
Appl. Math. Inf. Sci. 7, No. 3, 909-915 (2013) 909

Applied Mathematics & Information Sciences
An International Journal

c⃝ 2013 NSP
Natural Sciences Publishing Cor.

A Direct Approach to Transient Queue-Size Distribution
in a Finite-Buffer Queue with AQM
Wojciech M. Kempa

Institute of Mathematics, Silesian University of Technology, Gliwice, Poland

Received: 15 Nov. 2012, Revised: 1 Jan. 2013, Accepted: 22 Jan. 2013
Published online: 1 May 2013

Abstract: A finite-buffer M/G/1-type queueing model is considered in which the level of saturation of the buffer is controlled by a
dropping function. A direct analytical method to the study of the transient queue-size distribution is proposed. Applying the embedded
Markov chain paradigm and the formula of total probability, a specific-type system of integral equations for the transient queue-size
distributions, conditioned by the number of packets present in the system at the opening, is derived. The corresponding system of linear
equations built for the Laplace transforms is written in a matrix form and solved directly. The M/M/1/2−type system is analyzed as
a special case separately. Numerical utility of the approach is illustrated as well.
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1 Preliminary
Applications of finite-buffer queueing systems in
modelling of the evolution of telecommunication
networks, especially in the TCP/IP packet networks are
well-known. One of hot topics in present scientific
research devoted to teletraffic problems is the analysis of
the phenomena of buffer congestions and losses of
packets being transmitted, which are typical ones in
Internet routers. To meet these challenges the idea of the
Active Queue Management (AQM) was proposed, in
which a dropping function for controlling the process of
enqueueing of the arriving packets was introduced. A
dropping function rejects the incoming packets with a
probability depending on the instantaneous or average
queue size at the pre-arrival epoch, even when the buffer
is not saturated yet. In [5] the first AQM algorithm, called
RED one, with a linear dropping function was analyzed.
Other types of dropping functions were investigated in [1]
and [14] (an exponential one - REM algorithm), [6] and
[15] (a “gentle” RED algorithm (GRED) i.e. a doubly
linear dropping function) and [21] (a quadratic dropping
function). More information about AQM schemes and
their applications one can find e.g. in [7], [16], [17] and
[20].

Although AQM algorithms assume a much greater
“flexibility” of the system for the process of buffer
saturating as compared to the classical TD (Tail Drop)

scheme, where the arriving packets are lost only during
the buffer overflow period, they have not been widely
developed in the Internet. One of the reasons seems to be
the fact that the impact of these algorithms on the key
stochastic and performance characteristics of the system,
such as the queue-size distribution or time between
successive losses, especially in the transient state, have
not yet been sufficiently investigated analytically. The
compact representation for the stationary queue-size
distribution at an arbitrary epoch in the M/G/1/N -type
system with packet dropping was obtained in [3]. In [8]
the M/M/1/N system with single and batch arrivals,
controlled by a general-type dropping function, was
analyzed. The formulae for three important
stationary-state stochastic characteristics of the system
were found there: the queue-size distribution, the number
of packets (batches of packets) lost consecutively, and the
time between two successive losses. The results from [8]
were partially generalized in [18] and [19] where the
representations for the stationary queue-size distribution
in the case of generally distributed packet volumes and
bounded total system capacity were derived for the
M/M/1 and M/G/1 queues respectively.

As one can note, almost all of the results related to
AQM models concern systems in equilibrium. However, a
comprehensive analysis of the system operation should be
based, if possible, on transient characteristics. Indeed,
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rapidly changing parameters of the packet traffic, or
changing network specifications, at simultaneous heavy
traffic load, cause that the system has no chance to
stabilize in practice and the stationary analysis of
stochastic system characteristics does not fit with reality.

In the paper we study the transient queue-size
distribution in the M/G/1/N−type queue in which an
arriving packet is dropped with a probability dn
depending on the actual number n of packets present in
the system at the pre-arrival epoch. To find the
representation for the Laplace transform of the queue-size
distribution at a fixed moment t we apply the approach
being a mixture of different techniques. Firstly, we find an
explicit formula for the conditional probability that
exactly k packets join the queue “physically” in the
system with dropping. Next, using this result and the
paradigm of embedded Markov chain, we construct a
specific-type system of integral equations for the transient
queue-size conditional distributions, where the condition
is a number of packets present in the system initially. The
technique of integral equations, combined with the
potential approach, was sucessfully used in [9–13] for
finite-buffer queues without restrictions in the enqueueing
process. From the original system we obtain the
corresponding one written for the Laplace transforms.
Transforming it to the matrix form we obtain the general
solution.

So, the remaining part of the article is organized as
follows. In the next Section 2 we give a mathematical
description of the system, introduce necessary notations
and prove a theorem that gives the explicit formula for the
probability an,k(y) of k “real” arrivals in the period (0, y]
on condition that the system contains n packets at t = 0.
In Section 3, applying the idea of embedded Markov
chain and results from Section 2, we build the system of
integral equations for the conditional queue-size
distributions. In Section 4 we rewrite in a matrix form the
corresponding system built for the Laplace transforms
and find its general solution. In Section 5 we present
explicit results for the special case of the M/M/1−type
system with packet dropping and a one-place buffer.
Section 6 contains exemplary numerical computations,
and the last Section 7 is devoted to concluding remarks.

2 Queueing model and auxiliary results

Let us consider the one-server M/G/1/N -type queueing
system with single Poisson arrivals with intensity λ, and
generally distributed service times with a distribution
function F (·). The maximum system capacity equals N
i.e. we have (N − 1)-place buffer queue and one place for
service. The input stream is being “filtered” by a dropping
function dn, expressing the probability that the arriving
packet will be dropped if the system “state” at the
pre-arrival epoch equals n (we have n packets present in
the system at this time). So, of course, 0 ≤ dn ≤ 1 for
any 0 ≤ n ≤ N, and dN = 1.

Introduce te following set of notations which will be
used in the paper:

⋄ X(t) – for the number of packets present in the system
at time t;

⋄ F (t) = 1 − F (t) – for the tail of the distribution
function F (·) at point t;

⋄ δi,j – for the Kronecker delta function.

Denote by hn,k(y) the probability that exactly
0 ≤ k ≤ n packets join “physically” the system (are
accepted for service without dropping) during (0, y], on
condition that the number of packets present at the
opening equals 0 ≤ n ≤ N, and the time y precedes the
first service completion epoch occurring after t = 0. In
[3] the formula for the Laplace transform of hn,k(y) was
found. In the present paper we need and find the explicit
formula for “pure” hn,k(y).

Theorem 2.1. In the M/G/1/N -type queue with
dropping function the probability hn,k(y) that before the
first service completion epoch y after the opening, exactly
k packets “physically” enter the system, on the condition
that the number of packets present in the system initially
equals 0 ≤ n ≤ N, is given by the following formulae:

hn,0(y) =e−λ(1−dn)y, (1)

hn,k(y) =

∞∑
i=k

(λy)i

i!
e−λy

×
k−1∏
j=0

(1− dn+j)
∑

j0,...,jk≥0,

j0+...+jk=i−k

dj0n dj1n+1...d
jk
n+k,

where 1 ≤ k ≤ N − n, and (2)
hn,k(y) =0, k > N − n. (3)

Proof. The probability that the Poisson arrival process
“jumps” i times before the first service completion epoch
y and all the packets are dropped equals (λy)i

i! e−λydin.
Summing over all possibilities i.e. i from 0 to ∞ gives
(1).

In the case of k “physical” inputs, the number of
i ≥ k jumps of the Poisson arrival process must occur
before y, that explains the first factor on the right side of
(2). Moreover, successive packets from k ones are being
accepted for service independently with probabilities
1 − dn, 1 − dn+1, ... 1 − dn+k−1, that comments the
second factor on the right side of (2). Finally, the last
factor presents all possibilities of dropping the remaining
i − k packets which are lost. For example, in the formula
for hn,1(y) the last factor is a sum of the following
summands:

d0nd
i−1
n+1 + d1nd

i−2
n+1 + ...+ di−1

n d0n+1. (4)

Successive components in (4) indicate which one of the
arriving packets (from i packets occurring), in turn, is
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accepted for service. For instance, the first summand
d0nd

i−1
n+1 relates to the situation in which the first arriving

packet is accepted and the next i − 1 are dropped.
Similarly, d2nd

i−3
n+1 describes the situation in which the

accepted packet is the third one.
If the system contains exactly n packets at the

opening then, of course, the number k of packets which
“physically” join the system before the first service
completion epoch y must be a number between 0 and
N − n. So, the formula (3) is trivial. �

In the next section we apply the probabilities an,k(y)
from Theorem 2.1. to write a specific-type system of
integral equations for conditional transient queue-size
distribution.

3 Integral equations for conditional transient
queue-size distributions

In this section we derive a system of integral equations for
non-stationary queue-size distributions in the M/G/1/N -
type queue, conditioned by the numbers of packets present
in the system at time t = 0.

Let us introduce the following notation:

Qn(t,m) = P{X(t) = m |X(0) = n}, (5)

where 0 ≤ m,n ≤ N.
Assume, firstly, that the system is empty at the

opening. Let us note that the following integral equation
holds then true:

Q0(t,m) = λ

∫ t

0

[
d0Q0(t− x,m)

+ (1− d0)Q1(t− x,m)
]
e−λxdx+ e−λtδm,0. (6)

Indeed, if the first arrival occurs at time x < t, then
the evolution of the system is being continued, beginning
at this time, with no packet present (with probability d0) or
with exactly one packet present (with probability 1− d0).
In the case of no arrivals before time t the random event
{X(t) = m} is equivalent to {m = 0}.

Consider now the situation in which the system
contains at least one packet at time t = 0. As it is well
known, in the M/G/1-type system successive service
completion epochs are Markov (renewal) moments (see
e.g. [4]). Applying the formula of total probability with
respect to the first service completion epoch after the
opening of the system, we can write the following system
of integral equations:

Qn(t,m) =
N−n∑
k=0

∫ t

0

hn,k(y)Qn+k−1(t− y,m)dF (y)

+ F (t)hn,m−n(t), (7)

where 1 ≤ n ≤ N, and the representations for hn,k(t)
were found in (1)–(3).

Let us comment briefly the last equation. The first
summand on the right side of (7) relates to the situation in
which the first departure epoch y occurs before t. In the
case of k packets “physically” arriving before y, at the
Markov moment y the system “renews” its operation with
n + k − 1 packets present. According to the second
summand on the right side of (7), if the first service ends
after t then X(t) = m, m ≥ n, if and only if exactly
m− n packets enter before t.

4 Solution for transforms of conditional
queue-size distributions

The main aim of this section is to find the compact
formulae for the Laplace transforms of conditional
queue-size distributions which, additionally, can be useful
in numerical practice.

Let us introduce the following notation:

Q̂n(s,m) =

∫ ∞

0

e−stQn(t,m)dt, Re(s) > 0, (8)

and define the functions

α(s) =
λd0
s+ λ

, β(s) =
λ(1− d0)

s+ λ
(9)

and

γ(s,m) =
δm,0

s+ λ
. (10)

Besides, let

ĥi,j(s) =

∫ ∞

0

e−sthi,j(t)dF (t) (11)

and

∆i,j(s) =

∫ ∞

0

e−sthi,j(t)F (t)dt. (12)

Introducing (8)–(12) into the equations (6)–(7) lead to
the following system:[

1− α(s)
]
Q̂0(s,m)− β(s)Q̂1(s,m) = γ(s,m) (13)

and

Q̂n(s,m) =
N−n∑
k=0

ĥn,k(s)Q̂n+k−1(s,m) +∆n,m−n(s),

(14)

where 1 ≤ n ≤ N.
Let us note that the system of equations (13–(14) can

be written in a matrix form.
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Indeed, let A(s) be an (N +1)× (N +1) matrix, with
rows and columns numbered from 0 to N, and with entries
defined as follows:

A0,0(s) = 1− α(s), A0,1(s) = −β(s),

A0,k(s) = 0 for 2 ≤ k ≤ N. (15)

Besides, for 1 ≤ i ≤ N,

Ai,j(s) =


ĥi,j(s) for 1 ≤ i ≤ N − 2, i < j ≤ N − 1,

ĥi,0(s) for 1 ≤ i ≤ N, j = i− 1,

ĥi,i(s)− 1, for 1 ≤ i ≤ N − 1, j = i,
−1 for i = j = N,
0 otherwise.

(16)

Similarly, let B(s,m) and Q(s,m) be (N+1)×1 matrices
defined in the following way:

B(s,m) =
[
γ(s,m), −∆1,m−1(s), , ..., −∆N,m−N (s)

]T
(17)

and

Q(s,m) =
[
Q̂0(s,m), Q̂1(s,m), ..., Q̂N (s,m)

]T
.
(18)

Referring to (15)–(18) the system (13)–(14) can be
rewritten in the form

A(s)Q(s,m) = B(s,m). (19)

Of course, just from the definition (5) of Qn(t,m),
follows that the solution of the system is unique, thus it
can be derived via Cramer’s rule.

Theorem 4.1. In the M/G/1/N -type queueing system
with a dropping function the vector Q̂(s,m) of the
Laplace transforms of conditional transient queue-size
distributions can be found as

Q(s,m) = A−1(s)B(s,m), (20)

where A−1(s) is an inverse matrix of A(s) defined in
(15)–(16), and the matrix B(s,m) is defined in (17).

Due to the finite capacity of the buffer the stationary
state of the system exists and then is independent on the
number of packets present in the system initially.

Denote

Q(m) = lim
t→∞

Qn(t,m). (21)

From the representation (20) given in Theorem 4.1., for
a particular system, we can find the stationary probability
using the well-known Tauberian theorem i.e.

Q(m) = lim
s↓0

sQ̂n(s,m), (22)

where n can be chosen arbitrarily from 0 to N.

5 Simplifications for a one-place buffer

In this section we obtain the explicit formulae for
conditional distributions Qn(t,m) in the M/M/1/2-type
system with one-place buffer (so N = 2) and
exponentially distributed service times with mean µ−1.

Just from the representations (1)–(2) we get

h1,0(y) = e−λ(1−d1)y, (23)

h1,1(y) = 1− e−λ(1−d1)y, (24)
h2,0(y) = 1. (25)

Moreover, from (11), we obtain

ĥ1,0(s) =
µ

s+ µ+ λ(1− d1)
, (26)

ĥ1,1(s) =
λµ(1− d1)

(s+ µ)
(
s+ µ+ λ(1− d1)

) , (27)

ĥ2,0(s) =
µ

s+ µ
. (28)

Now, from (15)–(16) we get

A(s) =

 1− α(s) −β(s) 0

ĥ1,0(s) ĥ1,1(s)− 1 0

0 ĥ2,0(s) −1



=


1− λd0

s+λ −λ(1−d0)
s+λ 0

µ
s+µ+λ(1−d1)

λµ(1−d1)

(s+µ)
(
s+µ+λ(1−d1)

) − 1 0

0 µ
s+µ −1

 .

(29)

Similarly, taking into consideration the definition (12), in
the considered system we have

∆i,j(s) =
ĥi,j(s)

µ
. (30)

Referring to (17), the forms of a column matrix B(s,m)
in dependence on m are following:

B(s, 0) =
[ 1

s+ λ
, 0, 0

]T
, (31)

B(s, 1) =
[
0, − 1

s+ µ+ λ(1− d1)
, 0

]T
, (32)

B(s, 2) =
[
0, − λ(1− d1)

(s+ µ)
(
s+ µ+ λ(1− d1)

) , − 1

s+ µ

]T
.

(33)

In the next section we present sample numerical results for
the M/M/1/2−type system, applying the formulae (29)–
(33).
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6 Numerical results

Let us consider the M/M/1/2−type system with
dropping of packets analyzed in the previous section. In
this section we investigate the influence of the traffic load,
and separately the arrival and service intensities, for the
probability that the system is empty at fixed moment of
time. Moreover, we analyze the dependence between the
shape of a dropping function and the probability of
transient buffer saturation. All computations we execute
using the Mathematica environment.

Example 1. Let us fix µ = 4 and observe the system at the
moment T = 0.5. Define the dropping function as follows:

d0 = 0.25 and d1 = 0.50. (34)

We are interested in probabilities

P{X(0.5) = 0 |X(0) = n}

for ten different values of the arrival intensity λ and, in
consequence, for different values of the traffic load
ρ = λ

µ . In Tab. 1 we state results obtained for all possible
numbers n (n = 0, 1, 2) of packets present in the system
at the opening.

No. λ ρ n = 0 n = 1 n = 2
1 0.5 0.125 0.922188 0.795368 0.554044
2 1.0 0.250 0.850577 0.732273 0.517191
3 2.0 0.500 0.724228 0.622449 0.451770
4 3.0 0.750 0.617680 0.531206 0.395930
5 4.0 1.000 0.527995 0.455258 0.348165
6 6.0 1.500 0.389199 0.338926 0.272011
7 8.0 2.000 0.291077 0.257137 0.215478
8 10.0 2.500 0.221432 0.198914 0.173058
9 16.0 4.000 0.109176 0.103040 0.096950
10 24.0 6.000 0.052637 0.052633 0.052631

Table 1 Conditional probabilities P{X(0.5) = 0 |X(0) = n}
in a function of intensity of arrivals λ

The results from Tab. 1 are presented geometrically in
Fig. 1, where the solid line relates to the case of n = 0
and the dashed and dotted lines - to the cases of n = 1 and
n = 2 respectively.

Let us note that, obviously, as the intensity of arrivals
λ increases (so, simultaneously, as the traffic load ρ
increases) then the probabilities that the server is idle at
T = 0.5 decrease. Moreover, let us observe that the
reduction is the most visible in the case of n = 0, when
the system is empty initially. It is intuitively clear. Indeed,
in this case the impact of the increasing arrival intensity λ
for the probability that the system is empty is the greatest
one.
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Fig. 1 Conditional probabilities P{X(0.5) = 0 |X(0) = n} in
a function of intensity of arrivals λ

Example 2. Let us investigate the influence of the service
intensity µ on the probability that the system is empty at
the moment T = 1.0. Fix λ = 1 and take the same
dropping function as in Example 1. The values of
probabilities

P{X(1) = 0 |X(0) = n}

for n = 0, 1, 2 and for ten different values of µ are given
in Tab. 2 and presented geometrically in Fig. 2. The solid,
dashed and dotted lines, as in Example 1, relate to the cases
of n = 0, n = 1 and n = 2 respectively.

No. µ ρ n = 0 n = 1 n = 2
1 0.167 6.000 0.503288 0.085170 0.008403
2 0.250 4.000 0.517869 0.124687 0.018012
3 0.400 2.500 0.542721 0.191021 0.042289
4 0.500 2.000 0.558352 0.232020 0.062412
5 0.667 1.500 0.582842 0.295055 0.101003
6 1.000 1.000 0.626520 0.403407 0.189132
7 1.333 0.750 0.664036 0.491721 0.281462
8 2.000 0.500 0.724228 0.622449 0.451770
9 4.000 0.250 0.830293 0.810514 0.756733
10 8.000 0.125 0.909485 0.908848 0.906238

Table 2 Conditional probabilities P{X(1) = 0 |X(0) = n} in
a function of service intensity µ

As one can observe, obviously, as the service intensity
µ (and the traffic load ρ) increases then the conditional
probabilities P{X(1) = 0} increase too. The increase of
probabilities is the greatest one in the case of the system
being saturated initially (n = 2). Indeed, in this case the
influence of the increasing service intensity for the
probability of empty the system is the strongest one.
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Fig. 2 Conditional probabilities P{X(1) = 0 |X(0) = n} in a
function of service intensity µ

Example 3. Let us now consider the critically loaded
system (ρ = 1) in which λ = µ = 2, and take d0 = 0.1.
Investigate the influence of the value of d1 for the
conditional probabilities that the system is saturated at the
time T = 1.0 i.e. X(1) = 2. Results for d1 changing from
0.1 to 0.9 with step 0.1 are given in Tab. 3 and visualized
in Fig. 3, where the solid, dashed and dotted lines denote
the cases of n = 0, n = 1 and n = 2 respectively.

No. d1 n = 0 n = 1 n = 2
1 0.1 0.232453 0.301621 0.377886
2 0.2 0.212943 0.277333 0.357580
3 0.3 0.192182 0.251294 0.335959
4 0.4 0.170051 0.223314 0.312901
5 0.5 0.146422 0.193176 0.288267
6 0.6 0.121147 0.160631 0.261903
7 0.7 0.094063 0.125394 0.233636
8 0.8 0.064987 0.087138 0.203271
9 0.9 0.033710 0.045486 0.170596

Table 3 Conditional probabilities P{X(1) = 2 |X(0) = n} in
a function of d1

Of course the values of probabilities of system
saturation decrease essentially as the value of d1
increases. Besides, let us note that in a short period of
time the probability of loss of the arriving packet remain
relatively high, despite very high values of the dropping
probability d1, in the case of the system that is “full”
initially.

Example 4. Let us take now d1 = 0.1 and investigate the
influence of increasing values d0 (from 0.1 to 0.9) for the
probability of the saturation of the system at the time
T = 1.0, if the system is saturated at the opening. Let us

1 2 3 4 5 6 7 8 9
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Fig. 3 Conditional probabilities P{X(1) = 2 |X(0) = n} in a
function of d1

consider three different values of the traffic load: the
critical load ρ = 1 (λ = µ = 2), the overload ρ = 2
(λ = 4, µ = 2) and the extreme overload ρ = 4 (λ = 8,
µ = 2). The results of the experiment are given in Tab. 4
and presented geometrically in Fig. 4, where the solid,
dashed and dotted lines relate to the cases of ρ = 1, ρ = 2
and ρ = 4 respectively.

Let us note that as the traffic load ρ gets larger, the
decrease of the corresponding probabilities is less, from
about 33 percent in the case of ρ = 1 to as little as 25
percent for ρ = 4. Indeed, at very high traffic load the
probability that the system will become empty before T =
1.0 is small, and only in this case the value of d0 can “act”
for reducing the probability of saturation of the system.

No. d0 ρ = 1 ρ = 2 ρ = 4
1 0.1 0.301621 0.527825 0.736625
2 0.2 0.293163 0.517356 0.730989
3 0.3 0.283955 0.505096 0.723817
4 0.4 0.273911 0.490635 0.714454
5 0.5 0.262935 0.473447 0.701876
6 0.6 0.250918 0.452861 0.684443
7 0.7 0.237735 0.428012 0.659468
8 0.8 0.223246 0.397780 0.622448
9 0.9 0.207289 0.360711 0.565676

Table 4 Conditional probabilities P{X(1) = 2 |X(0) = 2} in
a function of d0 for three different values of ρ

7 Conclusion

In the paper we consider the M/G/1/N -type queueing
system in which the stream of the arriving packets is
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Fig. 4 Conditional probabilities P{X(1) = 2 |X(0) = 2} in a
function of d0 for three different values of ρ

being “screened” by a dropping function. To find the
representations for the conditional transient queue-size
distributions, where the condition is in the number of
packets present in the system initially, we propose a
simple direct approach. Firstly, applying the idea of the
embedded Markov chain and the formula of total
probability, we build a specific-type system of integral
equations for the transient queue-size distributions. Using
the matrix notation we give the solution of the
corresponding system written for the Laplace transforms.
Moreover, we consider separately the special case of the
M/M/1/2−type system, where we obtain all the
formulae in the explicit forms. For exemplary queueing
models we investigate numerically the influence of the
arrival and service intensities, and of the traffic load on
the probability that the system is idle at a fixed time.
Moreover, we analyze the impact of the shape of a
dropping function on the probability of the saturation of
the system, in particular for different values of the traffic
load.
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