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1 Introduction

Various problems arising in the field of mathematical
physics and astrophysics can be distinctively formulated as
equations of Lane-Emden type initial value problems [1,2,
3], defined in the form

y′′+
r
x

y′+ f (y) = 0, 0< x ≤ 1, (1)

subject to conditions

y(0) = A, y′ (0) = B. (2)

wherer, A andB are constants andf (y) is a real-valued
continuous function. This equation was used to model
various phenomena such as the theory of stellar structure,
the thermal behaviour of a spherical cloud of gas,
isothermal gas spheres and the theory of thermionic
currents [1,2,3].

On the other hand, another class of singular IVPs of
Lane-Emden type can also be given in the form:

y′′+
r
x

y′+ f (x,y) = g(x) , 0< x ≤ 1, (3)

subject to conditions given in Eq. (2),f (x,y) is a
continuous real valued function, andg(x) ∈ [0,1]. Eq. (3)
differs from the classical Lane-Emden type Eq. (1), for
the function f (x,y) and for the inhomogeneous term
g(x).

Since, Lane-Emden type equations have significant
applications in many fields of the scientific and technical
world, a variety of forms off (y) have been investigated
by many researchers. A discussion of the formulation of
these models and the physical structure of the solutions
can be found in the literature. Though the numerical
solutions of Lane-Emden type problems can be easily
obtained by computer, analytical solutions are much
needed for physical understanding.

Various analytical methods have been used to solve
Lane-Emden equations, the main difficulty arises in the
singularity of the equation atx = 0. Actually most
techniques in use for handling the Lane-Emden-type
problems are based on either series solutions or
perturbation techniques.

Recently, Yıldırım andÖzis [4] used the variational
iteration method (VIM) for solving singular IVPs of
Lane-Emden. Dehghan and Shakeri [5] applied an
exponential transformation to the Lane-Emden equation
to overcome the difficulty of a singular point atx = 0 and
solved the resulting nonsingular problem by the VIM.
Approximate solutions to the above problems were
presented by Shawagfeh [6], Wazwaz [7,8] and Wazwaz
et. al. [9] by applying the Adomian decomposition
method (ADM) which provides a convergent series
solution. Ramos [10] presented a series approach to the
Lane-Emden equation and gave the comparison with
homotopy perturbation method (HPM). Yıldırım andÖzis
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[11] and also Chowdhury and Hashim [12] gave the
solutions of a class of singular second-order IVPs of
Lane-Emden type by using HPM.

The main objective of this paper is to apply
Homotopy Analysis Method (HAM) to obtain
approximate-exact solutions for different models of
Lane-Emden type singular IVPs. While the VIM [4,5]
requires the determination of Lagrange multiplier in its
computational algorithm, HAM is independent of any
such requirements, HAM handles linear and nonlinear
terms in a simple and straightforward manner without any
additional requirements. Also, in this paper we apply
Genetic Algorithm (GA) to obtain approximate solution
of the same equations.

In what follows, we give a brief review of HAM and
GA.

2 Analysis of the Homotopy Analysis Method

To describe the basic ideas of the HAM, we consider
the following differential equation:

N [y(x)] = k (x) , (4)

where N is a nonlinear operator,x denotes the
independent variable,y(x) is an unknown function and
k (x) is a known analytic function. For simplicity, we
ignore all boundary or initial conditions, which can be
treated in the similar way. By means of generalizing the
traditional Homotopy method, Liao [13] constructs the so
called zero-order deformation equation

(1− q)L [φ (x;q)− y0(x)] = qh [N [φ (x;q)]− k (x)] , (5)

where q ∈ [0,1] is an embedding parameter,h is a
nonzero auxiliary parameter,L is an auxiliary linear
operator,y0 (x) is an initial guess ofy(x) andφ (x;q) is an
unknown function. It is important, that one has great
freedom to choose auxiliary objects such ash and L in
HAM. Obviously, whenq = 0 andq = 1 it holds

φ (x;0) = y0 (x) , φ (x;1) = y(x) , (6)

respectively. Thus, asq increases from 0 to 1, the solution
φ (x;q) varies from the initial guessy0 (x) to the solution
y(x) . Expandingφ (x;q) in Taylor series with respect toq,
we have

φ (x;q) = y0 (x)+
+∞

∑
m=1

ym (x)qm
, (7)

where

ym (x) =
1

m!
∂ mφ (x;q)

∂qm

∣

∣

∣

∣

q=0
. (8)

If the auxiliary linear operator, the initial guess, the
auxiliary parameterh, and the auxiliary function are so

properly chosen, the above series (7) converges atq = 1,
then we have

φ (x;1) = y0 (x)+
+∞

∑
m=1

ym (x) , (9)

which must be one of the solutions of the original
nonlinear equation, as proved by Liao [13]. If h =−1, Eq.
(5) becomes

(1− q)L [φ (x;q)− y0(x)]+ q [N [φ (x;q)]− k (x)] = 0,
(10)

which is used mostly in the HPM [14].
According to Eq. (8), the governing equation can be

deduced from the zero-order deformation equation (5). We
define the vectors

−→y i = {y0 (x) ,y1 (x) , . . . ,yi (x)} . (11)

Differentiating Eq. (5) m times with respect to the
embedding parameterq and then settingq = 0 and finally
dividing them bym!, we have the so-calledmth-order
deformation equation

L [ym (x)− χmym−1 (x)] = hRm (−→y m−1) , (12)

where

Rm (−→x m−1) =
1

(m−1)!
∂ m−1{N [φ (x;q)]− k (x)}

∂qm−1

∣

∣

∣

∣

q=0
,

(13)
and

χm =

{

0, m ≤ 1,

1, m > 1.
. (14)

It should be emphasized thatym (x) (m ≥ 1) are governed
by the linear equation (12) with the linear boundary
conditions that come from the original problem, which
can be easily solved by symbolic computation softwares
such as Maple and Mathematica.

3 Genetic Algorithms

Definition 1.Genetic Algorithms are search and
optimization techniques based on Darwin’s Principle of
Natural Selection.

Definition 2.Genetic Algorithm Operators [15,16]

The simplest form of genetic algorithm involves three
types of operators:selection, crossover,andmutation.

Selection: This operator selects chromosomes in the
population for reproduction. The fitter the chromosome
,the more times it is likely to be selected to reproduce.

Crossover: This operator randomly chooses a locus
and exchanges the subsequences before and after that
locus between two chromosomes to create two offspring.
For example, the strings 10000100 and 11111111 could
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be crossed over after the third locus in each to produce the
two offspring 10011111 and 11100100.

The crossover operator roughly mimics biological
recombination between two single-chromosome (haploid)
organisms.

Mutation: This operator randomly flips some of the
bits in a chromosome. For example, the string 00000100
might be mutated in its second position to yield 01000100.
Mutation can occur at each bit position in a string with
some probability, usually very small (e.g., 0.001).

A Simple Genetic Algorithm [15,16]
Given a clearly defined problem to be solved and a bit

string representation for candidate solutions, a simple GA
works as follows:

1.Start with a randomly generated population ofn l-bit
chromosomes (candidate solutions to a problem).

2.Calculate the fitnessf (x) of each chromosomex in the
population.

3.Repeat the following steps untiln offspring have been
created:
(a)Select a pair of parent chromosomes from the

current population, the probability of selection
being an increasing function of fitness. Selection
is done ”with replacement,” meaning that the
same chromosome can be selected more than once
to become a parent.

(b)With probability pc (the ”crossover probability”
or ”crossover rate”), cross over the pair at
randomly chosen point (chosen with uniform
probability) to form two offspring. If no crossover
takes place, form two offspring that are exact
copies of their respective parents. (Note that here
the crossover rate is defined to be the probability
that two parents will crossover in a single point.
There are also ”multi-point crossover” versions of
the GA in which the crossover rate for a pair of
parents is the number of points at which a
crossover takes place.)

(c)Mutate the two offspring at each locus with
probability pm (the ”mutation probability” or
”mutation rate”), and place the resulting
chromosomes in the new population .Ifn is odd,
one new population member can be discarded at
random.

4.Replace the current population with the new
population.

5.Go to step 2.

4 Applications of the method

In this work, we apply HAM to obtain
approximate-exact solutions of the Lane-Emden type
equations and compare them with the solutions obtained
by VIM, ADM and HPM. Also, we apply GA to obtain
approximate solution of the same equations. To show the
high accuracy of the solution results compared with the

exact solution, we give the numerical results, maximum
absolute error (MAE),‖·‖2 , maximum relative error
(MRE), maximum residual error (MRR), the estimated
order of convergence (EOC) at the pointxi and the global
estimated order of convergence (GEOC).

Example 1. Firstly, let us consider the following linear
homogeneous Lane-Emden equation

y′′+
2
x

y′−
(

4x2+6
)

y = 0, (15)

subject to initial conditions

y(0) = 1, y′ (0) = 0. (16)

The exact solution for this problem is

yExact (x) = ex2
. (17)

To solve Eqs. (15)–(16) by means of the standard HAM,
we choose the initial approximation

y0 (x) = 1,

and the linear operator

L [φ (x;q)] =
∂ 2φ (x;q)

∂x2 +
2
x

∂φ (x;q)
∂x

,

with the property

L
[

−
c1

x
+ c2

]

= 0,

where ci (i = 1,2) are constants of integration.
Furthermore, Eq .(15) suggests that we define the
nonlinear operator as

N [φ (x;q)] =
∂ 2φ (x;q)

∂x2 +
2
x

∂φ (x;q)
∂x

−
(

4x2+6
)

φ (x;q) ,

Using the above definition, we construct the zeroth-order
deformation equation as in (5) and (6) and themth-order
deformation equation form ≥ 1 is

L [ym (x)− χmym−1 (x)] = hRm (−→y m−1) , (18)

with the initial conditions

ym (0) = 0, y′m (0) = 0

where

Rm (−→y m−1) = y′′m−1+
2
x

y′m−1−
(

4x2+6
)

ym−1.

Now, the solution of themth-order deformation Eq. (18)
for m ≥ 1 is

ym (x) = χmym−1 (x)+ h
∫ x

0
x−2

∫ x

0
x2Rm (−→y m−1) . (19)
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We now successively obtain

y1 (x) = −
1
5

hx4−hx2
,

y2 (x) =
1
90

h2x8+
13
105

h2x6−

(

1
5

h−
1
10

h2

)

x4−
(

h+h2)x2
,

y3 (x) = −
1

3510
h3x12−

59
11550

h3x10+

(

1
45

h2−
1

210
h3

)

x8+

(

26
105

h2+
43
210

h3

)

x6

−

(

1
5

h−
1
5

h2−
2
5

h3

)

x4−
(

h+2h2 +h3)x2
,

.

.

.

and so on, in this manner the rest of the iterations can be
obtained. Thus, the approximate solution in a series form
is given by

y(x) = y0 (x)+
+∞

∑
m=1

ym (x) ,

Hence, the series solution whenh =−1 is

y(x) = 1+ x2+
1
2!

x4+
1
3!

x6+
1
4!

x8+ · · · . (20)

This series has the closed form asn → ∞

y(x) = ex2
,

which is exactly the exact solution (17) compatible with
VIM, ADM and HPM.

In Table 1 show a comparison of the numerical results
applying the HAM (n = 5), Padé approximants (PA) of
order [6,6], Iteration of the Integral Equation (IIE) (19)
and the numerical solution of (19) with the Simpson rule
(SIMP) with the exact solution (17). Twenty points have
been used in the Simpson rule. In Table 2, we list the
MAE, ‖·‖2 , MRE and MRR obtained by HAM with the
exact solution on[0,1]. The EOC at the pointxi and the
GEOC on[0,1] are given in Table 3.
As it is shown in [17], a necessary condition for the
convergence of the method is that‖yn+1‖2 < ‖yn‖2 for all

n. In Figure 1 we represent the plot of
‖yn+1‖2

‖yn‖2
for

n = 0, . . . ,8.
Also, this example is solved by using GA as follows:
We’ll choose six chromosomes represent values ofx

between(0,1) randomly as in Table 4 wheref (xi) is the
series solution of HAM given by (20) and

p(xi) =
f (xi)

∑6
i=1 f (xi)

is the probability of each

chromosomes with∑6
i=1 f (xi) = 8.4419.

In selection GA operation, Roulette method used to
obtained the best four chromosomes and then converting
them from the decimal format to the binary format:

Fig. 1: Plot of ‖yn+1‖2
‖yn‖2

for n = 0,1, ...,8.

x11 = 0.1= 0.0001100110011

x21 = 0.3= 0.0100110011000

x51 = 0.4= 0.0110011001100

x31 = 0.5= 0.1000000000000

In this step of GA, crossover operation (two point) is done
as follows:

cut1 = 2, cut2 = 10

x12 : 0.0000110010011

x22 : 0.0101100111000

x52 : 0.0100000001100

x32 : 0.1010011000000

In the last step of GA a mutation operation (bit inverse,
m = 5) and then converting them from the binary format
to the decimal format:

x13 : 0.0000010010011= 0.0179

x23 : 0.0101000111000= 0.3193

x53 : 0.0100100001100= 0.2827

x33 : 0.1010111000000= 0.6797

The optimal solution is found after 51 generation to
converge to the exact solution, wherex = 0. After execute
the Eq. (20) many times by using GA as in Table 5 we
found the optimal solution
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Table 1. Numerical results for example 1

x yExact (x) HAM PA [6,6] IIE SIMP
0.0 1.0 1.0 1.0 1.0 1.0
0.1 1.0100501 1.0100501 1.0100501 1.0100501 1.0100501
0.2 1.0408107 1.0408107 1.0408107 1.0408107 1.0408107
0.3 1.0941742 1.0941742 1.0941742 1.0941742 1.0941742
0.4 1.1735108 1.1735108 1.1735108 1.1735108 1.1735108
0.5 1.2840254 1.2840251 1.2840251 1.2840254 1.2840254
0.6 1.4333294 1.4333276 1.4333276 1.4333294 1.4333294
0.7 1.6323162 1.6323070 1.6323067 1.6323160 1.6323160
0.8 1.8964808 1.8964404 1.8964384 1.8964797 1.8964797
0.9 2.2479079 2.2477536 2.2477417 2.2479024 2.2479024
1.0 2.7182818 2.7177547 2.7176936 2.7182575 2.7182575

Table 2. MAE,‖·‖2 , MRE and MRR for example 1

n MAE ‖·‖2 MRE MRR
3 8.336E−02 2.135E−02 3.066E −02 4.349E−00
4 8.126E−03 1.827E−03 2.989E −03 7.523E−01
5 5.270E−04 1.067E−04 1.938E −04 7.599E−02
6 2.429E−05 4.511E−06 8.938E −06 5.027E−03
7 8.357E−07 1.440E−07 3.074E −07 2.346E−04
8 2.225E−08 3.594E−09 8.186E −09 8.134E−06
9 4.719E−10 7.199E−11 1.736E −10 2.177E−07
10 8.161E−12 1.182E−12 3.002E −12 4.638E−09

Table 3. EOC and GEOC for example 1

x EOC,n = 5
0.1 1.0704
0.2 1.0882
0.3 1.1036
0.4 1.1182
0.5 1.1328
0.6 1.1478
0.7 1.1634
0.8 1.1799
0.9 1.1975
1.0 1.2166
GEOC 1.2318

Table 4. Chromosomes select for example 1.
xi 0.1 0.3 0.5 0.7 0.4 0.9
f (xi) 1.0101 1.0942 1.2840 1.6323 1.1735 2.2478
p(xi) 0.1197 0.1296 0.1521 0.1934 0.1390 0.2663

Table 5. Optimal solution of Genetic Algorithm for example 1

x yExact (x) GA HAM PA [6,6] SIMP
0.000 1.0 1.0 1.0 1.0 1.0
0.012 1.0001440 1.0001441 1.0001440 1.0001440 1.0001440
0.017 1.0002890 1.0003048 1.0002890 1.0002890 1.0002890
0.040 1.0016012 1.0015823 1.0016012 1.0016012 1.0016012
0.067 1.0044990 1.0044873 1.0044990 1.0044990 1.0044990
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Example 2. We consider the following linear
nonhomogeneous Lane-Emden equation

y′′+
8
x

y′+ xy = x5− x4+44x2−30x, (21)

subject to initial conditions

y(0) = 0, y′ (0) = 0. (22)

The exact solution for this problem is

yExact (x) = x4− x3
. (23)

To solve Eqs. (21)–(22) by means of the standard HAM,
we choose the initial approximation

y0 (x) = 0,

and the linear operator

L [φ (x;q)] =
∂ 2φ (x;q)

∂x2 +
8
x

∂φ (x;q)
∂x

,

with the property

L
[

−
c1

7x
+ c2

]

= 0,

where ci (i = 1,2) are constants of integration.
Furthermore, Eq. (21) suggests that we define the
nonlinear operator as

N [φ (x;q)] =
∂ 2φ (x;q)

∂x2 +
8
x

∂φ (x;q)
∂x

+ xφ (x;q)−
(

x5− x4+44x2−30x
)

,

Using the above definition, we construct the zeroth-order
deformation equation as in (5) and (6) and themth-order
deformation equation form ≥ 1 is

L [ym (x)− χmym−1 (x)] = hRm (−→y m−1) , (24)

with the initial conditions (22)

ym (0) = 0, y′m (0) = 0

where

Rm (−→y m−1) = y′′m−1+
8
x

y′m−1+ xym−1− (1− χm)
(

x5− x4+44x2−30x
)

,

Now, the solution of themth-order deformation Eq. (24)
for m ≥ 1 is

ym (x) = χmym−1 (x)+ h
∫ x

0
x−8

∫ x

0
x8Rm (−→y m−1) . (25)

We now successively obtain

y1 (x) = −
1
98

hx7+
1
78

hx6−hx4+hx3
,

y2 (x) = −
1

16660
h2x10+

1
11232

h2x9−

(

1
49

h2+
1
98

h

)

x7+

(

1
39

h2+
1
78

h

)

x6

−
(

h2+h
)

x4+
(

h2+h
)

x3
,

.

.

.

and so on, in this manner the rest of the iterations can be
obtained. Thus, the approximate solution in a series form
is given by

y(x) = y0 (x)+
+∞

∑
m=1

ym (x) ,

Hence, the series solution whenh =−1 is

y1 (x) =
1
98

x7−
1
78

x6+ x4− x3
,

y2 (x) = −
1

16660
x10+

1
11232

x9−
1
98

x7+
1
78

x6
,

y3 (x) =
1

4331600
x13−

1
2560896

x12+
1

16660
x10−

1
11232

x9
,

y4 (x) = −
1

1594028800
x16+

1
845095680

x15−
1

4331600
x13+

1
2560896

x12
,

.

.

.

Thus, the approximate solution in a series form is given by

y(x) = x4− x3+noise terms (26)

This series has the closed form asn → ∞

y(x) = x4− x3
,

which is exactly the exact solution (23) compatible with
VIM, ADM and HPM. Notice that the noise terms that
appear between various components vanish.

In Table 6 show a comparison of the numerical results
applying the HAM (n = 5), Iteration of the Integral
Equation (IIE) (25) and the numerical solution of (25)
with the Simpson rule (SIMP) with the exact solution
(23). Twenty points have been used in the Simpson rule.
In Table 7, we list the MAE,‖·‖2 , MRE and MRR
obtained by HAM with the exact solution on[0,1]. The
EOC at the pointxi and the GEOC on[0,1] are given in
Table 8.

As it is shown in [17], a necessary condition for the
convergence of the method is that‖yn+1‖2 < ‖yn‖2 for all

n. In Figure 2 we represent the plot of
‖yn+1‖2

‖yn‖2
for n =

0, . . . ,8.
Using GA by the same procedure as in example 1, we

get the optimal solution is found after 51 generation to
converge to the exact solution, wherex = 0.75. After
execute the Eq. (26) many times by using GA as in Table
9 we found the optimal solution

Example 3. Finally, let us consider the following
nonlinear homogeneous Lane-Emden equation

y′′+
2
x

y′+ y3 = 0, (27)

subject to initial conditions

y(0) = 1, y′ (0) = 0. (28)
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Table 6. Numerical results for example 2

x yExact (x) HAM IIE SIMP
0.0 0.0 0.0 0.0 0.0
0.1 −0.0009 −0.000899 −0.0009 −0.0009
0.2 −0.0064 −0.006399 −0.0064 −0.0064
0.3 −0.0189 −0.018899 −0.0189 −0.0189
0.4 −0.0384 −0.038399 −0.0384 −0.0384
0.5 −0.0625 −0.062499 −0.0625 −0.0625
0.6 −0.0864 −0.086399 −0.0864 −0.0864
0.7 −0.1029 −0.102899 −0.1029 −0.1029
0.8 −0.1024 −0.102399 −0.1024 −0.1024
0.9 −0.0729 −0.072899 −0.0729 −0.0729
1.0 0.0 5.55E −10 2.24E −10 2.24E −10

Table 7. MAE,‖·‖2 , MRE and MRR for example 2

n MAE ‖·‖2 MRE MRR
2 2.616E−03 9.467E−04 2.651E −02 8.289E−02
3 2.900E−05 7.372E−06 1.860E −04 2.645E−03
4 1.596E−07 3.374E−08 7.078E −07 2.916E−05
5 5.559E−10 1.034E−10 1.747E −09 1.601E−07
6 1.359E−12 2.290E−13 3.060E −12 5.573E−10
7 2.481E−15 3.853E−16 4.023E −15 1.362E−12
8 3.522E−18 5.103E−19 4.126E −18 2.485E−15

Table 8. EOC and GEOC for example 2

x EOC,n = 5
0.1 1.0345
0.2 1.0421
0.3 1.0486
0.4 1.0548
0.5 1.0612
0.6 1.0681
0.7 1.0760
0.8 1.0857
0.9 1.0987
1.0 1.1185
GEOC 1.1090

Table 9. Optimal solution of Genetic Algorithm for example 2

x yExact (x) GA HAM SIMP
0.726 −0.1048480 −0.1048509 −0.1048480 −0.1048480
0.735 −0.1052224 −0.1052224 −0.1052223 −0.1052223
0.742 −0.1053977 −0.1054036 −0.1053977 −0.1053977
0.749 −0.1054676 −0.1054681 −0.1054676 −0.1054676
0.750 −0.1054687 −0.1054687 −0.1054687 −0.1054687

To solve Eqs. (27)–(28) by means of the standard HAM,
we choose the initial approximation

y0 (x) = 1,

and the linear operator

L [φ (x;q)] =
∂ 2φ (x;q)

∂x2 +
2
x

∂φ (x;q)
∂x

,

with the property

L
[

−
c1

x
+ c2

]

= 0,

where ci (i = 1,2) are constants of integration.
Furthermore, Eq .(27) suggests that we define the
nonlinear operator as

N [φ (x;q)] =
∂ 2φ (x;q)

∂x2 +
2
x

∂φ (x;q)
∂x

+φ (x;q)3
,
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Fig. 2: Plot of ‖yn+1‖2
‖yn‖2

for n = 0,1, ...,8.

Using the above definition, we construct the zeroth-order
deformation equation as in (5) and (6) and themth-order
deformation equation form ≥ 1 is

L [ym (x)− χmym−1 (x)] = hRm (−→y m−1) , (29)

with the initial conditions

ym (0) = 0, y′m (0) = 0

where

Rm (−→y m−1) = y′′m−1+
2
x

y′m−1+ y3
m−1.

Now, the solution of themth-order deformation Eq. (29)
for m ≥ 1 is

ym (x) = χmym−1 (x)+ h
∫ x

0
x−2

∫ x

0
x2Rm (−→y m−1) . (30)

We now successively obtain

y1 (x) =
h
6

x2
,

y2 (x) =
h2

40
x4+

1
6

(

h+h2)x2
,

y3 (x) =
19

5040
h3x6+

1
20

(

h2+h3)x4+
1
6

(

h+2h2 +h3)x2
,

y4 (x) =
619

1088640
h4x8+

19
1680

(

h3+h4)x6+
3
40

(

h2+2h3 +h4)x4

+
1
6

(

h+3h2 +3h3+h4)x2
,

.

.

.

and so on, in this manner the rest of the iterations can be
obtained. Thus, the approximate solution in a series form
is given by

y(x) = y0 (x)+
+∞

∑
m=1

ym (x) ,

Hence, the series solution whenh =−1 is

y1 (x) = −
1
6

x2
,

y2 (x) =
1
40

x4
,

y3 (x) = −
19

5040
x6
,

y4 (x) =
619

1088640
x8
,

y4 (x) = −
17117

199584000
x10

,

...

Thus, the approximate solution in a series form is given by

y(x) = 1−
1
6

x2+
1
40

x4−
19

5040
x6

+
619

1088640
x8−

17117
199584000

x10+ · · · . (31)

In Table 10 show a comparison of the numerical
results applying the HAM(n = 5), Padé approximants
(PA) of order [4,4], Iteration of the Integral Equation
(IIE) (30) and the numerical solution of (30) with the
Simpson rule (SIMP). Twenty points have been used in
the Simpson rule. The HAM which we have designed to
solve this problem is called IIE, that gives identical values
for n = 5, which are used as exact solution.

As it is shown in [17], a necessary condition for the
convergence of the method is that‖yn+1‖2 < ‖yn‖2 for all

n. In Figure 3 we represent the plot of
‖yn+1‖2

‖yn‖2
for n =

0, . . . ,7.
Using GA by the same procedure as in example 1, we

otain the optimal solution is found after 51 generation to
converge to the exact solution, wherex = 1.0. After
execute the Eq. (31) many times by using GA as in Table
11 we found the optimal solution

5 Conclusion

To our best knowledge this is the first result on the
application of the HAM with GA to Lane-Emden type
singular IVPs for ordinary differential equations. The
HAM with GA have been successfully applied to solve
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Table 10. Numerical results for example 3

x IIE HAM PA [4,4] SIMP
0.0 1.0 1.0 1.0 1.0
0.1 0.998335829 0.998335829 0.998335829 0.998335829
0.2 0.993373093 0.993373093 0.993373093 0.993373093
0.3 0.985199789 0.985199789 0.985199788 0.985199789
0.4 0.973958264 0.973958264 0.973958255 0.973958264
0.5 0.959839146 0.959839150 0.959839069 0.959839146
0.6 0.943073637 0.943073664 0.943073172 0.943073637
0.7 0.923924947 0.923925093 0.923922838 0.923924947
0.8 0.902679862 0.902680487 0.902672089 0.902679862
0.9 0.879641571 0.879643815 0.879617167 0.879641571
1.0 0.855125080 0.855132091 0.855057569 0.855125080

Table 11. Optimal solution of Genetic Algorithm for example3

x IIE GA HAM PA [4,4] SIMP
0.948 0.8680383 0.8679326 0.8680422 0.8679980 0.8680383
0.960 0.8650884 0.8652159 0.8650929 0.8650429 0.8650884
0.973 0.8618718 0.8619235 0.8618771 0.8618200 0.8618718
0.992 0.8571331 0.8571995 0.8571396 0.8570707 0.8571331
1.000 0.8551250 0.8551320 0.8551320 0.8550575 0.8551250

Fig. 3: Plot of ‖yn+1‖2
‖yn‖2

for n = 0,1, ...,7.

models of Lane-Emden type singular IVPs. The HAM
with GA have worked effectively to handle these models
giving it a wider applicability. The proposed scheme of
HAM has been applied directly without any need for
transformation formulae or restrictive assumptions. The
solution process of HAM is compatible with those
methods in the literature providing analytical
approximation such as VIM, ADM and HPM.

The approach of HAM has been tested by employing
the method to obtain approximate-exact solutions of three

examples. The results obtained in all cases demonstrate the
reliability and the efficiency of this method.
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