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Abstract: The main result of this work is a new criterion for the formation of good clusters in a graph. This criterion uses a new
dynamical invariant, the performance of a clustering, thatcharacterizes the quality of the formation of clusters. We prove that the
growth of the dynamical invariant, the network topologicalentropy, has the effect of worsening the quality of a clustering, in a process
of cluster formation by the successive removal of edges. Several examples of clustering on the same network are presented to compare
the behavior of other parameters such as network topological entropy, conductance, coefficient of clustering and performance of a
clustering with the number of edges in a process of clustering by successive removal.
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1 Introduction and motivation

Complex networks are present in several areas such as
physics, biology, economics, ecology and computer
science. For example, at the molecular level the structure
of DNA sequences and proteins spacial structure may be
described in terms of graphs and networks. Social and
economic agents organize themselves as complex
network structures. Traffic flow and communication
systems, such as internet and telephone webs are also
described by complex networks. In the natural world we
have the neural networks and the ecological food webs as
examples of large complex networks.

A network may be defined in graph theory as a set of
nodes or vertices and the edges or lines between them.
There are many different methods to identify the edges
and vertices, depending on the type of network you want
to build. Unfortunately, the use of an experimental
method for the revaluation of the whole network is very
expensive in terms of time and resources; thus the

development of theoretical methods is of great
importance. The development of useful computational
methods to assess the quality of connectivity, efficiency in
complex networks is a goal of great interest. Graph
topology can be described by a wide variety of
parameters, some of which are discussed here. A complex
network is a dynamical system and entropy is, perhaps,
the most important numerical quantity that measures the
complexity of a dynamical system. In 1948 at [12],
Shannon established one entropy definition based on
probabilities. In 1988 at [17], Milnor and Thurston
developed a concept of topological entropy with the
kneading theory and lately J. Sousa Ramos and his
collaborators worked this notion, based on symbolic
dynamics, see for example, [4], [5], [6], [18] and [19].
There are several concepts of network entropy, see [12].
We will use the one based on symbolic dynamics, as
defined in Section4. Symbolic dynamics is a fundamental
tool available to describe complicated time evolution of a
chaotic dynamical system.

The study of networks may be addressed in two main
approaches. One is the behavior in each node (local
dynamics), see [5] and [7], and the other is the topology
of the network (global dynamics). In previous works, see
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[6] and [8], the authors studied some parameters that
characterize the topology of the network, the clustering
coefficient, the conductance, the synchronization interval
for coupled systems and the performance of a clustering.
In this paper we relate these invariants with the
complexity of the systems, using the topological entropy
defined for shifts of finite type associated with graphs. We
define complete clustered network, denoted by CCN, that
is, networks in which each cluster is a complete graph and
we emphasize the effect of clusters formation for this
special type of network in the network topological
entropy.

The layout of this paper is as follows. In Section2 we
present some preliminaries notions, such as the adjacency
matrix of a graph, a clustering of a graph, a complete
clustered network and the respective construction process
by successive removal. In Section3 are presented some
spectral and dynamical invariants: the clustering
coefficient, the conductance, the network topological
entropy and the performance of a clustering, which will
be used to characterize the dynamical behavior of
networks. In Section4 we obtain explicitly formulas to
compute the conductance of a complete graph and to
compute the performance of a clustering. The
monotonicity of the network topological entropy in
relation to the construction process by successive removal
is proved. We conclude also that, the value of the network
topological entropy does not depend on the number of
edges but on which edges are removed, i.e., depends on
the network topology. Using these results, we prove a
criterion for the construction of a good clustering. In
Section5 we present numerical simulations that illustrate
the obtained results. We construct complete clustered
networks by successive removal, starting with a complete
graph with 15 nodes and simulate the formation of
clusters in three different cases: two, three, and five
clusters. We observe the behavior of the parameters
conductance, coefficient of a clustering, the performance
of a clustering and network topological entropy, in this
process of clustering.

2 Preliminary concepts

In this section, we introduce some notions and basic
results on graphs and discrete dynamical systems.
Mathematically, networks are described by graphs
(directed or undirected) and the theory of dynamical
networks is a combination of graph theory and nonlinear
dynamics. From the point of view of dynamical systems,
we have a global dynamical system emerging from the
interactions between the local dynamics of the individual
elements. The tool of graph theory allows us to analyze
the coupling structure between them, see [10].

A graph G is an ordered pairG = (V,E), where
V =V(G) is a nonempty set ofN vertices or nodesvi and
E = E(G)⊂V(G)×V(G) is a set ofmG pairs of vertices,
ei j = (i, j), that are called edges or links, that connect two

vertices vi and v j . We will only consider the case of
undirected graphs, that means that the edge(i, j) is the
same as the edge( j, i) . N is called the order of the graph.
For a graph withN vertices, the maximum cardinality of
E(G) is

(N
2

)

= N(N−1)
2 . If the graphG is not weighted, the

adjacency matrixA= A(G) = (ai j ) is defined as follows,

ai j =

{

1, if vi andv j are connected
0, if vi andv j are not connected.

As the graph is not directed, thenai j = a ji and the matrix
A(G) is symmetric. The degree of a nodevi is the number
of edges incident on it and is denoted byki , that is,

ki =
N

∑
j=1

ai j .

Definition 1. A clustering C= {C1,C2, ...,Ck} of the
graph G= (V,E) is a pairwise disjoint collection of
k≤ N subsets of the vertex set V , where∪k

i=1Ci =V. Each
Ci is called a cluster.

For example, in the case of genetic algorithms, [23]
describes an alternative method of construction of the
clustering

A clusterCi is identified with the induced subgraph of
G, that is, the graphGCi = (Ci ,E(Ci)). For each clustering
C = {C1,C2, ...,Ck}, the set of intracluster edges is the
union of sets of edgesE(Ci) and is defined by
Intra(C) = ∪k

i=1E (Ci) . The set of intercluster edges,
Inter(C), is the complement, inE(G), of Intra(C), that is,
Inter(C) = E(G)\Intra(C), is the set of edges that
connect different clusters. The cardinality of these sets is
denoted by the correspondent lowercaseintra(C) and
inter(C), respectively.

Definition 2. A complete clustered network, denoted by
CCN, is a network with a clustering C= {C1,C2, ...,Ck},
where each induced subgraph GCi = (Ci ,E(Ci)) is a
complete graph.

Some authors, see for example [1] and [13], call it a
clique, meaning a set of pairwise adjacent vertices, i.e.,
the induced graph is complete with all possible edges. A
clique is considered the perfect cluster model and
methods to identify large cliques were motivated by
sociological applications, see [1]. In social networks it is
associated with the notion of a cohesive group that is
identified with the following properties: familiarity and
reachability among members, and robustness of the
subgroup. Clearly, a clique is ideal with respect to all of
these requirements since it induces a subgraph in which:
each vertex has maximum degree, any pair of members
has distance one between them and the vertex
connectivity is maximal.

The focus of this paper is on the behavior of some
graph invariants in the formation of CCN. In this work we
will pay special attention to a particular type of clustering
formation.
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Definition 3. A construction of a CCN by successive
removal is a process in which, starting with a complete
graph G = (V,E), removing edges successively, a
clustering C= {C1,C2, ...,Ck} is achieved, where the
clusters Ci , with 1 ≤ i ≤ k, are complete graphs and
inter(C) = 0.

3 Spectral and dynamical invariants

This section is devoted to the presentation of the
dynamical and spectral invariants: the clustering
coefficient, the conductance, the network topological
entropy and the performance of a clustering, which will
be used to characterize the dynamics of networks.

3.1 Clustering coefficient

One aspect that characterizes a network is the global
clustering coefficient. This parameter characterizes how
densely clustered the edges in a network are. Clustering
roughly means that, if the vertexi is connected to the
vertex j and the vertexj with the vertexr then with high
probability i is also connected tor. For a graph, the
clustering coefficientci of a vertexvi is given by the
proportion of edges between the vertices within its
neighborhood divided by the number of edges that could
possibly exist between them. Beingki the degree of a
vertex vi and denoting byNi = {v j ∈ V : ei j ∈ E} the
neighborhood of vertexvi , then one can define, see [22],
the clustering coefficientci of a vertexvi , with degree
larger than one, by

ci =

∣

∣{ejk}
∣

∣

(ki
2

) =
2
∣

∣{ejk}
∣

∣

ki(ki −1)
(1)

where
∣

∣{ejk}
∣

∣ is the cardinality of the set of edges

{ejk ∈ E; v j ,vk ∈ Ni}.

It is possible to calculate the clustering coefficient in
terms of the adjacency matrix, see [22]. If
A = A(G) = (ai j ) is the adjacency matrix, the clustering
coefficient can be computed by

ci =

N
∑
j=1

N
∑

m=1
ai j a jmami

ki(ki −1)
. (2)

The clustering coefficient of the network, see [3],
characterizes the global clustering coefficient and is just
the average ofci over all vertices with degree larger than
one

c=

∑
i,ki>1

ci

∑
i,ki>1

1
.

If all vertices have degree larger than one, thenc= 1
N

N
∑

i=1
ci .

3.2 Conductance

Bollobás in [2] has introduced the graph-theoretic
concept of conductance, using the concept of conductance
of a random walk from Jerrum and Sinclair, see [11]. This
quantity should measure the ability to go from a small
subset of vertices to its complementary. The conductance
should detect the existence of funnels in the graph, i.e.,
subsets from which is hard to leave. This is particularly
important in the identification of a good clustering
because they should have the property of flowing well
within and poorly flowing out. There are several
definitions of conductance of a graph, see [9], depending
on the type of graphs (directed, weighed) and on the used
weigh.

In this paper we shall use the following definition of
conductance, since we use undirected and non weighed
graphs,

Φ(G) = min
U⊂V

E(U,V\U)

min{|E1(U)|, |E1(V\U)|}
. (3)

This definition, applied to a finite graph, should detect the
cut ofV, for which the number of edges going through is
minimal relative to the size ofU or its complementary.

3.3 Network topological entropy

Using results of symbolic dynamics theory, it is defined
the network topological entropy, which incorporate the
important dynamical properties of the system. The
variation of network topological entropy with the
parameters gives us a finer distinction between different
states of complexity. We start from a representation of the
network in terms of its adjacency matrix,A= (ai j ), where
the matrix elements are all non-negative to denote the
interaction strength between nodesi and j in the network.
The introduction of this concept requires a strict and long
construction, using tools of symbolic dynamics and
algebraic graph theory, which is presented in the final
appendix.

The topological entropyhtop(X) of a shift dynamical
system(X,σ) over some finite alphabetA is defined by

htop(X) = lim
n→∞

logtr (An(X))

n

and htop(X) = 0 if X = /0, whereA(X) is the transition
matrix ofX, see [16].

The Perron-Frobenius Theorem states that, ifA is a
finite irreducible adjacency matrix such thatA 6= 0, thenA
has a positive eigenvector, called the Perron eigenvector,
with corresponding positive eigenvalue, called Perron
value, which is both geometrically and algebraically
simple, see [15]. In our context, if the adjacency matrix
A 6= 0 is irreducible andλA is the Perron value ofA, then

htop(X) = logλA,
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see [15]. We calculate the topological entropy of the
associated dynamical system, which is equal to the
logarithm of growth rate of the number of admissible
words. If we have a network associated to a graphG
which determine the shift spaceX, we established the
next definition.

Definition 4. The network topological entropy of the graph
G is the quantity htop(X), that is,

htop(G) = htop(X).

3.4 Performance of a clustering

The performance of a clustering should measure the
quality of each cluster as well as the cost of the clustering.
This bicriteria is based in a two-parameter definition of a
(α,ε)-clustering, whereα should measure the quality of
the clusters andε the cost of such partition, that is, the
ratio of the intercluster edges to the total of edges in the
graph. This concept of(α,ε)− clusteringwas introduced
by Kannan in [14].

Definition 5. A partition C= {C1,C2, ...,Ck} of V is called
an (α,ε)− clustering of a graph G if and only if:

1. the conductance of each cluster is at leastα,

Φ(G(Ci))≥ α, for all i = 1, ...,k

where G(Ci) = (Ci ,Ei) is the induced subgraph of G
by the subset Ci ⊂V;

2. the fraction of intercluster edges to the total of edges
is at mostε,

inter(C)
mG

≤ ε.

By this definition the clustering is good if it
maximizes α and minimizesε. To accomplish both
optimization problems is introduced in this paper a
quantity by which it is possible to optimize both:
minimize ε and simultaneously maximizeα. It will be
called the performance of a clustering.

Definition 6. For an (α,ε)− clustering C, of a graph G,
define the performance of C by the ratio

RC =
ε
α
.

Note that, the quality of the clusteringC is as better as
RC is smaller.

4 Main results

In this section, we present the most important result of
this work: a criterion for the formation of good
clusterings. The proof of this result relies on an explicit
formula for calculating the performance of a clustering,
and the monotonicity of the network topological entropy
in relation to the construction process by successive
removal, according with Def.3.

The following result allow us an easy computation of
the conductance of a complete graph and will be used in
the proof of Proposition1.

Lemma 1. Let G= (V,E) be a complete graph with N
vertices. Then

Φ(G) =







N
2(N−1) , if Nis even

N+1
2(N−1) , if Nis odd

. (4)

Proof. According to Eq.(3) and due to the fact that each
vertex ofG has degreeN−1, we have

Φ(G) = minΦ(U), for U ⊂V and|U | ≤ N/2 (5)

where

Φ(U) =
|E(U,V −U)|

|E1(U) |

for U ⊂ V, with |U | = k ≤ N/2. Because each of thek
vertices ofU have degreeN−1, and is joined withN− k
vertices ofV −U, then

Φ (U) =
|E(U,V −U)|

k(N−1)
=

N− k
N−1

.

The minimum over allU ⊂V, with |U |= k≤ N/2 of N−k
N−1

gives us the conductance ofG. By Eq.(5), we have

Φ(G) = min
0<k≤N/2

N− k
N−1

=







N
2(N−1) , if N is even

N+1
2(N−1) , if N is odd

,

as desired.

Consider a CCN with clustersCi , 1≤ i ≤ k. Recalling
that GCi = (Ci ,E(Ci)) is the induced subgraph ofG, we
denote byNi the number of vertices in eachCi . As all
clusters are complete graphs, the conductance of each
clusterCi is given by Eq.(4), according to Lemma1.

Proposition 1. Let G = (V,E) be a CCN such that
C = {C1,C2, ...,Ck} is a clustering of G where each
cluster Ci has Ni vertices, respectively, with1≤ i ≤ k. Let
mG be the total number of edges in G. Then C is an
(α,ε)− clustering of G with performance

RC =
1− 1

2mG
∑1≤i≤kNi(Ni −1)

min1≤i≤k Φ (GCi )
, (6)

whereΦ (GCi ) is given by Eq.(4).
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Proof. According that the numbermi of edges of each
clusterCi is given bymi =

Ni(Ni−1)
2 , then

ε = inter(C)
mG

= mG−intra(C)
mG

=
mG−∑1≤i≤k mi

mG

= 1− 1
2mG

∑1≤i≤k Ni(Ni −1).
(7)

Considering this numberε and the number given by

α = min
1≤i≤k

Φ (GCi ) ,

whereΦ (GCi ) is given by Eq.(4), then according to Def.5
and Eq.(3), C is an (α,ε) − clustering of G with
performanceRC = ε

α , given by Eq.(6), as desired.

As proved in the next result, the construction of a CCN
by successive removal, according to Def.3, will decrease
the value of the network topological entropy.

Proposition 2. If the graph G2 is obtained from the graph
G1 by a process of successive removal of edges, then

htop(G2)< htop(G1).

Proof. Let A = (ai j ) and B = (bi j ) be the adjacency
matrices of the graphsG1 and G2, respectively. If the
graphG2 is obtained from the graphG1, removing one
edge, then the adjacency matrixB is obtained from the
adjacency matrixA by replacing some entryai j = 1 by
bi j = 0. If, in the process of successive removal, the graph
G2 has a certain number of edges less than the graphG1,
then the matrixA has the same number of entriesai j = 1
replaced by that same number ofbi j = 0. As the matrixA
is symmetric, thenB is also symmetric andb ji = 0. So,
the matrixA is equal to the matrixB plus some matrix
with non negative entries. For any powern, we have
An = Bn+C, for some matrixC which entries are all non
negative. AsTr(C) ≥ 0 andTr(An) = Tr(Bn) + Tr(C),
thenTr(An) > Tr(Bn). As a consequence, we obtain for
all integern,

log tr (An)

n
>

log tr (Bn)

n
.

From Def.4 follows thathtop(G1)> htop(G2).

Note that, this result says that the monotonicity of the
decreasing of the network topological entropy depends on
the process of successive removal of edges. In fact, the
value of the network topological entropy does not depend
on the number of edges, see Fig.7, this value depends on
which edges are removed, as we will show in the next
section.

Theorem 1. Let G = (V,E) be a CCN, such that
C = {C1,C2, ...,Ck} is a clustering of G, constructed by
successive removal. Then, the clustering C is as better, as
smaller is the value of the network topological entropy.

Proof.According to Def.6, the clusteringC is better when
the performanceRC is smaller. From Prop.1, we have

RC =
ε
α

=
1− 1

2mG
∑1≤i≤k Ni(Ni −1)

min1≤i≤k Φ (GNi )

and in this quotient, the denominator is constant because
the clusteringC is fixed in all the construction process of
the CCN. The numerator depends on the number of inter
edges, for which we know, see Prop.2, that an amount of
inter edges implies an amount on the topological entropy.
Thus, if we decrease the number of inter edges we decrease
RC and also the topological entropy, as desired.

5 Numerical results and discussion

We defined above the clustering coefficient, the
conductance, the network topological entropy and the
performance of a clustering. We intend to understand the
behavior of these parameters in the formation of a CCN,
constructed by successive removal, as established in
Def.3. Our approach is the simulation of such a
construction and the observation of the evolution of these
dynamical and spectral parameters. We start from a
complete graph with 15 nodes and 105 edges and
simulate the formation of clusters in three different cases:

i) CCN with 5 clusters, each one of them with 3 nodes;
ii) CCN with 3 clusters, one with 4, one with 5 and the

other with 6 nodes;
iii) CCN with 2 clusters, one with 5 and the other with 10

nodes.

At each step of this construction we calculate all the
parameters under study. In our process of construction of
a clustering we just remove intercluster edges, keeping in
all clusters complete graphs, see Figs.1, 2 and3.

The results are drawn separately so that each image
has one of the parameters: performance (R), conductance
(φ ), network topological entropy (top.ent) and the
clustering coefficient (c), evolving with the number of
edges. For casei), a CCN with 5 clusters, we observe in
Fig.4, that the evolution of parameters network
topological entropy, conductance and performance, with
the growth of the edges is increasing. The clustering
coefficient has a different behavior, it decreases from 1 to
a certain turning point, see [6], and then begins to
globally grow up to 1. This is due to the fact that, if the
graphG is complete then the clustering coefficientc = 1,
see Eq.(4) of Lemma 1. When G is disconnected the
clustering coefficient is againc = 1, since the obtained
clusters are always complete. Concerning the
conductance, it is maximal and is given by Eq.(3), when
the graphG is complete. WhenG is disconnected the
conductance is zero. For the casesii) and iii ) the
observations are similar, see Figs.5 and6.

The introduction of the concept of performance of a
clustering, made in this paper, allowed to quantify and

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


2372 J. L. Rocha et. al. : Spectral and Dynamical Invariants in a Complete...

Fig. 1: Construction by successive removal of a clustering with 5 clusters.

Fig. 2: Construction by successive removal of a clustering with 3 clusters.

Fig. 3: Construction by successive removal of a clustering with 2 clusters.
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Fig. 4: Conductance (φ ), performance (R), clustering coefficient (c) and network topological entropy (top.ent) evolving with the number
of edges for CCN with 5 clusters.
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Fig. 5: Conductance (φ ), performance (R), clustering coefficient (c) and network topological entropy (top.ent) evolving with the number
of edges for CCN with 3 clusters.
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Fig. 6: (Performance (R), conductanceφ ), clustering coefficient (c) and network topological entropy (top.ent) evolving with the number
of edges for CCN with 2 clusters.

compare different clusterings, establishing a certain
hierarchy. The main result of this paper is the effect of the
dynamical invariant, network topological entropy, in the
performance of a clustering. The fact that the increase of
the network topological entropy decrease the performance
of a clustering, in the process of successive removal, is
not altogether surprising, but as far as the authors are
aware, this result has never been formulated so far. The
increasing of the complexity of a system, characteristic
measured by the network topological entropy, announces
a certain disorder in the set of nodes. A good clustering
should be precisely the opposite: tidying up of the nodes
in well behaved and stable compartments.

Despite the monotonous decrease of the network
topological entropy with the successive removal of edges,
we can be observed that the network topological entropy

depends also on several features of the network topology.
In Fig.7 we can see examples of graphs with the same
number of edges (63) and the same number of vertices
(15) but with different configurations and different
networks topological entropies. In this case (from left to
the right in the Fig.7) h(G1) = 2.17514, h(G2) = 2.27353
andh(G3) = 2.31013. So, it remains an open problem to
study how the topology of the network determines the
network topological entropy.
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Fig. 7: Three different networks with the same number (63) of edges,but different network topological entropies.
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Appendix

Consider a finite set of symbols, denoted byA , which is
called the alphabet. Often, the choice falls on the first
natural numbers:

A = {1,2, ..., r} .

A finite sequence of elements ofA is called a block, or a
word and the set of bi-infinite sequences,x= (xi)i∈Z , of
elements ofA , denoted byA Z, is called the fullA -shift:

A
Z =

{

x= (xi)i∈Z : xi ∈ A for all i ∈ Z
}

.

The shift mapσ on the full shiftA Z maps a pointx to the
point y = σ(x) whoseith coordinate isyi = xi+1. If F is
a collection of blocks overA , we will think of as being
forbidden blocks. DefineXF to be the subset of sequences
in A Z which do not contain any block inF . Any subset
of the full shift A Z such thatX = XF , for some familyF
of forbidden blocks overA , is called a shift spaceX, or
simply shift.

Definition 7. A shift of finite type is a shift space that can
be described by a finite set of forbidden blocks.

This definition allows us to construct a shift of finite
type X, through a directed graph whose bi-infinite
sequences of vertices, connected by some edge, will
correspond to the elements ofX.

Definition 8. Let A be the adjacency matrix of a graph G.
The vertex shift space XA = XG is the shift space with
alphabetA = {1,2, ..., r}, defined by

XA = XG =
{

x= (xi)i∈Z ∈ A
Z : ak j = 1, ∀i ∈ Z

}

,

with k= xi and j= xi+1.

Every directed graphG, with its adjacency matrixA,
describes a certain symbolic dynamical system, a shift of
finite typeXA = XG.

If, instead of considering the forbidden blocks,
consider the blocks allowed, you can define the concept
of language. It is called the language ofX the collection
B(X)

B(X) = ∪∞
n=0Bn(X),

whereBn(X) is the set of all blocks, of lengthn, that occur
for some element ofX, see [16].

We introduce a very useful result on the number of
walks in graphs, see [20]. Let G a graph onN vertices
with associated adjacency matrixA. Then, the(i, j)th

entry of Ak is the number ofk-walk from i to j. In
particular, the entries along the main diagonal ofAk are
the numbers of closedk-walksin G.

As a consequence of this result to a shift of finite type
spaceXA = XG, with A the adjacency matrix of directed
graph G, with the set of verticesV = {1,2, ..., r}, the
following relationship is valid,

|Bn(X)|=
r

∑
i=1

r

∑
j=1

(ai j )
n . (8)

Remark.In the case whereX is a full shift in an alphabet
A of r symbols, follows that|Bn(X)|= rn.

Since the entropy evaluates the complexity of a system,
it is natural to introduce the concept of entropy, of a shift
spaceX, as a rate of variation of the number of blocks of
lengthn, Bn(X), present in the languageB(X).

Definition 9. Let X be a shift space. The entropy h(X) over
the finite alphabetA is defined by

h(X) = lim
n→∞

log|Bn(X)|

n
.

Since the trace of a square matrix is the sum of the
diagonal elements, this result shows that the number of
closed walks with lengthk, in G, is the trace of the power

c© 2015 NSP
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matrix Ak, tr(Ak), entropy can be defined through the
following expression,

h(X) = lim
n→∞

logtr (An(X))

n
.

Using the above observation is valid the following
results.

Lemma 2.Let X be a full shift in an alphabet of r symbols.
Then the entropy of X is given by h(X) = logr.

Lemma 3. Let A 6= 0 be a nonnegative matrix having a
positive eigenvector v. Then the corresponding eigenvalue
λ is positive, and there are positive constants c0 and d0
such that,

c0 λ n ≤
r

∑
i=1

r

∑
j=1

(ai j )
n ≤ d0 λ n.

Hence if G is a graph whose adjacency matrix is A, then
h(XG) = logλ .

Proof.Considering Eq.8, the inequalities are obtained. To
show the final statement, just keep in mind the definition
of entropy.

The Perron-Frobenius Theorem states that, ifA is a
finite irreducible adjacency matrix such thatA 6= 0, thenA
has a positive eigenvector, called the Perron eigenvector,
with corresponding positive eigenvalue, called Perron
value, which is both geometrically and algebraically
simple, see [15].

Theorem 2.Let XA = XG be a shift of finite type, where A
is a finite irreducible adjacency matrix of G. Then h(XG) =
logλA.

Proof. Considering the previous lemmas and the Perron-
Frobenius Theorem the result is proved.

A dynamical system(M, f ) consists of a compact
metric space M together with a continuous map
f : M → M. WhenM = X, a shift space andf = σ , the
shift map, then(X,σ) is called a shift dynamical system.

Let (M, f ) be a dynamical system andS⊂ M, n ∈ N
andε > 0.Sis a(n;ε)-spanning set if for everyx∈X there
existsy∈ Ssuch thatd( f j (x); f j (y))< ε for all 0≤ j ≤ n.
Denote byrn( f ;ε) be the size of the(n;ε)-spanning set,
for f with fewest number of elements.

Definition 10. The topological entropy of f , htop( f ), is
given by,

htop( f ) = lim
ε→0

lim
n→∞

sup
logrn( f ;ε)

n
.

Lemma 4. If (X,σ) is a shift dynamical space, then
rn(σ ;2−k) = |Bn+2k(X)| .

By the previous equality, in the case of a shift
dynamical space, the topological entropy coincide with
the value of the entropy of the shift space , see [21], i.e.,

htop( f ) = h(X).

If we have a network associated to a graphG which
determine the shift spaceX, we will call network
topological entropy ofG to the quantityhtop(X), i.e.,

htop(G) = htop(X).
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