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Abstract: The main result of this work is a new criterion for the fornoatiof good clusters in a graph. This criterion uses a new
dynamical invariant, the performance of a clustering, dfaracterizes the quality of the formation of clusters. Wave that the
growth of the dynamical invariant, the network topologieatropy, has the effect of worsening the quality of a clustgrin a process

of cluster formation by the successive removal of edgesei@éexamples of clustering on the same network are prasémtompare
the behavior of other parameters such as network topologitaopy, conductance, coefficient of clustering and penénce of a
clustering with the number of edges in a process of clugidrnsuccessive removal.
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This paper is dedicated to the memory of Professordevelopment of theoretical methods is of great
José Sousa Ramos. importance. The development of useful computational
methods to assess the quality of connectivity, efficiency in
complex networks is a goal of great interest. Graph
topology can be described by a wide variety of
parameters, some of which are discussed here. A complex
network is a dynamical system and entropy is, perhaps,
4he most important numerical quantity that measures the

complexity of a dynamical system. In 1948 &tZ],
science. For example, at the molecular level the structur&pannon established one entropy definition based on

of DNA sequences and proteins spacial structure may bgopapijities. In 1988 at 17, Milnor and Thurston
descnbe_d in terms of graphs and networks. Social an eveloped a concept of topological entropy with the
economic agents organize themselves as complekneading theory and lately J. Sousa Ramos and his
network structures. Traffic flow and communication collaborators worked this notion, based on symbolic
systems, such as internet and telephone webs are al§Ramics, see for exampled][ [5], [6], [18] and [19].
described by complex networks. In the r!atural world We There are several concepts of network entropy, 46k [
have the neural networks and the ecological food webs agye il use the one based on symbolic dynamics, as
examples of large complex networks. defined in Sectiod. Symbolic dynamics is a fundamental

A network may be defined in graph theory as a set ofiyq| ayajlable to describe complicated time evolution of a
nodes or vertices and the edges or lines between themy, 4qtic dynamical system.

There are many different methods to identify the edges

and vertices, depending on the type of network you want  The study of networks may be addressed in two main
to build. Unfortunately, the use of an experimental approaches. One is the behavior in each node (local
method for the revaluation of the whole network is very dynamics), see5] and [7], and the other is the topology
expensive in terms of time and resources; thus theof the network (global dynamics). In previous works, see

1 Introduction and motivation

Complex networks are present in several areas such
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[6] and [8], the authors studied some parameters thatverticesv; and v;. We will only consider the case of

characterize the topology of the network, the clusteringundirected graphs, that means that the efgg is the

coefficient, the conductance, the synchronization intervasame as the eddg,i). N is called the order of the graph.

for coupled systems and the performance of a clusteringfFor a graph withN vertices, the maximum cardinality of

In this paper we relate these invariants with the g(G)is (’;) — w If the graphG is not weighted, the

complexity of the systems, using the topological entropyadjacency matriA = A(G) = (aj;) is defined as follows,

defined for shifts of finite type associated with graphs. We

define complete clustered network, denoted by CCN, that o { 1, if vi andv; are connected

is, networks in which each cluster is a complete graph and 17 0, if vj andv;j are not connected

we emphasize the effect of clusters formation for this

special type of network in the network topological As the graphis not directed, then = aj and the matrix

entropy. A(G) is symmetric. The degree of a nodes the number
The layout of this paper is as follows. In Sectidwe  of edges incident on it and is denotedipythat is,

present some preliminaries notions, such as the adjacency N

matrix of a graph, a clustering of a graph, a complete K = Z ai

clustered network and the respective construction process = I’

by successive removal. In Secti@nare presented some

spectral and dynamical invariants: the clusteringDefinition 1. A clustering C= {C;,C,,...,Ck} of the

coefficient, the conductance, the network topologicalgraph G= (V,E) is a pairwise disjoint collection of

entropy and the performance of a clustering, which will k < N subsets of the vertex setV, whehglci =V. Each

be used to characterize the dynamical behavior ofG; is called a cluster.

networks. In Sectiort we obtain explicitly formulas to ) , ,

compute the conductance of a complete graph and to FOr €xample, in the case of genetic algorithn£g] [

compute the performance of a clustering. Thedescnt_)es an alternative method of construction of the

monotonicity of the network topological entropy in Clustering o ,

relation to the construction process by successive removal A clusterGi is identified with the induced subgraph of

is proved. We conclude also that, the value of the networkS: thatis, the graplc, = (Ci,E(Ci)). For each clustering

topological entropy does not depend on the number of = {C1.C2,...C}, the set of intracluster edges is the

edges but on which edges are removed, i.e., depends dflion of sel:cs of edgest(G) and is defined by

the network topology. Using these results, we prove alntra(C) = U,E(C). The set of intercluster edges,

criterion for the construction of a good clustering. In INter(C), is the complement, i&(G), of Intra(C), that is,

Section5 we present numerical simulations that illustrate INt€r(C) = E(G)\Intra(C), is the set of edges that

the obtained results. We construct complete clusteregonnect different clusters. The cardmallty of these sets i

networks by successive removal, starting with a completgienoted by the correspondent lowercasga(C) and

graph with 15 nodes and simulate the formation of INter(C), respectively.

clusters in three different cases: two, three, and fivepefinition 2. A complete clustered network, denoted by
clusters. We observe the behavior of the parametergcy is a network with a clustering € {C1,Cy, ...C}

conductance, coefficient of a clustering, the performancg nere each induced subgraphcG= (C,E(G)) is a
of a clustering and network topological entropy, in this complete graph. ’

process of clustering.
Some authors, see for examplg and [13], call it a
cligue, meaning a set of pairwise adjacent vertices, i.e.,
2 Preliminary concepts the induced graph is complete with all possible edges. A
clique is considered the perfect cluster model and
In this section, we introduce some notions and basicmethods to identify large cliques were motivated by
results on graphs and discrete dynamical systemssociological applications, se&][ In social networks it is
Mathematically, networks are described by graphsassociated with the notion of a cohesive group that is
(directed or undirected) and the theory of dynamicalidentified with the following properties: familiarity and
networks is a combination of graph theory and nonlinearreachability among members, and robustness of the
dynamics. From the point of view of dynamical systems, subgroup. Clearly, a clique is ideal with respect to all of
we have a global dynamical system emerging from thethese requirements since it induces a subgraph in which:
interactions between the local dynamics of the individualeach vertex has maximum degree, any pair of members
elements. The tool of graph theory allows us to analyzehas distance one between them and the vertex
the coupling structure between them, st&g connectivity is maximal.
A graph G is an ordered paiG = (V,E), where The focus of this paper is on the behavior of some
V =V(G) is a nonempty set dfl vertices or nodeg and  graph invariants in the formation of CCN. In this work we
E=E(G) cV(G) xV(G) is a set ofmg pairs of vertices,  will pay special attention to a particular type of clusterin
&j = (i, ), that are called edges or links, that connect twoformation.
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Definition 3. A construction of a CCN by successive 3.2 Conductance
removal is a process in which, starting with a complete
graph G = (V,E), removing edges successively, a Bollobas in P] has introduced the graph-theoretic
clustering C= {C;,Cy,...,C¢} is achieved, where the conceptof conductance, using the concept of conductance
clusters G, with 1 <i < k, are complete graphs and of a random walk from Jerrum and Sinclair, s&&][ This
inter(C) = 0. guantity should measure the ability to go from a small
subset of vertices to its complementary. The conductance
should detect the existence of funnels in the graph, i.e.,
3 Spectral and dynamical invariants subsets from which is hard to leave. This is particularly
important in the identification of a good clustering
This section is devoted to the presentation of thebecause they should have the property of flowing well
dynamical and spectral invariants: the clusteringwithin and poorly flowing out. There are several
coefficient, the conductance, the network topologicaldefinitions of conductance of a graph, ség flepending
entropy and the performance of a clustering, which will on the type of graphs (directed, weighed) and on the used
be used to characterize the dynamics of networks. weigh.
In this paper we shall use the following definition of
conductance, since we use undirected and non weighed

3.1 Clustering coefficient graphs,
One aspect that characterizes a network is the global . E(U,V\U)
clustering coefficient. This parameter characterizes how ®(G) = min min{[Ex(U)],|[Ex(V\U)|} (3)

densely clustered the edges in a network are. Clustering

roughly means that, if the vertexis connected to the This definition, applied to a finite graph, should detect the
vertex j and the vertex with the vertexr then with high  cut of Vv, for which the number of edges going through is
probability i is also connected to. For a graph, the minimal relative to the size df or its complementary.
clustering coefficientc; of a vertexv; is given by the

proportion of edges between the vertices within its

neighborhood divided by the number of edges that could3.3 Network topological entropy

possibly exist between them. Beirg the degree of a

vertexv; and denoting byN; = {v; € V : g; € E} the  Using results of symbolic dynamics theory, it is defined
neighborhood of vertex;, then one can define, se2,  the network topological entropy, which incorporate the
the clustering coefficient; of a vertexv;, with degree important dynamical properties of the system. The

larger than one, by variation of network topological entropy with the
\{e- }| 2‘{9' }‘ parameters gives_us a finer distinction between. different
= J_k - ik (1) states of complexity. We start from a representation of the
(g) ki(ki —1) network in terms of its adjacency matrik= (&), where
) o the matrix elements are all non-negative to denote the
where|{ejc} | is the cardinality of the set of edges interaction strength between nodemnd j in the network.

The introduction of this concept requires a strict and long
construction, using tools of symbolic dynamics and
It is possible to calculate the clustering coefficient in algebraic graph theory, which is presented in the final
terms of the adjacency matrix, see2Z. If appendix.

A= A(G) = (ajj) is the adjacency matrix, the clustering The topological entropyop(X) of a shift dynamical

{Ejk € E; Vi, W € Ni}.

coefficient can be computed by system(X, o) over some finite alphabet is defined by
N N n
> Y ajajmami hop(X) = lim logtr (A"(X))
j=1m=1 n—o0 n
G kD (2)
and hyop(X) = 0 if X = 0, whereA(X) is the transition

The clustering coefficient of the network, se&],[ matrix of X, see [L6].
characterizes the global clustering coefficient and is just The Perron-Frobenius Theorem states thaf i a
the average of; over all vertices with degree larger than finite irreducible adjacency matrix such thag 0, thenA

one has a positive eigenvector, called the Perron eigenvector,
2 G with corresponding positive eigenvalue, called Perron
i,ki>1 . . N .
c= . value, which is both geometrically and algebraically
|Iq>11 simple, see 15]. In our context, if the adjacency matrix

A # O isirreducible and, is the Perron value o4, then

N
i 1 ’
If all vertices have degree larger than one, theng; iglc.. Mhop(X) = l0gAa,
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see [L5]. We calculate the topological entropy of the 4 Main results

associated dynamical system, which is equal to the _ _

logarithm of growth rate of the number of admissible In this section, we present the most important result of
words. If we have a network associated to a grgh this work: a criterion for the formation of good

which determine the shift spacé, we established the clusterings. The proof of this result relies on an explicit
next definition. formula for calculating the performance of a clustering,

and the monotonicity of the network topological entropy
Definition 4. The network topological entropy of the graph I relation to the construction process by successive

G is the quantity f3p(X), that is, removal, according with De3. _
The following result allow us an easy computation of
hrop(G) = hrop(X). the conductance of a complete graph and will be used in

the proof of Propositiod.

Lemmal. Let G= (V,E) be a complete graph with N
vertices. Then

3.4 Performance of a clustering

®(G) = (4)

SN+L_if Nis odd

{ ﬁ, if Nis even
2N-1)

The performance of a clustering should measure the
quality of each cluster as well as the cost of the clustering.
This bicriteria is based in a two-parameter definition of a Proof. According to Eg.8) and due to the fact that each
(a,€)-clustering, wherex should measure the quality of vertex ofG has degredl — 1, we have
the clusters ana@ the cost of such partition, that is, the .
ratio of the intercluster edges to the total of edges in the ~ ®(G) =min®(U), forU cV and|U| <N/2  (5)
graph. This concept dfa, €) — clusteringwas introduced |, hare
by Kannan in 14]. [E(U,V—-U)|

*U= TR o)
Definition 5. A partition C= {C;,C;, ...,C} of V is called !
an (a, ) — clustering of a graph G if and only if: for U C V, with [U| = k < N/2. Because each of the
vertices ofU have degre&l — 1, and is joined withiN — k
vertices oV — U, then

_|[EUV-U)| N-k

1. the conductance of each cluster is at least

?(G(C)) >a, foralli=1,...k

*U) kKN-1) ~ N-1
where GG;) = (G, E) is the induced subgraph of G
by the subset G- V; The minimum over alU C V, with |U| =k < N/2 of N—:'{
2. the fraction of intercluster edges to the total of edgesgives us the conductance Gf By Eq.({), we have
is at moste NI
’ >~ if N
inter (C) _ N-—k a0 IS even
<e. ®(G)=_min N=1= ,
e Ocken2i = AL if Nis odd

By this definition the clustering is good if it as desired.

maximizes a and minimizese. To accomplish both Consider a CCN with clustefs, 1 <i < k. Recalling
optimization problems is introduced in this paper athatGg = (G,E(G)) is the induced subgraph &, we
quantity by which it is possible to optimize both: denote byN; the number of vertices in eadd. As all
minimize € and simultaneously maximize. It will be clusters are complete graphs, the conductance of each
called the performance of a clustering. clusterC; is given by Eq.4), according to Lemma.

Proposition 1. Let G = (V,E) be a CCN such that
C = {C,Cy,...,C} is a clustering of G where each
cluster G has N vertices, respectively, with<i <k. Let

€ mg be the total number of edges in G. Then C is an
oy (a, &) — clustering of G with performance

1 grg Sa<i<kN(Ni = 1)
minlgigk (D (GCI)

Definition 6. For an (a, ) — clustering C, of a graph G,
define the performance of C by the ratio

RC:CY

Re = ; (6)

Note that, the quality of the clusterit@is as better as
Rc is smaller. where® (Gg, ) is given by Eq4).
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Proof. According that the numbem of edges of each
clusterG; is given bym = w then
__inter(C) _ mg—intra(C) _ Mg—Y1<i<kM
oM mg - mg

= 1— 5 Y1<i<kNi(N = 1),

(7)

Considering this numberand the number given by

a = min ®(Gq),
where® (Gg,) is given by Eq.4), then according to Des.
and Eqg.B), C is an (a,&) — clustering of G with
performancd: = £, given by Eq.6), as desired.

Proof. According to Def6, the clusteringC is better when
the performanc®&: is smaller. From Prof, we have

1- ﬁ Sa<i<kNi(Ni — 1)
minlgigk @ (GNi )

&
Re=— =

and in this quotient, the denominator is constant because
the clusteringC is fixed in all the construction process of
the CCN. The numerator depends on the number of inter
edges, for which we know, see Pr@pthat an amount of
inter edges implies an amount on the topological entropy.
Thus, if we decrease the number of inter edges we decrease
Rc and also the topological entropy, as desired.

As proved in the next result, the construction of a CCN 5 Numerical results and discussion

by successive removal, according to Befwill decrease
the value of the network topological entropy.

Proposition 2. If the graph G is obtained from the graph
G by a process of successive removal of edges, then

htop(G2) < hrop(Ga1).

Proof. Let A = (aj) and B = (bjj) be the adjacency
matrices of the graph&; and Gy, respectively. If the
graphG; is obtained from the grapt®;, removing one
edge, then the adjacency matiXxis obtained from the
adjacency matriA by replacing some entrgj = 1 by

bij = 0. If, in the process of successive removal, the graph

G has a certain number of edges less than the g@&aph
then the matrixA has the same number of entrigg =1
replaced by that same numbertmf = 0. As the matrixA

is symmetric, therB is also symmetric ant); = 0. So,
the matrixA is equal to the matriB plus some matrix
with non negative entries. For any powey we have
A" = B" +C, for some matrixC which entries are all non
negative. AsTr(C) > 0 andTr(A") = Tr(B") + Tr(C),
thenTr(A") > Tr(B"). As a consequence, we obtain for
all integern,

log tr (B")

n
log tr(A)>
n n

From Def4 follows thathiop(G1) > hiop(Gy).

We defined above the clustering coefficient, the

conductance, the network topological entropy and the
performance of a clustering. We intend to understand the
behavior of these parameters in the formation of a CCN,
constructed by successive removal, as established in
Def3. Our approach is the simulation of such a

construction and the observation of the evolution of these
dynamical and spectral parameters. We start from a
complete graph with 15 nodes and 105 edges and
simulate the formation of clusters in three different cases

i) CCN with 5 clusters, each one of them with 3 nodes;

if) CCN with 3 clusters, one with 4, one with 5 and the

other with 6 nodes;

iii) CCN with 2 clusters, one with 5 and the other with 10
nodes.

At each step of this construction we calculate all the
parameters under study. In our process of construction of
a clustering we just remove intercluster edges, keeping in
all clusters complete graphs, see Flg2.and3.

The results are drawn separately so that each image
has one of the parameters: performariRg ¢onductance
(¢), network topological entropytd@p.ent) and the
clustering coefficientd), evolving with the number of
edges. For casg, a CCN with 5 clusters, we observe in
Fig.4, that the evolution of parameters network
topological entropy, conductance and performance, with
the growth of the edges is increasing. The clustering
coefficient has a different behavior, it decreases from 1 to

Note that, this result says that the monotonicity of thea certain turning point, seeg], and then begins to
decreasing of the network topological entropy depends orglobally grow up to 1. This is due to the fact that, if the
the process of successive removal of edges. In fact, thgraphG is complete then the clustering coefficient 1,
value of the network topological entropy does not dependsee Eq4) of Lemmal. When G is disconnected the

on the number of edges, see Higthis value depends on

which edges are removed, as we will show in the nextclusters

section.

Theorem 1. Let G = (V,E) be a CCN, such that
C = {C1,Cy,...,C} is a clustering of G, constructed by

clustering coefficient is again = 1, since the obtained
are always complete. Concerning the
conductance, it is maximal and is given by Bj).when
the graphG is complete. WherG is disconnected the
conductance is zero. For the casgy and iii) the
observations are similar, see Figand6.

successive removal. Then, the Clustering C is as better, as The introduction of the concept of performance of a

smaller is the value of the network topological entropy.

clustering, made in this paper, allowed to quantify and

(@© 2015 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

: Spectral and Dynamical Invariants in englete...

J. L. Rocha et. al.

edge
edge

N
J#%Vn

W,
2l

<SSP

top. ent

<
NS i

AN
N3

\M i\

Wi

A

o7

A
1%

== e
o
=
S

>
¥
]
N

>

i
i
;ﬂnﬂrmMMmWWMMMMW
A '4 "/
AT

2
=i

7

X1 .‘n
2 7 X
R4

Fig. 1: Construction by successive removal of a clustering withustelrs.
Fig. 2: Construction by successive removal of a clustering withu3telrs.
Fig. 3: Construction by successive removal of a clustering withugtelrs.

clustering coefficientd) and network topological entropyd(p.ent) evolving with the number

2372
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Fig. 6: (PerformanceR), conductance), clustering coefficientd) and network topological entropya(p.ent) evolving with the number
of edges for CCN with 2 clusters.

compare different clusterings, establishing a certaindepends also on several features of the network topology.
hierarchy. The main result of this paper is the effect of theln Fig.7 we can see examples of graphs with the same
dynamical invariant, network topological entropy, in the number of edges (63) and the same number of vertices
performance of a clustering. The fact that the increase of15) but with different configurations and different
the network topological entropy decrease the performancaetworks topological entropies. In this case (from left to
of a clustering, in the process of successive removal, ighe rightin the Figr) h(G;) = 2.17514 h(Gy) = 2.27353

not altogether surprising, but as far as the authors ar@andh(Gz) = 2.31013 So, it remains an open problem to
aware, this result has never been formulated so far. Thetudy how the topology of the network determines the
increasing of the complexity of a system, characteristicnetwork topological entropy.

measured by the network topological entropy, announces

a certain disorder in the set of nodes. A good clustering

should be precisely the opposite: tidying up of the nodespcknowledgment

in well behaved and stable compartments.

Despite the monotonous decrease of the networkResearch partially sponsored by national funds through
topological entropy with the successive removal of edgesthe Fundacdo Nacional para a Ciéncia e Tecnologia,
we can be observed that the network topological entropyPortugal-FCT, under the projects PEst-OE/MAT/UI0006/
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2014, CEAUL, PEst-OE/MAT/UI0117/2014, CIMA-UE Every directed grapks, with its adjacency matrid,
and ISEL. describes a certain symbolic dynamical system, a shift of

finite typeXa = Xg.
If, instead of considering the forbidden blocks,

Appendix consider the blocks allowed, you can define the concept
of language. It is called the language &f the collection
B(X)

Consider a finite set of symbols, denoted.day which is .
called the alphabet. Often, the choice falls on the first B(X) = Un=0Bn(X),

natural numbers: whereBy(X) is the set of all blocks, of length that occur

o ={1,2,...,r} for some element oX, see [.6].
R We introduce a very useful result on the number of
A finite sequence of elements of is called a block, ora  Walks in graphs, see2f). Let G a graph onN vgrt.|ct<ra15
word and the set of bi-infinite sequencess (X);., , of with associated adjacency matr&x Then, the(i, j)

elements of7, denoted byZ, is called the fulle7-shift; ~ €ntry of A is the number ofk-walk from i to j. In
particular, the entries along the main diagonalASfare

7T — {x: (X)icy, 1% € o forallie Z}. the numbers of closddwalk§in G. _ N

As a consequence of this result to a shift of finite type
spaceXa = Xg, with A the adjacency matrix of directed
graph G, with the set of vertice% = {1,2,...,r}, the
following relationship is valid,

The shift mapo on the full shifte7? maps a poink to the

pointy = o(x) whoseith coordinate is; = Xi+1. If F is

a collection of blocks overs, we will think of as being

forbi%den blocks. Defin&r to be the subset of sequences P

in /% which do not contain any block iR. Any subset _ D

of the full shift 7% such thatX = Xg, for some familyF B ()] i;;l(a.,) ' ®

of forbidden blocks overr, is called a shift spack, or

simply shift. RemarkIn the case wherX is a full shift in an alphabet
o ) o ) ) </ of r symbols, follows thafBn(X)| = r".

Definition 7. A shift of finite type is a shift space that can

be described by a finite set of forbidden blocks. Since the entropy evaluates the complexity of a system,

hi finiti I hift of fini it is natural to introduce the concept of entropy, of a shift
This definition allows us to construct a shift of finite  g50ex a5 a rate of variation of the number of blocks of
type X, through a directed graph whose b|—|nf|n|te_engﬂm Bn(X), present in the languag&X).

sequences of vertices, connected by some edge, will ’

correspond to the elementsXf Definition 9. Let X be a shift space. The entropy<) over

Definition 8. Let A be the adjacency matrix of a graph G. the finite alphabety is defined by

The vertex shift spaceaX= Xg is the shift space with

alphabets = {1,2,...,r}, defined by h(X) = lim w,
n—oo n
Xn =X = {X: (X)icz, €% 1 =1,Vi€ Z}7 Since the trace of a square matrix is the sum of the
diagonal elements, this result shows that the number of
with k=X and j= Xj1. closed walks with lengtk, in G, is the trace of the power
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matrix A, tr(A¥), entropy can be defined through the

following expression,

h(X) = lim

n—o0

logtr (A"(X))
—

Using the above observation is valid the following

results.

Lemma 2.Let X be a full shiftin an alphabet of r symbols.

Then the entropy of X is given byX) = logr.

Lemma 3. Let A# 0 be a nonnegative matrix having a

By the previous equality, in the case of a shift
dynamical space, the topological entropy coincide with
the value of the entropy of the shift space , 24,[i.e.,

hrop(f) = h(X).

If we have a network associated to a graphwhich
determine the shift spac&, we will call network
topological entropy o6 to the quantityhiop(X), i.e.,

htop(G) = htop(X).

positive eigenvector v. Then the corresponding eigenvaludgkeferences

A is positive, and there are positive constangsand
such that,

r r
cA"< (ai))" < do A"
25

Hence if G is a graph whose adjacency matrix is A, then

h(Xg) =logA.

Proof. Considering E@, the inequalities are obtained. To
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