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Abstract: In this paper, the Bagley-Torvik equation is constructed. Amodel approach based on non-polynomial numerical methods
spline interpolation is developed to solve some problems. We show that the approximate solutions of such problems obtained by the
numerical algorithm developed using non-polynomial spline interpolation functions are better than those produced byother numerical
methods. The aim of this paper is to compare the performance of the non-polynomial spline method with polynomial spline method.
For this purpose, the algorithm is tested on two examples to illustrate the practical usefulness of the approach.

Keywords: Bagley-Torvik Equation, Caputo Derivative, Non-polynomial Spline, Convergence Analysis.

1 Introduction

Fractional differential equations have been of great
interest recently. This is due to the intensive development
of the theory of fractional derivatives itself as well as its
applications. Apart from diverse areas of mathematics,
fractional differential equations arise in rheology, physics
and engineer in self similar and porous structures,
electrical networks, fluid mechanics, chemical physics,
and many other branches of science (see [1,2,3,4,5,8,9]).

Knowing the importance of differential equations of
fractional order, lots of authors are working to find the
analytic or approximate solutions of the equations. For
examples, the Adomian decomposition method [14,24],
Pade approximation method [13] and generalized
differential transform method [16,17] have been used to
find approximately for fractional order differential
equations. In [6,?], a new fractional spline function of
polynomial form with the concept of the lacunary
interpolation is considered to find approximate solution
for fractional differential equations. Recently, in [10],
cubic polynomial spline function is considered to find
approximate solution for Bagley-Torvik equation. More
recently, in [7], fractional spline of non-polynomial form
has studied to solve the generalized Bagley-Torvik
equation.

In this article, a new construction has been developed
to find the numerical solution of the following

Bagley-Torvik equation [20,21]

y
′′
(x)+ (ηDα + µ) = f (x), m−1≤ α < m, x∈ [a,b] (1)

Subject to boundary conditions:

y(a)−A1 = y(b)−A2 = 0 (2)

whereA1,A2,η ,µ are all real constants andm= 1 or 2.
The function f (x) is continuous on the interval[a,b] and
the operator Dα represents the Caputo fractional
derivative. Whenα = 0, equation (1) is reduced to the
classical second order boundary value problem. For more
details on non-polynomial spline you can see [11,12,13].

2 Basic Definitions

In this section, we define some definitions and
properties of the fractional calculus theory, which are
used in this paper. There are several definitions of a
fractional derivative of orderα > 0 [1,2,3,4]. The two
most commonly used definitions are the
Riemann-Liouville and Caputo.

Definition 1. A real function f(x),x > 0, is said to be in
the space Cµ ,µ ∈ R if there exists a real number p(> µ),
such that f(x) = xp f1(x), where f1(x) ∈ C[0,∞), and it is
said to be in the space Cnµ iff f n ∈Cµn∈ N.
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Definition 2.[3,4,5] The Riemann-Liouville integral
operator of orderα > 0 of a function, f∈Cµ ,µ ≥−1, is
defined as:

Iα
a f (x) =

1
Γ (α)

∫ x

a
(x− ξ )α−1 f (ξ )dξ , n−1< α < n∈ N,

x> a,

I0
a f (x) = f (x).

Definition 3.[3,4,5] The fractional derivative of f(x) in
the Riemann-Liouville sense is defined as:

Dα f (x) =
1

Γ (n−α)

dn

dxn

∫ x

0
(x− ξ )n−α−1 f (ξ )dξ ,

where n−1< α < n,n∈ N and f ∈Cn
−1.

Definition 4.[1,2,3] The Caputo fractional derivative of
orderα > 0 is defined by

Dα
∗ f (x) =

1
Γ (n−α)

∫ x

0
(x− ξ )n−α−1 dn

dξ n f (ξ )dξ ,

where n−1< α < n, ,∈ N,x> 0 and f ∈Cn
−1.

Definition 5.[1,2,3] The Grünwald definition for
fractional derivative is:

GDαy(x) = lim
n→∞

1
hα

n

∑
k=0

gα ,ky(x− kh) (3)

where the Gr̈unwald weights are:

gα ,k =
Γ (k−α)

Γ (−α)Γ (k+1)
(4)

3 Consistency Relations

In the construction of the spline models for the FDEs
be develop (1-2) we introduce a finite set of grid pointsxi
by dividing the interval[a,b] into equaln- parts.

xi = a+ ih, x0 = a, xn = b, h=
b−a

n
, i = 0(1)n (5)

Let y(x) be the analytic solution of (1) and Si be the
spline approximation toyi = y(xi), and has the spline
function Qi(x) passing through the points(xi ,Si) and
(xi+1,Si+1) then in each sub-interval the non-polynomial
spline interpolation segmentQi(x) has the form

Qi(x) = ai +bi(x− xi)+ ci sink(x− xi)

+di cosk(x− xi), i = 0(1)n
(6)

whereai,bi ,ci anddi are constants to be determined, andk
is free parameter. Following [2] we have

Si+1−2Si +Si−1 = h2(λMi+1+2βMi +λMi−1) (7)

where

λ =
1

θ 2 (θ cscθ −1),β =
1

θ 2 (1−θ cotθ ),θ = kh,

and

Mi = fi − µSi −ηDαS(x) |x=xi , i = 0(1)n (8)

wheneverk → 0, thenλ → 1
6 andβ = 1

3 then the method
reduces to the method of [8].

As in [10] has mentioned, approximation of the
fractional termDα |x=xi , i = 0(1)n may be determined by
the following:

Dα |x=xi≈ h−α
i

∑
k=0

gα ,kS(xi − kh), i = 0(1)n (9)

4 Construction the Spline model

The non-polynomial spline model of Equation (1) with
boundary conditions (2) is based on the system of linear
equations given by Equation (7).

LetY = (yi),S= (si),C= (ci),T = (ti) andE = (ei) =
Y−S ben−1 as see[22] . Then, we obtained the system
given by (7) as follows:

PS= h2BM+C; (10)

where the matricesP,B and the vectorC are given below

Pi, j =







−2, for i = j = 1(1)n−1
1, for | i − j |= 1
0, Other wise

B=







2β , for i = j = 1(1)n−1
λ , for | i − j |= 1
0, Other wise

and

C=







−A1+h2M0
...

−A2+h2Mn






.

The vectorM can be written as:

M = F − µS−ηh−α(GS+G0), (11)

where the vectorsF,G0 and the matrixG are given below
respectively:

F = ( f1 f2 . . . fn−2 fn−1)
t
, (12)

G0 = A1(gα ,1 gα ,2 . . . gα ,n−2 fα ,n−1)
t
, (13)

and

G=













gα ,0
gα ,1 gα ,0

...
...

. . .
gα ,n−3 gα ,n−4 . . . gα ,1 gα ,0
gα ,n−2 gα ,n−3 . . . gα ,2 gα ,1 gα ,0













.
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5 Convergence Analysis of the Method

In this section, we discussed the convergence analysis
of the method (7) along with (9) based on non-polynomial
spline model. Our main purpose is to derive bounds errors
and estimate the rate of convergence onE. For this, the
following lemma is needed [17,?].

Lemma 1. If N is a square matrix of order n and‖N‖< 1
, then(I +N)−1 exists and‖(I +N)−1‖< 1

1−‖N‖ .
Now, by substituting from Eq.(11) into Eq.(10), we get:

(P+ µh2B+ηh2−αBG)S= h2B(F −ηh−αG0)+C,

and

(P+ µh2B+ηh2−αBG)Y = h2B(F −ηh−αG0)+C+T.

Hence

T = (P+ µh2B+ηh2−αBG)E. (14)

From which, we can write the error term as

E = (I + µh2P−1B+ηh2−αP−1BG)−1P−1T,

that gives

‖E‖ ≤
‖P−1‖‖T‖

1− µh2‖P−1‖‖B‖−ηh2−α‖P−1‖‖B‖‖G‖
, (15)

provided that

µh2‖P−1‖‖B‖−ηh2−α‖P−1‖‖B‖‖G‖< 1. (16)

Now,

‖G‖ ≤ 2m, ∀(m−1)< α < m. (17)

It was shown, in [18], that

‖B‖= 1 for λ +β =
1
2
, (18)

‖P−1‖ ≤
h−2

8
((b−a)2+h2) = wh−2

, (19)

‖T‖= η1h4M4, (20)

where

M4 = max
a≤x≤b

∣

∣

∣y(4)(x)
∣

∣

∣ .

From Equations (15)(20), it follows that
‖E‖ ≤

‖P−1|‖T‖
1− µh2‖P−1‖‖B‖−ηh2−α‖P−1‖‖B‖‖G‖

∼= O(h2) (21)

which shows that spline interpolation method developed
for the solution of boundary value problem (1) with
boundary conditions (2), is second-order convergent.

We summarize the above results in the following
theorem:

Theorem 1. Let y(x) be the analytic solution of the
continuous boundary value problem (1)-(2) and let
y(xi), i = 1(1)n− 1, satisfy the discrete boundary value
problem (10). Moreover, if we set ei = yi − si , then
E ∼= O(h2) as given by equation (21), neglecting all
errors due to round off.

6 Illustrations

To illustrate our method and to demonstrate its
estimate of convergence analysis and applicability of our
presented methods computationally, we have solved two
second order Bagley-Torvik boundary value problems.
For the interest of comparison with method [10], we
consider the same examples as in [10]. In the process of
computation, all the numerical computations are
performed by using MATLAB R12b and MAPLE 15.

Example 1.Consider the fractional differential equation

y
′′
(x)+0.5Dαy(x)+ y(x) = 3+ x2+

x2−α

Γ (3−α)
(22)

subject to

y(0) = 1,y(1) = 2.

the exact solution of this problem is

y(x) = x2+1.

The numerical solutions using cubic polynomial spline
[10] and our non-polynomial spline are presented in Table
1 and2 in case ofn= 8,α = 0.5 and different values of the
parametersλ ,β . Also, the exact solution and approximate
solutions are compared and plotted forn= 10,λ = 1

14,β =
3
7 and different values ofα in Figure1.

Table 1: Comparison results for Example1
For our methodλ = β = 0 : 25

x Exact solution Our method Method in [10]

0.125 1.015625 1.011600 1.020078
0.250 1.062500 1.068042 1.065554
0.375 1.140630 1.135673 1.141389
0.500 1.250000 1.246099 1.247476
0.625 1.390630 1.380457 1.383746
0.750 1.562500 1.559747 1.550150
0.875 1.765630 1.754927 1.750225

1 2 2 2

Table 2: Comparison results for Example1

For our methodλ = 1
12,β = 5

12
x Exact solution Our method Method in [10]

0 1 1 1
0.125 1.015625 1.027789 1.020078
0.250 1.062500 1.053351 1.065554
0.375 1.140630 1.140481 1.141389
0.500 1.250000 1.240644 1.247476
0.625 1.390630 1.404943 1.383746
0.750 1.562500 1.554359 1.550150
0.875 1.765630 1.779840 1.750225

1 2 2 2
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Fig. 1: Comparison results for Example1 for different values of
α.

Example 2.Consider the boundary value problem

y
′′
(x)+0.5Dαy(x)+ y(x) = f (x), (23)

where

f (x) = 4x2(5x−3)+ µx4(x−1)+ηx4−α
(

120x
Γ (6−α)

−
24

Γ (5−α)

)

subject to

y(0) = y(1) = 0.

The exact solution of this problem is

y(x) = x4(x−1).

The numerical solution forη = 0.5,µ = 1,n = 8 and
α = 0.6 is represented in Table3 and 4 for different
values of the parametersλ ,β . Also, the exact solution
and approximate solutions are compared and plotted for
α = 0.75,λ = 1

18,β = 4 and different values ofn in
Figure2.

Table 3: Comparison results for Example2.
λ = β = 0.25

x Exact solution Our method Method in [10]

0 0 0 0
0.125 -0.0002140 -0.0004611 -0.0022100
0.250 -0.0029297 -0.0019601 -0.0070100
0.375 -0.0123596 -0.0108561 -0.0181900
0.500 -0.0312500 -0.0283160 -0:0381000
0.625 -0.0572200 -0.0512610 -0.0640300
0.750 -0.0791000 -0.0678123 -0.0846700
0.875 -0.0732730 -0.0537219 -0.0765400

0 0 0 0

Table 4: Comparison results for Example2.

λ = 1
12,β = 5

12
x Exact Solution Our method Method in [10]

0 0 0 0
0.125 -0.0002140 -0.0008307 -0.0022100
0.250 -0.0029297 -0.0008708 -0.0070100
0.375 -0.0123596 -0.0093272 -0.0181900
0.500 -0.0312500 -0.0272481 -0.0381000
0.625 -0.0572200 -0.0521432 -0.0640300
0.750 -0.0791000 -0.0726714 -0.0846700
0.875 -0.0732730 -0.0650553 -0.0765400

0 0 0 0

Fig. 2: Comparison results for Example2 for different values of
n.

7 Discussion and Conclusions

In this paper we used a non-polynomial spline model to
develop numerical algorithms of Bagley-Torvik equation.
In addition, we have compared the performance of the non-
polynomial spline method with polynomial spline method.
Numerical examples are presented. The results obtained
by our algorithm in comparison with results in [10] have
shown in Tables1-4, for the same value ofx.
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