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Abstract: The fast growth of the web of linked data raises new challsrigedistributed query processing. Different from traatiihl
federated databases, linked data sources cannot coopéifatsch other. Hence, sophisticated optimization teqies are necessary
for efficient query processing. In this paper, we formalize problem of Basic Graph Pattern (BGP) optimization forefeted
SPARQL queries over the Web of Linked Data. We define and aaalye characteristics of source selection for links basatits
BGP optimization. The classes of bound subject and objecicésted with bound predicates of triple patterns are fgstlito select
the set of relevant sources. Then links between linked datased to prune the relevant sources of triple pattern$ it FedBench
benchmark, we evaluate the performance of our approachuoésselection for FedBench queries. The results of theiatiah show
the feasibility of our approach.

Keywords: federated query processing, SPARQL, the Web of Data

1 Introduction In this paper, we focus oBasic Graph PatterfBGP)
optimization for federated SPARQL queries over the Web
of Linked Data. In SPARQL, a BGP is a set of triple

With the wide adoption of linked data principles, the patterns where a triple pattern is like an RDF triple except

World Wide Web has evolved from a global information that each of the subject, predicate and object may be

space of linked documents to one where both documentsoncrete (i.e. bound) or variable (i.e. unbound). Basic

and data are linked[J]. A large amount of structural data Graph Patterns are fundamental to SPARQL queries and
on the Web enable new types of applications which canother complex graph patterns can be constructed by BGP
aggregate data from different data sources and integratesing SPARQL logical operators(UNION, OPTIONAL).
fragmentary information from multiple sources to achieve

a more complete view. Answering queries across multipleListing 1: Example SPARQL query with one single BGP

distributed Linked Data sources is a key challenge forsg| ECT ?Drug WHERE{

developing this kind of applications. 1 ?Drug rdf:type dbpediaowl:Drug

Federated querying over the distributed data source@ ?y owl:sameAs ?Drug

is called virtual data integration User queries are }

decomposed into several sub-queries that are distributed

to autonomous data sources which execute these The problem we are going to tackle in this paper is

sub-queries and return the results which are integratethest explained by a simple example. Consider the BGP

locally. There are a high number of links in the Web of displayed in Listing1l which represents a BGP of a

Linked Data. Yet, so far, only little attention has been paid SPARQL query executed over RDF data describing the

to the effect of links between linked data on federatedlife science domain. Assume thag, D, andDs are three

querying. data sources over the Web of Linked Data, the first triple
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pattern is relevant t@; and D, and the second triple require predicates of triple patterns to be bound. SemWIQ
pattern is relevant toD3. Typically, the final query [3] requires all subjects of triple patterns to be variables
answers are obtained by the following steps: firstly, theand for each subject variable its type must be explicitly or
first triple pattern is respectively matched ba and D, implicitly defined. Additional information (another tripl
which respectively produce the result §tandS,, the  pattern or DL constraints) is needed to tell the type for the
second triple pattern is matched @z which produces subject of a triple pattern. It uses these additional
the result setSs; then, the final query result set S is information and extensive RDF statistics to decompose
generated by integrating these intermediate query resultdhe original user query. These requirements limit the
S= (S US$)NSs. If we have known that there are not variety of user queries.

links betweerD, andD3 by previous statistic information In other cases, users are required to provide additional
of D1, D, andDg3, we can get the inferenc& N S; = 0. information to determine the relevant data sources. For
Therefore, the remote requestdg is useless. We can get instance, 4] theoretically describes a solution called
the final query result set S only by joinirgy andSs. Distributed SPARQL for distributed SPARQL query on

This paper is an extension of our work presented inthe top of the Sesame RDF repository. Users are required
[26]. In this paper, we presented the link-aware approacho determine which SPARQL endpoint the sub-queries
for source selection in more detail. Besides, we also studphould be sent to by the GRAPH graph pattern. The
the join reordering of sub-queries and the way to executeassociation between graph names and respective
distributed join operations in federated SPARQL queriesSPARQL endpoints at which they reside is explicitly
over the Web of Linked Data. described in a configuration file. The W3C SPARQL

Our main contribution presented in this paper isworking group has defined a federation extension for
fourfold. (1)We formalize the problem of Basic Graph SPARQL 1.1 p]. However, remote SPARQL queries
Pattern (BGP) optimization for federated SPARQL require the explicit notion of endpoint URIs. The
queries over the Web of Linked Data. (2)We propose anrequirement of additional information imposes further
efficient approach of source selection. (3)We design arburden on the user. On the other hand, the proposed
efficient approach for executing distributed join approach hardly imposes any restrictions on user queries.
operations. (4)We perform comprehensive simulation Recently, several attempts have been made to do
study based on FedBench benchmark to evaluate ousource selection without local statistics. FedXdsks all
approaches. known data sources by SPARQL ASK query form

The remainder of this paper is structured as follows.whether they contain matched data for each triple pattern
In Section 2 we review related work. Section 3 we presentpresented in a user query. FedSeartH] is based on
the background knowledge. Section 4 describes thdedX and extends it with sophisticated static optimization
statistical model and the approach of source selectiorstrategies. If the amount of known data sources is very
based on it. The execution of join operations is presentedarge(it is common in an open setting), the query
in Section 5. An evaluation of our approach is given in performance may leave much to be desired. SPLENDID
Section 6. Finally, we conclude and discuss future[7] relies on the VOID P2 descriptions existing in
directions in Section 7. remote data sources. However, a VOID description is not

an integral part of Linked Data principle8]|

The link-aware source selection approach was first

2 Related Works proposed by Stuckenschmid| They use predicate path
index hierarchies of datasets for source selection. This
approach requires predicates of triple patterns to be
bounded, and then limit the variety of user queries.
Another link-aware source selection approach is
presented in13]. It decomposes original queries based on
) general statistical models which form a local web of
2.1 Source Selection linked classes. Its statistical models are class-baseti, an

the statistical models presented in this paper is
DARQ [1] extends the popular query processor Jena ARQproperty-based which can flexibly make a compromise
to an engine for federated SPARQL queries. It requiresbetween answer completeness and the time performance
users to explicitly supply a configuration file which of query engines. Acosta et a4 present ANAPSID, an
enables the query engine to decompose a query intadaptive query engine that adapts query execution
sub-queries and optimize joins based on predicateschedulers to SPARQL endpoints data availability and
selectivity. Stuckenschmid®] presents an index structure run-time conditions. Montoya et al.2p] extend the
called source index hierarchy which is used to determineANAPSID framework by an approach for link-aware
information sources that contain instances of a particulasource selection. Yet, this extension is based on evalyatin
schema path. Given a predicate path in a dataset, an indexamespaces and sending ASK queries to data sources at
hierarchy is constructed, where the source index of theuntime. HiBISCuS 23] is an efficient hypergraph based
indexed path is the root element. Both two approachesource selection approach for SPARQL query federation

Related work can be divided into two main categories: (a)
source selection (b) query optimization.
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over multiple SPARQL endpoints. It identifies links c /@\
between linked data based on authorities of URIs. URIs “ = &

of classes defined by same data sources generally have e e éiss%})
the same authorities. Compared to our approach, T T
HIiBISCuS is more generic and usually over-estimate the i
set of sources capable for answering a query. e @ é‘;) §5>

(@) (b)

2.2 Query Optimization

Research on query optimization has a long history in the
area of database systems. Concepts in these research argdg. 1: Undirected connected gragh € ¢ (a) and DAG
have been adopted to optimize queries on local RDFd, for Listing 2 (b)
stores. OptARQ15] reorders triple patterns in SPARQL
queries based on their selectivity. Hartip] adapted the
query graph model (QGM) for SQL queries to represent
SPARQL queries. Based on SQGMs, SPARQL queries?, g and g are disconnected. A graph g is an ordered
are rewritten for optimization purpose. Due to the triple pair (V,E), where V is a set of distinct triple patterns and
nature of RDF data, optimization for queries on local E is a set of distinct triple pattern pairs. For each pair
repositories has also focused on the use of specializey;,v;) € E, v € V,v; € V, v and v, share at least one
indices to accelerate the join operations, €1§].[ variable.

In [1] Quilitz et.al have adopted some of existing
techniques from relational systems to federated SPARQL In Figure 1(a) we display the undirected connected
queries. They present a cost based optimization for joingraphg; € ¢ for the BGP in Listing2. As the BGP triple
ordering. However, their estimation on the result size ofpatterns in Listing2 are (transitively) joined, the graph G
joins is inaccurate by simply setting the selectivity facto has only one component, thug contains only the
for the join attributes to a constant. Because unboundtonnected graply;. Note, that the numbers used for the
queries generally returning a large result set, other joinnodes ofg; in Figure1(a) correspond to the numbers of
implementations are proposed as an alternative to locathe triple patterns of the BGP in Listirg)
nested-loop implementation of joins, such as pipeline join  For a BGP B, links between linked data obviously do
[18] and semijoin #]. While pipeline may produce too not affect the source selection of pairwise disconnected
many concurrent access to remote data sources, semijographs (gi,g;) € ¢; the execution order of pairwise
tends to lead to program errors due to long query stringsdisconnected graph&gi,gj) € ¢ also does not affect
In this paper, we propose a novel way, called range joinquery performance as the overall result set corresponds to
to execute join operations. By a factor, it can reach athe Cartesian product of the result sets ¢prand g; .
compromise between the amount of network traffic Therefore, we can reduce the optimization problem for B
sending to and downloading from remote data sources. to the optimization of eacly € ¢. In the following, we

focus on the optimization of connected graghs ¥ .

3 PRELIMINARY Definition 2.An execution plan pfor g € ¢ is a well
defined order for the nodes of g. The séty is the

For a better understanding, we develop the theory byexecution plan space of g ¢. An execution plan
means of the example BGP displayed in Listih(.e. the Py € Pgis an element of the space.

WHERE clause of the FedBench Benchmark [6] Life ,
Science Query 5). An execution planpg € &4 can be represented as a

directed acyclic graph (DAG). We defirg, as the set of
Listing 2: Example SPARQL query with one single BGP directed acyclic graphs for the execution pIansQﬁ,..
2drug rdf:type drugbank:drugs Each DAG dy € 74 represents one or more execution

) : lanspy of an undirected connected grapk ¢ .
2drug drugbank:keggCompoundid ?keggDrug”a"sPy .
" keggDrugg bio2rdf :gSrI 2 IEeggUrI 99 g In Figure1(b)we show the DAG corresponding to the

?drug drugbank:genericName ?erigBankNanfé(e(.:Ution planpg WhiCh executes the BGP of .Listin’g
2chebiDrug dc: title 2?drugBankName op-down, i.e. the triple patterns are evaluated in the same

; : L : order as they are listed in Listing For any two nodes
?chebibDrug bio2rdf:image ?chebilmage (Vi,vj) € dg, there is a directed path betwegrandy;, if
A BGP in SPARQL is defined as follows: (1) the triple patterns corresponding % and v; are
joined and (2)v; is executed first in the execution plan.
Definition 1.A BGP is represented to be a graph G as a setThere is a clear relationship between the s@f of
¢ of undirected connected graphs. For each @it g;) € execution planspg and the setZy of directed acyclic
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Table 1: Statistics for single data source
{LinkedMDB, ChEBI, DBPedia, Drugbank, Geonam

es, Jamendo, KECG NYTimes, SWDogFood} No. | Field Descriptions
1 predicate | a predicate in a data source
2 domain a set of classes (the domain of the predicate)
3 range a set of classes (the range of the predicate])

{Drugbank} {Drugbank}
Table 2: Links in one single data source
{ChEBI, KEGG} @ §> {Jamendo, KEGG, SWDogFood}
{Cth[}

o. | Field Descriptions
linkType the type of a link
startPredicate| the start predicate
endPredicate | the end predicate
intersection the intersection of the class set

INFRIEN N

@ Table 3: Links between data sources
{Drugbank}

AN,

{Drugbank} éf {Drugbank}
{ChEBI, KEGG} @ g,:_)) {KEGG}
{ChEBT} 4 Source Selection

@/ Given a graphg € ¢, the matched data of can be

(b) obtained by the following steps. Firstly, the SRGis
constructed using previous statistics of known data
sources. Then, triple patterns are respectively matched
over their relevant data sources; the matched data for one
single triple pattern is the union of all matched data from
its relevant data sources. Finally, all matched data oletrip
patterns are joined into the matched datagolocally.
Because that join operations are executed on the local

graphsdg. More formally, we can state the following Mediator, this process generally needs a large number of
function f : pg — dgy that is injective and not surjective. network traffic and remote requests. _
Thus, an execution plapg can be mapped uniquely to a Source selection and distributed join operations are

DAG dg, whereas a DAGly is an abstraction for one or WO key factors affecting the number of network traffic
more execution plangg. and remote requests. The approach for executing

distributed join operations is presented in Section 5. Our
approach for source selection includes two stages. The
first stage has the aim of selecting relevant data sources
Definition 3.If each node (triple pattern) in the graply & for each single triple pattern, i.e. determining data sesirc
4 is attached a set of its relevant data sources, the newthat may contain matched data of one single triple pattern.
graph is called the Source Relevance Graph (SRG)pf d The second stage has the aim of selecting relevant data
written as $dg). sources for the whole BGP, i.e. excluding relevant data
sources of triple patterns that potentially have no
contributions for the final query answers.

We define”(g) as the set of source relevance graphs
for the execution plans inZg; M(s(dg)) as the set
produced by matching triple patterns on their respectived.1 Statistics
relevant data sources and joining the matched data locally.
The Figure2(a) shows the SRG ofly shown in Figure The need for customized summary statistics of RDF data
1(b). For the sake of simplicity, we use predicate basedfor our purpose of BGP optimization is motivated by at
approach to determine relevant data sources of tripldeast the following two arguments. Firstly, the relevant
patterns where FedBench datasets are taken as the setddta source set of one single triple pattern is selected, i.e
known data sources. If the bound predicate of a tripleconstructing.”(g) of g € ¢. Secondly, the SRGs of
pattern is used by a data source, then the triple pattern ang{dy) € .#(g) are pruned. For this purpose, we build three
the data source are relevant. kinds of statistics for each known data source.

o. | Field Descriptions

linkType the type of a link

startPredicate| the start predicate

endPredicate | the end predicate

intersection the intersection of the class set

startDS the data source of the start point of the lirj
endDS the data source of the end point of the lin|

=~

ISFNESFMEINI NP2

Fig. 2: The SRGu € % of dg shown in Figurel(b) (a) and
The Pruning Result af € % (b)
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In Table 1 we show the statistics for single data to the matched data @f. In Algorithm 1, we provide the
source. Firstly, the property sBtof a dataset is collected. pseudo-code for the core optimization algorithm. The
Then, for each propertg € P, we compute its domain D algorithm tests for each relevant data source of a triple
and range R: (1)The subject pfis a URLI. Its classes are pattern whether it has contributions to the results that the
generally defined in the data source hosting it. Wetriple pattern join with other triple patterns (line 1-2@);
compute the domain ofp by the SPARQL query: all test results for a relevant data source of a triple patter
SELCET different(?d) WHERE?s p ?0. ?s rdf:itype 2d  are false then removing the data source from the relevant
(2)The object ofp is a URI or Literal. Its classes are data source set of the triple pattern (line 16-18). If there
defined in the data source hosting it or other data sourcesre no other triple patterns can produce results by joining
The range ofp is computed by the SPARQL query: with a triple pattern on a data source, then the data source
SELCET different(?r) WHERE?s p ?0. OPTIONAK?0 is excluded from the relevant data source set of the triple
rdf:type ?¢}. If the object ofp is a URI and its classes pattern (21-23). Note that if the relevant data source set of
are not defined by the current data source, the its classeany nodes ins(dg) becomes empty after pruning then
are computed by dereferencing the URI. (3) URIs whichremoving s(dg) from .#;. The algorithm returns the
classes not explicitly defined by rdfitype are assignedpruneds(dg) as the result.
with the common class rdfs:Resource. For literals, the
more specific the classes (data types) are divided, the
more accurate the source selection will be. In this paper,
we just assign literals with the common class rdfs:Literal.
Finally, a predicate tuple Dp,R is constructed for each
peP.

Algorithm 1 Prune the Source Relevance Graphdfug)

. . of py € Z#
For each pair((D1,p1,R1), (D2, p2,R2)), if one of Pg 9
2|D1NDy| 2|D1NRy| 2|R;NDy| 1 s(dg) + GenerateDAGp,)
DD, = % Di+R,| z a, IRy [+[D] > o and 2: s (dg) + Copy(s(dy))
‘ZR‘ilf‘gZ“ > a is true, a link with a corresponding type is 3: for i= 1t°NS'Ze€(©g)[‘]j°
! . Vi < Nol i
built, where a is a positive real number denoting the 5. gaiset ggemelevammm)

overlap ratio of two sets. The information of links in one 6:  E« OutgoingEdges)

single data source and links between data sources i%? fo’gﬁg';sesrﬁiagse‘“o

respectively shown in Tab2and Table3. 9: for eache € E do
10: vj + TargetNodée)
%%Z tpLink « GetLinkTypée)
. . endSek— GetRelevantSources)
4.2 Source Selection Appl’OaCh 13: ess= GetDataSourcesByLiriknd Seft pLink ss)
14: VistSourcefrj,esg
Given a BGP B, we first select relevant data sources ford5: endTemp— endTemp- ess
each triple pattern. The only available information fosthi 77: e Temp. & then
process is the bound parts (non-variable) of triple1s: RemoveRelevantSoutsddy), v, s9
patterns. According to the statistical model shown in 19; end if
Tablel, we tackle the bound subjects and objects of trlple21' o e for

patterns as follows: (1)For a URI, its classes can be22: for eachv e Nodess (dy)) do

obtained by directly dereferencing it. If the classes of the23:  RemoveNotVistedSourges

URI can not be obtained, rdfs:Resource is the defaulzg' fe“tﬂrfrﬁ”s(dg)

one.(2)For a Literal, we assign it with a common class

rdfs:Literal. Next, the set of relevant data source is

determined by matching these information on statistics of

known data sources.

Assume that : (s, pt,?0;) is a triple pattern with a

bound subject and predica,is the set of classes &f a In Figure 2(b) we show the pruned(dy) € . (g)

tuple pattern up = (S,p,?0) is constructed. The baseq on links between FedBench datasets accprding to

predicate tupleu = (D,p,R) of DS matchesup if and  algorithm1. For the edge (1,2) and (1,4), a tyS&link

only if pr = pand %Dﬂé\‘ > g. The factora has the same only exists in Drugbank with respect to relevant data
sources of node 1, 2 and 4. Hence, only Drugbank is

meaning presented above subsectionuif andu are . sidered to be relevant for node 1. For the edge (4,5),

matched then andDSare relevant. Drugbank has the typ®O links only towards KEGG.

Therefore, Jamendo and SWDogFood are removed from

the relevant data source set of the noddévBs(dy)) is

equal to M(s (dg)) However, the network traffic

Given the set&”(g) of g € ¥, eachs(dy) € .7(qg) is concernlng\/l( (dg)) is far more than the one concerning
pruned by removing potentially having no contributions M(s (dg))

4.3 Pruning Algorithm
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5 Optimization for Join Operations constraints to remote SPARQL endpoints, i.e., as a
distributed semijoin, it is possible to reduce the number of
Query optimization is a fundamental and crucial subtaskrequests and network traffic. The range of a join variable
of query execution in database management systemsinding set is divided into some equal-width section. Not
While query optimization for a single database focus onall bound values of the join variable but the breakpoints of
join reordering of triple patterns, query optimization in the range are used to construct value constraints. The
distributed environments is a more sophisticated task. Th@verall idea of this optimization is to provide a way to
optimization goal is to find the execution plan which is reach a compromise between the amount of network
expected to return the result with minimum remote traffic sending to and downloading from remote data

requests and network traffic. sources. We propose thange jointechnique and discuss
Given a set”’(g) and for eacls(dg) € .”(g) has been  the technical insights below.
pruned, the matched da¥(g) of g is the union oM (s(dy) In the following, we illustrate range join processing

for all s(dg) € .(9). The aim of the optimization for join  for the join triple patternt; : (s p1 ?201) and
operations is to find the optimal € #¢ — dgto compute  t, : (20, pp ?0,). For the examplé; is first executed and

theM(s(dg) with minimum cost w.r.t. network traffic. the bound value sequence ab;?is B = (by, by, ..., by)
whereb; < by < ... < by; the set B is divided into m

_ _ sections: (o1, .., by/m), (Br/ms -+ P2n/m)se -+

5.1 Join Reordering (bm-1)n/m;---,bn)); the value constraints ot, are

N L . constructed agh; <?0; < bn/m) OR (bn/m <?0; < b2n/m)
To minimize costs of network traffic, if a group of triple o~ OR (Bm-1n/m <?01 < by); Finally, t, attached

patterns share a set of relevant data sources then theggih the value constraints is sent to its relevant data
triple patterns should be sent as a whole to the respectivg, rces.

relevant data sources, i.e. the idea of éxelusive groups Obviously, the range join is equal to the original

presented ing]. Hence, the task for join reordering is to implementation of semijoind] whenm = 1 and is equal
find the optimal order for joining a set of groups of triple {4 the pipeline join 18 whenm = n. Therefore, we can
patterns. adjust the value of m to reach a compromise between the
amount of network traffic sending to and downloading
from remote data sources. The selection of the optimal
value of m is a little difficult. It needs the information of
GS« {051,0%,-..0%} data distribution in data sources. For our setup, we just set

orderedGS— @
while GS# @ do the value of m to 10.

1
2:
3:
4:  mincost— 4
5.
6
7
8

Algorithm 2 Join Order Optimization

for eachgse GSdo
cost«+ joinCost(gs preGS

if cost< mincostthen 6 EXPERIMENTAL STUDY

. temp« gs
9: mincost« cost
%8: end if We have developed a prototype system(LDIWS

: end for i H
12°  orderedGs. appendorderedGStemp |mpler_nent|ng the proposed apprqaches and conducted an
13:  GS« GS- {temp experimental study to empirically analyze the
14: end while effectiveness of it compared with several existing

15: return orderedGS

federated SPARQL query systems.
Our evaluation is based on FedBefi&. In contrast
to other SPARQL benchmarki€}, 20], FedBench focus
on testing and analyzing the performancefederated
pauery processing strategies on semantic data. It includes
two subsets of data sources in the Linked Data cloud:

In Algorithm 2, we provide the pseudo-code for the
join order optimization algorithm. The algorithm is a
variation of the variable counting technique proposed i
[12]. It determines the group of triple patterns with lowest . : ) .
cost from the remaining items (line 4-11) and appends itCrOSS Domain(DBpedia, NYTimes, LinkedMDB,

: c - .~ _Jamendo, GeoNames) and Life Sciences(KEGG
to the tail of the ordered list (line 12). For cost estimation ' . ; o
(ine 6) the number of free variables is counted Drugbank, ChEBI, DBpedia). For each data set, it defines

considering already bound variables, i.e., the variable even queries. The overview of the data sets is shown in

that are bound through a join argument that is already ab_Ieé}(a)in terms of num.ber of triples(#Triples), size Of.
ordered in the ordered list statistical models and time taken to create them in

hh:mm:ss. Queries are shown in Taldlgh) in terms of

3 LDMS is available as Java source

5.2 Join Execution code(eclipse  project) from the SVN  repository:
https://svn.code.sf.net/p/semwldms/code/LDMS/trunk

By computing the joins through buffering the obtained 4 FedBench can be downloaded at

variable binding sets and sends them in a batch as valukttp://code.google.com/p/fbench/
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Table 4: FedBench datasets and queries used for théable 5: Comparison of precision (%) for source selection
evaluation.

Query | DARQ | SPLENDID | FedX | ANAPSID | HBISCuUS | LDMS
CD1 10 10 30 10 75.6 75.6
CD2 33.7 100 100 33.7 100 100
(a) CD3 25 100 125 33 75.6 100
co4 16.7 100 156 125 50 100
Dataset #Triples  SM Size  SM Time CD5 333 100 125 25 100 100
cD6 333 556 556 125 75.6 100
- co7 333 25 3.125 375 50 100
DBpedia 43.6M 332KB 01:01:18 st 100 100 100 100 100 100
NYTimes 335k 10KB 00:00:27 Ls2 10 10 10 125 25 50
LinkedMDB 6.15M 36KB 00:07:36 ::2431 gig 183 11%-53 12355 1950 183
Jamendo 1.05M 3KB 00:00:12 LS5 265 125 125 162 100 100
Geo Names 108M 7KB 02:04:47 LS6 25 12,5 125 36.6 75.6 100
SW DogFood 104k 64KB 00:00:30 /';57 22573 67759 3317757 23579 3%30;)7 ;‘029
KEGG 1.09M 4KB 00:01:30 Vg - - - - - -
Drugbank 767k 19KB 00:01:12
ChEBI 7.33M 3KB 00:04:12
100
(b) _J SPLENDID 7
Query #BGPs  #Patterns  #Results Fedx
Il LDMS
CD1 2 3 90 104 o -
co2 1 3 1 M 7 -
cp3 1 5 2 _ 9 7 Y
cD4 1 5 1 3 ? ? ?
cbs 1 4 2 s 7 7 7
coe6 1 4 11 £ / g g g
cb7 1 4 1 Ll (Rl e 7 Ao AL
st 2 2 1159 o Y AT s 1110 .
A A ala ‘W VY
LS2 2 3 333 72 I W7 W e AR A B
111 A A AN
Ls3 1 5 9054 AAAAR A AR
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Fig. 3: The Comparison of Time Performance with other
state-of-the-art Federated SPARQL Query Systems

number of BGPs and patterns in the WHERE clause and
size of results.

The data server was set up using OpenRDF Sesame Table5 shows the precision for FedBench queries. We
framework which provides a query service (SPRAQL observe an avg. precision of 94.69% for LDMS. It means
endpoint) for each data source. Benchmark datasetthatonly 5.31% useless remote requests during answering
simulated on the same physical host and weredueries by LDMS. The high precision shows that our
respectively loaded as a single repository with the type ofapproach is very well suited to prune the space of
Sesame Native Store. The prototype system(i.e. tesgxecution plans for all queries. LDMS and HiBISCuS
client) was on a Windows XP with two Dual-Core Intel take links over the Web of Linked Data into account and
Xeon processors (2.8 GHz) and 3GB memory. The servefchieve higher precisions than other systems not doing
was running a 64 Bit Debian Linux Operation System this task. The evaluation results also show that links
with two Intel Xeon CPU E7530 processors (each with between data are important factors for source selection
twelve cores at 2 GHz), 32 GB main memory. The When tackling distributed queries on triple-style datg (e.
statistical models for data sources were loaded intdinked data).
memory when starting the system.

6.2 Evaluation of Execution Time
6.1 Evaluation of Source Selection

In this section, we evaluate the time performance of
First, we show the result of evaluation of source selectionLDMS that implement approaches presented in this paper,
Assume thaN andN, respectively are the total number of and compare with SPLENDID and FedX. Besides of one
sources in the data and the number of sources that arwarm execution, these three systems execute all queries
actually accessed for answering a query, we de%‘-hés five times and the average time is used for comparisons.
the precision for source selection. The precision measure$he difference in these three systems are technologies of
the quality of source selection. In other words, thesource selection and join optimization. FedX uses a
precision gives an idea that how much costs we take foruntime source selection and heuristics to reordering join
answering a query when not losing the recall of results.operations. Both SPLENDID and LDMS use statistical
The source selection factar was set to 1, i.e. a link information to select relevant sources for triple patterns
between two predicate tuples is constructed when thend optimize query plans. While SPLENDID implements
corresponding two sets are equal. both nested loops join and pipeline join, The technologies
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used by FedX for distributed join operations depend onsource selection. Due to the nature of the linked data, the
bound join. LDMS reorders joins based on the result oflink relationship between resources and between data
cardinality estimation of sub-queries and executes joinsources is very important in the query processing.
operations in the way of range join. Besides, distribution join operations are in the center
The results of the experiment is shown in Fig®&e for most of query engines for distributed data. The range
From the Figure3, we can see that the time performance join presented in this paper is a novel approach and the
for FedX and LDMS is comparable for the query LS3. It experiments show its effectiveness.
is clear that this query has more results than other queries
, and the cost of query decomposition account for very
small proportion of the overall time cost. For CD6, LS3 A
and LS5, SPLENDID encounters connection errors due to
opening too many connections to data sources. _ . . . .
SPLENDID produces query plans based on pre_staﬂsticgrms work is supported by the National Natural Science

and prunes them using additional ASK queries. It leads tg_oundation of China (Project No. 61370137), the
a lower time performance for some queries, i.e. CD1_5’Internat|onaI Corporation Project of Beijing Institute of
CD7, LS1-2, LS4. The lack of FedX is that it may Technology (No. 3070012221404) and the 111 Project of

generate many useless execution plans for some querieB€liing Institute of Technology.
In some query plans when evaluating query LS6, the first! Ne authors are grateful to .the anonymous referee for a
sub-query evaluated has non-empty result set. Many:areful checkmg of the details and for helpful comments
intermediate results transferred to local federator has ndhatimproved this paper.
contributions to the final query results because the join
operation between them and the next sub-query produces
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