denotes the Wwhere
independent variable;(x) is an unknown function and

m-1 .
k(x) is a known analytic function. For simplicity, we Rm(7m—1): 1 4 {N[¢(X’(1)]_k(x)} ,
ignore all boundary or initial conditions, which can be (m—1)! oqm- =0
treated in the similar way. By means of generalizing the (13)
traditional Homotopy method, Liad B] constructs the so  and
called zero-order deformation equation 0, m<1,

Xm= . (14)
1, m>1

(1-a)L{e(a) —Yo ()] =ah[N[@(xa)] —k(X)], (5)

It should be emphasized thah (x) (m> 1) are governed
where g € [0,1] is an embedding parameten, is a by the linear equation (12) with the linear boundary
nonzero auxiliary parametet, is an auxiliary linear conditions that come from the original problem, which
operatoryp (X) is an initial guess of (x) and@(x;q) isan  can be easily solved by symbolic computation softwares
unknown function. It is important, that one has greatsuch as Maple and Mathematica.
freedom to choose auxiliary objects suchhaandL in
HAM. Obviously, wheng = 0 andg = 1 it holds

P(x0)=Yo(x), @(x1)=y(x), (6)
. . . Definition 1.Genetic  Algorithms are search and
respectively. Thus, agincreases from 0 to 1, the solution optimization techniques based on Darwin's Principle of
®(x;q) varies from the initial guesgy (x) to the solution  Natural Sdlection.

y(x). Expandingp(x; q) in Taylor series with respect ty

3 Genetic Algorithms

we have Definition 2.Genetic Algorithm Operators[ 15, 16]
w The simplest form of genetic algorithm involves three
. _ m
P(xa) =Yyo(x)+ Z ym(x) 9", 7 types of operatorselection, crossover,andmutation.

m=1 . . .
Selection: This operator selects chromosomes in the
where population for reproduction. The fitter the chromosome

1 0Mp(xq) ,the more times it is likely to be selected to reproduce.

Ym (X) = m agm q—O' (8) Crossover: This operator randomly chooses a locus

and exchanges the subsequences before and after that
If the auxiliary linear operator, the initial guess, the locus between two chromosomes to create two offspring.
auxiliary parameteh, and the auxiliary function are so For example, the strings 10000100 and 11111111 could
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be crossed over after the third locus in each to produce thexact solution, we give the numerical results, maximum
two offspring 10011111 and 11100100. absolute error (MAE),||-||,, maximum relative error
The crossover operator roughly mimics biological (MRE), maximum residual error (MRR), the estimated
recombination between two single-chromosome (haploid)rder of convergence (EOC) at the paitand the global
organisms. estimated order of convergence (GEOC).
Mutation: This operator randomly flips some of the
bits in a chromosome. For example, the string 00000100
might be mutated in its second position to yield 01000100 Example 1. Firstly, let us consider the following linear
Mutation can occur at each bit position in a string with homogeneous Lane-Emden equation
some probability, usually very small (e.g.001). 5
A Simple Genetic Algorithm15,16] y +2y — (4x2 + 6) y=0, (15)
Given a clearly defined problem to be solved and a bit X
string representation for candidate solutions, a simple GAsypject to initial conditions

works as follows:
0)=1, y(0)=0. 16
1.Start with a randomly generated populatiomdfbit y(0) y(© (16)
chromosomes (candidate solutions to a problem). The exact solution for this problem is
2.Calculate the fithesi(x) of each chromosomein the

population. Yeraa (X) = €. 17)
3.Repeat the following steps untiloffspring have been
created: To solve Egs. (15)—(16) by means of the standard HAM,

(a)Select a pair of parent chromosomes from theWe choose the initial approximation
current population, the probability of selection 1
being an increasing function of fitness. Selection Yo(¥) =1,
is done "with replacement,” meaning that the and the linear operator
same chromosome can be selected more than once
to become a parent. - Lip(xa)] = 9’p(xq)  299(xq)

(b)With probability pc (the "crossover probability” P =50 X ox
or "crossover rate”), cross over the pair at
randomly chosen point (chosen with uniform With the property
probability) to form two offspring. If no crossover c1
takes place, form two offspring that are exact L[—; +Cz} =0,
copies of their respective parents. (Note that here
the crossover rate is defined to be the probabilitywhere ¢ (i=1,2) are constants of integration.
that two parents will crossover in a single point. Furthermore, Eq .(15) suggests that we define the
There are also "multi-point crossover” versions of nonlinear operator as
the GA in which the crossover rate for a pair of
parents is the number of points at which a o ]
crossover takes place.) N[@(x q)] = 9 (p();, q , 209(xq) (4 +6) p(x.q),

(c)Mutate the two offspring at each locus with ox X ox
probability pm (the "mutation probability” or  ysing the above definition, we construct the zeroth-order

"mutation rate”), and place the resulting deformation equation as in (5) and (6) and th-order
chromosomes in the new population nifis odd,  deformation equation fan> 1 is
one new population member can be discarded at -

random. LYm (X) — Xmym-1(X)] =hRm(Vm-1),  (18)
4.Replace the current population with the new . I .
population. with the initial conditions
5.Go to step 2. ym(0) =0, y,,(0)=0

4 Applications of the method

where
Rn(Vm-1) =V, +g>/ — (4%%+6) Ym-1.
In this work, we apply HAM to obtain m-1 71T y/m-1
approximate-exact solutions of the Lane-Emden type

equations and compare them with the solutions obtainetﬁlow’ the solution of themth-order deformation Eq. (18)
by VIM, ADM and HPM. Also, we apply GA to obtain 1oFM=1is

approximate solution of the same equations. To show the X X,

high accuracy of the solution results compared with the Ym(X) :Xmmel(X)"’h/o X /O ¥R (Vm-1). (19)
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We now successively obtain 5]

yi(X) = 7%hx47 hx?,
0.4

_12 1326717127 2\ 2
yz<x)790hx8+105hx 5h lOh X' — (h+h?) %2,

0.3
1 59 1 1 26 43
y3(x) = 7ﬁ)h3x12 - mh3x1°+ <4—5h2 - ﬂ)h3> B+ (mhz + mrﬁ) X
—(%h—%h2—§h3>x“—(h+2h2+h3)x2, 0.2
0.1
and so on, in this manner the rest of the iterations can bt
obtained. Thus, the approximate solution in a series forrr : : i :
is given by o 2 4 & 8
n
Py : ol
y(X) = Yo (X) + zlym (X), Fig. 1: Plot of 5g=r2 forn=0,1,....8.
m=
Hence, the series solution wher= —1 is
2, 14 16, 1s — 0.1=0.0001100110011
y(X) = 1+x +EX4+§X +pfte. () x=01=0

. ) X>1 = 0.3=0.0100110011000
This series has the closed formrass «

s X517 = 0.4=0.0110011001100

y(x) =€,
%31 = 0.5 = 0.1000000000000

which is exactly the exact solution (17) compatible with |n this step of GA, crossover operation (two point) is done
VIM, ADM and HPM. as follows:
In Table 1 show a comparison of the numerical resultsCutl —2 ct,=10
applying the HAM (n=5), Padé approximants (PA) of ’
order [6,6], Iteration of the Integral Equation (IIE) (19) ., : 0.0000110010011
and the numerical solution of (19) with the Simpson rule
(SIMP) with the exact solution (17). Twenty points have x,, : 0.0101100111000
been used in the Simpson rule. In Table 2, we list the
MAE, ||-||,, MRE and MRR obtained by HAM with the x5, : 0.0100000001100
exact solution orj0,1]. The EOC at the poirt; and the

GEOC on|0, 1] are given in Table 3 X3z : 0.1010011000000
As it is shown in 7], a necessary condition for the | the |ast step of GA a mutation operation (bit inverse,
convergence of the method is thah.a[|, < [yl forall 1 — 5y and then converting them from the binary format
n. In Figure 1 we represent the plot (A‘W for  tothe decimal format:

nll2
n=0,...,8

Also, this example is solved by using GA as follows: 13- 0.000001001001%0.0179

We'll choose six chromosomes represent values of .. : 0.0101000111008 0.3193
between(0,1) randomly as in Table 4 wherk(x;) is the

series solution of HAM given by (20) and xs;:0.01001000011086: 0.2827

N f(x) . .
PUG) = S5 g o the probability of reach . . 41010111000008 0.6797
chromosomes witly?_; f (x;) = 8.4419 The optimal solution is found after 51 generation to

In selection GA operation, Roulette method used toconverge to the exact solution, where- 0. After execute
obtained the best four chromosomes and then convertinthe Eqg. (20) many times by using GA as in Table 5 we
them from the decimal format to the binary format: found the optimal solution
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Table 1. Numerical results for example 1
X Yexact (X) HAM PA [6,6] lE SIMP
0.0 10 10 10 10 10
0.1 1.0100501 10100501 10100501 10100501 10100501
0.2 10408107 10408107 10408107 10408107 10408107
0.3 10941742 10941742 10941742 10941742 10941742
04 11735108 11735108 11735108 11735108 11735108
0.5 12840254 12840251 12840251 12840254 12840254
0.6 14333294 14333276 14333276 14333294 14333294
0.7 16323162 16323070 16323067 16323160 16323160
0.8 1.8964808 18964404 18964384 18964797 18964797
0.9 22479079 2477536 2477417 2479024 2479024
1.0 27182818 21177547 271176936 27182575 271182575
Table 2. MAE||-||,, MRE and MRR for example 1
n MAE -1l MRE MRR
3 8.336E—-02 2135%E-02 3066E — 02 434%€ —-00
4 8.126E — 03 1827E—-03 298% — 03 7523E - 01
5 5270E—-04 1067E — 04 1938 - 04 7.59% — 02
6 2.42% — 05 4511E — 06 8938 — 06 5027E - 03
7 8357E — 07 1440 —07 3074 - 07 2346 - 04
8 2225 —-08 3594E - 09 8186 — 09 8134E - 06
9 471%€ - 10 719%€ —11 1736E—10 2177 - 07
10 8161E — 12 1182E—-12 3002& - 12 4638 —09
Table 3. EOC and GEOC for example 1
X EOC,n=5
0.1 10704
0.2 1.0882
0.3 11036
0.4 11182
0.5 11328
0.6 11478
0.7 11634
0.8 11799
0.9 11975
1.0 12166
GEOC 12318
Table 4. Chromosomes select for example 1.
Xi 01 0.3 0.5 0.7 0.4 0.9
f(x) | 1.0101 10942 12840 16323 11735 22478
p(x) | 0.1197 01296 01521 01934 01390 02663
Table 5. Optimal solution of Genetic Algorithm for example 1
X Vexact (X) GA HAM PA [6,6] SIMP
0.000 10 10 10 10 10
0.012 10001440 10001441 10001440 10001440 10001440
0.017 10002890 10003048 10002890 10002890 10002890
0.040 10016012 10015823 10016012 10016012 10016012
0.067 10044990 10044873 10044990 10044990 10044990
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Example 2. We consider the following linear and so on, in this manner the rest of the iterations can be
nonhomogeneous Lane-Emden equation obtained. Thus, the approximate solution in a series form
8 is given by

y' + ;)/+xy=x5—x4+44x2—30x, (21)

—+o00
Y(X)=Yo(X)+ > ¥m(X),
subject to initial conditions (=Y ) n; m()

y(0)=0, ¥ (0)=0. (22)  Hence, the series solution wher= —1 is
. . . Ll leip s

The exact solution for this problem is Y1) = ggX' = 7 X,

Yexact (X) = XX, (23) Yo (X) = 7%660)(10+ %mxg— %xﬂt %xs,
To solve Egs. (21)—(22) by means of the standard HAM, 1 1, 1 4, 1
we choose the initial approximation ¥s() = 7331600 ~ 7560898 ' 16660° 11232’

X) =0, 1 1 ! 1
Yo(X) ¥:() = ~ fsoa008m08 " 845095680~ 4331600° " 2560896

and the linear operator

02(P X;q 80q0 X;q . . . . . . .
Llo(xq)] = 05(2 )+; zgx )7 Thus, the approximate solution in a series form is given by

with the property y(x) =x* —x3+ noise terms (26)

This series has the closed formrass «
y(X) = X4 - X37

hich is exactly the exact solution (23) compatible with
IM, ADM and HPM. Notice that the noise terms that
appear between various components vanish.

In Table 6 show a comparison of the numerical results
applying the HAM (n=5), Iteration of the Integral

Using the above definition, we construct the zeroth-ordeiEduation (IIE) (25) and the numerical solution of (25)

: - : ) with the Simpson rule (SIMP) with the exact solution
gg;g:nggz ggﬂ:ttilgr?%ilg gsi)sand (6) and thr-order (23). Twenty points have been used in the Simpson rule.

In Table 7, we list the MAE,|-||,, MRE and MRR
L [Ym (X) = XmYm-1 (X)] = hRm(Vm—l), (24) obtained by HAM with the exact solution df,1]. The
EOC at the poink; and the GEOC o1f0, 1] are given in

C1

L[—— C} =0,
7x+ 2

where ¢ (i=1,2) are constants of integration.

Furthermore, Eq. (21) suggests that we define the{’/v

nonlinear operator as

?9(xq) , 899(xq)
ox? X 0x

N[o(x0)] = +x@ (% q) — (x® — x* 4+ 44x% — 30x) ,

with the initial conditions (22) Table 8
0) =0 0) =0 As it is shown in [L7], a necessary condition for the
Ym(0) =0, yn(0) = convergence of the method is thgh1||, < |[ynl|, for all
where n. In Figure 2 we represent the plot n+1ll2 forn=

) ¥nll2
Rn(Ym-1) = Y4 1+ Y1t m1— (1= Xm) (X' +44¢ =309,  0,...,8.

Using GA by the same procedure as in example 1, we

Now, the solution of themth-order deformation Eq. (24) get the optimal solution is found after 51 generation to
form=>1is converge to the exact solution, whexe= 0.75. After

X X execute the Eq. (26) many times by using GA as in Table

Ym (X) = XmYm-1(X) + h/o X_B/O X®Rn(Vm-1). (25) 9 we found the optimal solution

We now successively obtain _ _ _
Example 3. Finally, let us consider the following

1 1
Y1) = = gghw’+ 2 — 4 he, nonlinear homogeneous Lane-Emden equation
1 1 1 1 1 1 2
¥2() = ~ qegee X+ Tiam X (Eh2+ @h> X <@h2+ ﬁh) d Y+ ;)/ Ty’ =0, @7)
— (M +h) X+ (W2 +h) e, subject to initial conditions
y(0) =1, y(0)=0. (28)
(@© 2017 NSP
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Table 6. Numerical results for example 2
X Yexact (X) HAM IE SIMP
0.0 0.0 0.0 0.0 0.0
0.1 —0.0009 —0.000899 —0.0009 —0.0009
0.2 —0.0064 —0.006399 —0.0064 —0.0064
0.3 —0.0189 —0.018899 —0.0189 —0.0189
0.4 —0.0384 —0.038399 —0.0384 —0.0384
0.5 —0.0625 —0.062499 —0.0625 —0.0625
0.6 —0.0864 —0.086399 —0.0864 —0.0864
0.7 —0.1029 —0.102899 —0.1029 —0.1029
0.8 —0.1024 —0.102399 —0.1024 —0.1024
0.9 —0.0729 —0.072899 —0.0729 —0.0729
1.0 0.0 5.55E — 10 224 —10 224 —10
Table 7. MAE,||-||,, MRE and MRR for example 2
n MAE -1l MRE MRR
2 2616 —03 9467E — 04 2651E — 02 828% — 02
3 2.900E — 05 7.3722 - 06 1860E — 04 2645 - 03
4 1596E — 07 337408 7078 — 07 2916 - 05
5 555% —10 1034E-10 1747 - 09 1601E — 07
6 135% — 12 2290E—13 3060E — 12 5573 - 10
7 2481E — 15 3853E — 16 4023 —15 1362 —12
8 3.522E 18 5103E 19 4126E —18 248%E — 15
Table 8. EOC and GEOC for example 2
X EOC,n=5
0.1 1.0345
0.2 10421
0.3 1.0486
0.4 1.0548
0.5 10612
0.6 10681
0.7 10760
0.8 10857
0.9 1.0987
1.0 11185
GEOC 11090
Table 9. Optimal solution of Genetic Algorithm for example 2
X Yexact (X) GA HAM SIMP
0.726 —0.1048480 —0.1048509 —0.1048480 —0.1048480
0.735 —0.1052224 —0.1052224 —0.1052223 —0.1052223
0.742 —0.1053977 —0.1054036 —0.1053977 —0.1053977
0.749 —0.1054676 —0.1054681 —0.1054676 —0.1054676
0.750 —0.1054687 —0.1054687 —0.1054687 —0.1054687
To solve Eqs. (27)—(28) by means of the standard HAM,with the property
we choose the initial approximation c
L [—7 + cZ} —0,
Yo (X) = 17 . . .
where ¢ (i=1,2) are constants of integration.

Furthermore, Eq .(27) suggests that we define the

and the linear operator .
nonlinear operator as

9°p(xa)  29¢(xq)
ox2 X dx

9’¢(xq)  299(xq)

.3
ox2 X 0x +oxa)”,

Lip(xq)] = N[p(xq)] =
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and so on, in this manner the rest of the iterations can be
0.4 obtained. Thus, the approximate solution in a series form

is given by
0012

+o00
yX) =Yo(X)+ » Ym(X)
0.01] ng
.08 Hence, the series solution whera= —1 is
1

0005 y1(x) = _éxz
0.004] IV

ww—m,
0.002] 019

1 2 3 4 &5 & 1 s = ~50a0°
n Yo 619
4 = T AeOA~ A
Fig. 2: Plot of ”ﬁ'”“‘”z forn=0,1,. 108864
B 17117 4,
¥a() = ~ 159582008

Using the above definition, we construct the zeroth-order

deformation equation as in (5) and (6) and thda-order

deformation equation fan > 1 is

L [Ym (X) = XmYm-1 (X)] = hRy, (Vm—l)

with the initial conditions

ym(0) =0, ym(0) =

where

Ra(Vm-1) =Yim 1+ )_2(3/m—1+yr3n—1

Now, the solution of thenth-order deformation Eq. (29)

form>1is

() = Xodin-19+ [ %2 ["CRn(Fm-1). (30)

We now successively obtain

yi(x) = gxz-,

Yo (X) = —x4+ (h+h2) 2

ya(x) = 1—9h3x5+ g (P +h)x 4 2 (h+2h2+h3) 2

3 5040

ya(x) = 219 O (P4 2 (174 210 1)
4 1088640h 1680

+Z2 (h+3h* 4 3h° + h*) 2,

@\H

Thus, the approximate solution in a series form is given by

1o

619 17117 4,
e 1
108864(3(8 199584006( + (31)

In Table 10 show a comparison of the numerical
results applying the HAM(n=5), Padé approximants
(PA) of order [4,4], lteration of the Integral Equation
(IE) (30) and the numerical solution of (30) with the
Simpson rule (SIMP). Twenty points have been used in
the Simpson rule. The HAM which we have designed to
solve this problem is called IIE, that gives identical value
for n= 5, which are used as exact solution.

As it is shown in [L7], a necessary condition for the
convergence of the method is thgh1||, < |[ynl|, for all

n. In Figure 3 we represent the plot ni1llz forn=

[Ynll2
o,...,7.

Using GA by the same procedure as in example 1, we
otain the optimal solution is found after 51 generation to
converge to the exact solution, where= 1.0. After
execute the Eqg. (31) many times by using GA as in Table
11 we found the optimal solution

5 Conclusion

To our best knowledge this is the first result on the
application of the HAM with GA to Lane-Emden type
singular IVPs for ordinary differential equations. The
HAM with GA have been successfully applied to solve
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Table 10. Numerical results for example 3
X lE HAM PA [4,4] SIMP
0.0 10 10 10 10
0.1 0.998335829 (098335829 (98335829 (098335829
0.2 0.993373093 (093373093 (193373093 (093373093
0.3 0.985199789 (185199789 (85199788 (185199789
04 0.973958264 73958264 (®73958255 73958264
0.5 0.959839146 (159839150 159839069 (159839146
0.6 0.943073637 ®43073664 ®43073172 ®43073637
0.7 0.923924947 (23925093 (23922838 (023924947
0.8 0.902679862 002680487 ®02672089 002679862
0.9 0.879641571 (B79643815 B79617167 (B79641571
1.0 0.855125080 (855132091 B55057569 (855125080
Table 11. Optimal solution of Genetic Algorithm for example
X IE GA HAM PA [4,4] SIMP
0.948 08680383 08679326 08680422 08679980 (8680383
0.960 08650884 8652159 8650929 8650429 (8650884
0.973 08618718 08619235 8618771 08618200 (8618718
0.992 08571331 08571995 8571396 8570707 8571331
1.000 08551250 8551320 8551320 8550575 8551250
.14 examples. The results obtained in all cases demonstrate the
reliability and the efficiency of this method.
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