Mathematical Sciences Letters An International Journal

http://dx.doi.org/10.18576/msl/060307

Global Domination Integrity of Graphs

Sultan Senan Mahde* and Veena Mathad

Department of Studies in Mathematics, University of Mysore, Manasagangotri, Mysuru-570 006, India

Received: 19 Sep. 2016, Revised: 12 Jul. 2017, Accepted: 22 Jul. 2017

Published online: 1 Sep. 2017

Abstract: R. Sundareswaran and V. Swaminathan [11], introduced the concept of the domination integrity of a graph. It is a useful measure of vulnerability and it is defined as $DI(G) = \min\{|S| + m(G-S), \text{ where } S \text{ is a dominating set and } m(G-S) \text{ is the order of a maximum component of } G-S\}$. In this paper we introduce the concept of global domination integrity of a graph G, and define it as $GDI(G) = \min\{|S| + m(G-S), \text{ where } S \text{ is a global dominating set and } m(G-S) \text{ is the order of a maximum component of } G-S\}$. The global domination integrity of some graphs is obtained. The relations between global domination integrity and other parameters are determined.

Keywords: Integrity, Domination integrity, Global dominating set, Global domination integrity

1 Introduction

The stability of a network (computer, communication, or transportation) composed of nodes (processing) and links (communication or transportation) is of prime importance to network designers. As the network begins losing links nodes, eventually it loses effectiveness. Communication networks are designed such that they are not easily disrupted under external attack and moreover, they can easily be reconstructed if they are disrupted [8]. These desirable properties of networks can be measured by various parameters such as connectivity and edge-connectivity. However, these parameters do not take into account what remains after the graph is disconnected. Consequently, a number of other parameters have recently been introduced in an attempt to cope with this. These include connectivity and edge-connectivity [3], integrity and edge-integrity [1,2], tenacity and edge-tenacity [4,8]. All graphs considered here are finite, undirected without loops or multiple edges. As usual p and q denote the number of vertices and edges of a graph G. Any undefined term or notation in this paper can be found in Harary [6]. The degree of a vertex v in a graph G denoted by degv is the number of edges of G incident with v. The maximum (minimum) degree among the vertices of G is denoted by $\Delta(G)$, $(\delta(G))$. A vertex of degree one is called a pendant vertex. A complete subgraph or clique is an induced subgraph such that there is an edge between each pair of vertices in the subgraph. The clique number w(G) is the order of the largest complete subgraph of G. For a vertex $v \in V$, the open neighborhood of v in G, denoted by N(v), is the set of all vertices that are adjacent to v. A friendship graph F_n is a graph which consists of n triangles with a common vertex. The double star graph $S_{n,m}$ is the graph constructed from $K_{1,n-1}$ and $K_{1,m-1}$ by joining their centers v_0 and u_0 . $V(S_{n,m}) = V(K_{1,n-1}) \cup V(K_{1,m-1})$ and $E(S_{n,m}) = \{v_0u_0, v_0v_i, u_0u_j : 1 \le i \le n-1, 1 \le j \le m-1\}, [5].$

The complement \overline{G} of a graph G has V(G) as its vertex set, two vertices are adjacent in \overline{G} if and only if they are not adjacent in G[6].

Definition 1.1.[7] A set D of vertices in a graph G is a dominating set of G if every vertex in V - D is adjacent to some vertex in D. The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set.

Barefoot et al. [2], have introduced the concept of integrity, which is defined as follows.

The integrity of a finite graph G is $I(G) = \min\{|S| + m(G - S) : S \subseteq V(G)\}$, where m(G - S) denotes the order of the largest component.

Sultan et al. [10], have introduced the concept of hubintegrity of a graph as a new measure of vulnerability. The hub-integrity of a graph G denoted by HI(G) is defined by, $HI(G) = \min\{|S| + m(G-S)\}$, where S is a hub set and m(G-S) is the order of a maximum component of G-S.

^{*} Corresponding author e-mail: sultan.mahde@gmail.com

R. Sundareswaran and V. Swaminathan [11], introduced the concept of domination integrity of a graph G, which is defined as follows.

Definition 1.2. $DI(G) = \min\{|S| + m(G - S), \text{ where } S \text{ is a dominating set and } m(G - S) \text{ is the order of a maximum component of } G - S\}.$

Definition 1.3. [9] A dominating set D of G is a global dominating set gd - set of G if D is also a dominating set of the complement \overline{G} of G. The global domination number γ_g of G is the minimum cardinality of gd - set.

In a network, a minimum global dominating set of nodes provides a link with the rest of the nodes. If D_g is a minimum global dominating set and if the order of the largest component of $G - D_g$ is small, then the removal of D_g results in a chaos in the network because not only the decision making process is paralyzed but also the communication between the remaining members is minimized. So, we introduce the concept of global domination integrity of a graph as another measure of vulnerability of a graph.

The following results are needed to prove the main results.

Proposition 1.1. [9] For a(p,q) graph G without isolated vertices, $\frac{(2q-p(p-3))}{2} \le \gamma_g \le p-\beta+1$.

Theorem 1.1. [10] For any graph G, $HI(G) = \gamma(G)$ if and only if $G = \overline{K}_p$.

Theorem 1.2. [2] The integrity of the path P_p is $\lceil 2\sqrt{p+1} \rceil - 2$.

Proposition 1.2. [9] For any graph G,

 $\begin{array}{l} 1. \ \gamma_g(G) = \gamma_g(\overline{G}), \\ 2. \ \gamma(G) \leq \gamma_g(G), \\ 3. \ \frac{\gamma(G) + \gamma(\overline{G})}{2} \leq \gamma_g(G) \leq \gamma(G) + \gamma(\overline{G}). \end{array}$

2 Global domination integrity of graphs

Definition 2.1. The global domination integrity of a graph G is defined as $GDI(G) = \min\{|S| + m(G-S), \text{ where } S \text{ is a global dominating set and } m(G-S) \text{ is the order of a maximum component of } G-S\}$. Explicitly, $GDI(G) \geq I(G)$ for any graph G. Also, the definition shows that $GDI(G) \geq DI(G)$, and $GDI(G) \geq \gamma_g$.

Definition 2.2. A *GDI*-set of *G* is any subset *S* of V(G) for which GDI(G) = |S| + m(G - S).

Proposition 2.1.

- (a) For any complete graph K_p , $GDI(K_p) = p$.
- (b) For any path P_p ,

$$GDI(P_p) = \begin{cases} 2, & \text{if } p = 2; \\ 3, & \text{if } p = 3,4; \\ 4, & \text{if } p = 5,6,7; \\ \lceil \frac{p}{3} \rceil + 2, & \text{if } p \ge 8. \end{cases}$$

(c) For any cycle C_p , $p \ge 4$,

$$GDI(C_p) = \begin{cases} 4, & \text{if } p = 4,5; \\ \lceil \frac{p}{3} \rceil + 2, & \text{if } p \ge 6. \end{cases}$$

- (d) For the star $K_{1,p-1}$, $p \ge 3$, $GDI(K_{1,p-1}) = 3$.
- (e) For the double star $S_{n,m}$,

$$GDI(S_{n,m}) = 3.$$

(f) For the complete bipartite graph $K_{n,m}$,

$$GDI(K_{n,m}) = min\{n,m\} + 2.$$

(g) For the wheel graph $W_{1,p-1}$, $p \ge 4$,

$$GDI(W_{1,p-1}) = \begin{cases} 4, & \text{if } p = 5; \\ \lceil \frac{p-1}{3} \rceil + 3, & \text{if } p \ge 6. \end{cases}$$

Theorem 2.1. For any graph G, $GDI(G) = \gamma(G)$ if and only if $G = \overline{K_p}$.

Proof. If $GDI(G) = \gamma(G)$, then $|S| + m(G - S) = \gamma(G)$, we have the following cases:

Case 1: If $\gamma(G) = 1$, then |S| + m(G - S) = 1, it follows that |S| = 1. So $G \cong K_1 = \overline{K_1}$.

Case 2: If $\gamma(G) = 2$, then |S| + m(G - S) = 2. But |S| = 1 and m(G - S) = 1, is impossible, since there does not exist graph satisfying these values. Then |S| = 2 and m(G - S) = 0. So, $G \cong \overline{K_2}$. In general, $|S| + m(G - S) = \gamma(G)$ if $|S| = \gamma(G)$ and m(G - S) = 0. In addition $|S| = \gamma(G)$ only in $\overline{K_p}$. Thus $G = \overline{K_p}$. Converse is obvious. \square

Theorem 2.2. For any graph G, $GDI(G) = \gamma_g(G)$ if and only if $G = \overline{K_p}$.

Proof. The proof is similar to the proof of Theorem (2.1).

Corollary 2.1. For any graph G, $GDI(G) = \gamma_g(G) = \gamma(G)$ if and only if $G = \overline{K_p}$.

Observation 2.1 For any graph G, $GDI(G) \ge \frac{\gamma(G) + \gamma(\overline{G})}{2}$.

Proof. By Proposition (1.2), the proof follows. \Box

Observation 2.2 *For any graph* G, $GDI(G) \ge \gamma_g(G) - \gamma(\overline{G})$.

Proof. Since $GDI(G) \ge \gamma_g$ and by Proposition (1.2), $\gamma_g \ge \gamma$ and $\gamma(G) + \gamma(\overline{G} \ge \gamma_g$, hence $GDI(G) \ge \gamma_g(G) - \gamma(\overline{G})$. \square

Observation 2.3

1. GDI(G) = 2 if and only if $G \cong K_2$ or $G \cong \overline{K_2}$. 2. GDI(G) = 3 if and only if $G \cong K_3$ or $G \cong \overline{K_3}$ or $G \cong K_{1,p-1}$ or $G \cong S_{n,m}$.

Proof. (1) GDI(G) = 2, means that |S| + m(G - S) = 2, and the last equation is achieved only if |S| = 2 and hence $G \cong K_2$ or $G \cong \overline{K_2}$.

(2) The proof is similar to that of (1). \Box

Proposition 2.2. For any graph G of order p, if GDI(G) = p, then $diam(G) \le 2$.

Proof. Let G be a graph of order p, such that GDI(G) = p. Assume, on the contrary, that $diam(G) \ge 3$. Then, G contains a path P_4 . Therefore, $GDI(G) \le p-1$ a contradiction. Hence $diam(G) \le 2$. \square

Proposition 2.3. (1) For any connected graph G, $1 \le GDI(G) \le p$. The complete graph K_p achieves the upper bound and lower bound is achieved by K_1 . (2) $GDI(G) \le q + 1$, the equality holds if $G \cong K_2$ or P_2 . (3) For any connected graph G, $1 \le GDI(\overline{G}) \le p$. The complete graph K_p achieves the upper bound and lower bound is achieved by K_1 .

Theorem 2.3. For any graph G,

1.
$$2 \le GDI(G) + GDI(\overline{G}) \le 2p$$
.
2. $1 \le GDI(G) \cdot GDI(\overline{G}) \le p^2$.

Proof. The proof follows from Proposition (2.3). \square

Lemma 2.1. Let T be a tree. Then GDI(T) = p if and only if either $T \cong P_2$ or $T \cong P_3$.

Proof. If T is a tree with GDI(T) = p, then by Proposition (2.2), $diam(T) \le 2$. If diam(T) = 2, then T is $K_{1,p-1}$. But $GDI(K_{1,p-1}) = 3$. Since $diam(T) = 2, p \ge 3$, so, $T = K_{1,2} = P_3$, and if diam(T) = 1, then T is P_2 . Conversely, Let T be either P_2 or P_3 . Then the proof follows from Proposition (2.1). \square

Theorem 2.4. For any graph G, $GDI(G) = HI(G) = \gamma(G)$ if and only if $G \cong \overline{K_p}$.

Proof. By Theorem (2.1) and Theorem (1.1), the proof follows. \Box

Theorem 2.5. For any graph G, if $diam(G) \ge 5$, then $GDI(G) \le \lceil \frac{p}{2} \rceil + 1$.

Proof. Let G be a graph with $diam(G) \geq 5$. $GDI(G) > \lceil \frac{p}{2} \rceil + 1$, then diam(G) < 5 a contradiction. Hence the result holds. \square

Theorem 2.6. Let $K_{1,p-1}$ be a star with $p \ge 3$, and let G_s be a spider graph which is constructed by subdividing each edge once in $K_{1,p-1}$ as in Figure 1. Then $GDI(G_s) = \Delta(G_s) + 2$.

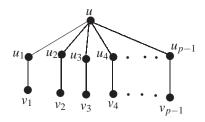


Figure 1: Spider graph

Proof. Let $V(G_s) = \{u, u_1, u_2, u_3, ..., u_{p-1}, v_1, v_2, v_3, ..., v_{p-1}\}$. We choose the vertex u and all vertices which are adjacent with it as a global dominating set of G, this means that $S = \{u, u_1, u_2, u_3, ..., u_{p-1}\}, |N[u]| = |\{u, u_1, u_2, u_3, ..., u_{p-1}\}| = \Delta(G_s) + 1$. Then $|S| = \Delta(G_s) + 1$, and $m(G_s - S) = 1$, this implies that $GDI(G_s) \leq |S| + m(G_s - S) = \Delta(G_s) + 2$. Also we can choose $S = \{u, v_1, v_2, v_3, ..., v_{p-1}\}$ as a global dominating set of G_s , then $|S| = \Delta(G_s) + 1$, and $m(G_s - S) = 1$. Then $GDI(G_s) \leq |S| + m(G_s - S) = \Delta(G_s) + 2$. Clearly, there does not exist a global dominating set of G_s such that $GDI(G_s) < |S| + m(G_s - S) = \Delta(G_s) + 2$. \square

Theorem 2.7. For any connected graph G of order $p \ge 3$, $GDI(K_{1,p-1}) \le GDI(G) \le GDI(K_p)$.

Remark 2.1. If H is a subgraph of G, then not necessarily $GDI(H) \leq GDI(G)$, for example $G \cong P_5$ and $H \cong 3P_1 \cup P_2, GDI(G) = 4$ and GDI(H) = 5.

Theorem 2.8. For any disconnected graph G, GDI(G) = DI(G).

Proof. Since $\gamma_g(G) \geq \gamma(G)$, $GDI(G) \geq DI(G)$. Let $G \cong G_1 \cup G_2 \cup ... \cup G_r$ and suppose $S = \{F_1, F_2, ..., F_r\}$, a family of dominating sets of $G_1, G_2, ..., G_r$. Without loss of generality, suppose the set F_1 is a dominating set of G_1 , F_2 is a dominating set of G_2 , ..., and F_r is a dominating set of G_r . Since any vertex $f \in F_1$ is adjacent to all vertices in $G_2, G_3, ..., G_r$ in \overline{G} , and any vertex $f \in F_2$ is adjacent to all vertices in $G_1, G_3, ..., G_r$ in \overline{G} ,..., and any vertex $f \in F_r$ is adjacent to all vertices in $G_1, G_2, G_3, ..., G_{r-1}$ in \overline{G} . Therefore, S is a dominating set of \overline{G} . Thus, S is a global dominating set of G. So DI(G) = GDI(G). \square

Corollary 2.2. *For any graph* G, $GDI(G) \ge \gamma(G)$.

Proof. Since $GDI(G) \ge \gamma_g(G)$, from Proposition (1.2), we get the result. \square

Proposition 2.4. If w(G) = p - 1, then GDI(G) = p.

Proof. Since w(G) = p - 1, G has a complete graph of order p - 1, so by Proposition (2.1), the proof follows. \square

Proposition 2.5. $GDI(\overline{K_{n,m}}) = n+1, n \geq m.$

Proof. Let $v_1, v_2, ..., v_n, u_1, u_2, ..., u_m$ be the vertices of $\overline{K_{n,m}}$. We claim that $S = \{v_1, u_1\}$, a global dominating set of $\overline{K_{n,m}}$. Since $\overline{K_{n,m}} \cong K_n \cup K_m$, $N(v_1) = \{v_2, v_3, ..., v_n\}$ in K_n and $N(u_1) = \{u_2, u_3, ..., u_m\}$ in K_m , then $\{v_1, u_1\}$ is a dominating set of $K_n \cup K_m$. Also since $N(v_1) = \{u_1, u_2, u_3, ..., u_m\}$ in $\overline{K_n \cup K_m}$ and since $N(u_1) = \{v_1, v_2, v_3, ..., v_n\}$ in $\overline{K_n \cup K_m}$, $\{v_1, u_1\}$ is a dominating set of $\overline{K_n \cup K_m}$. Therefore, S is a global dominating set of $\overline{K_{n,m}}$ and $m(\overline{K_{n,m}} - S) = n - 1$. Then

$$GDI(\overline{K_{n,m}}) \le |S| + m(\overline{K_{n,m}} - S) = n + 1.$$
 (2.1)

Since $GDI(K_n) = n$, it is clear that there does not exist any set S_1 other than S such that

$$|S_1| + m((K_n \cup K_m) - S_1) < |S| + m((K_n \cup K_m) - S).$$
 (2.2)

Hence, from (2.1) and (2.2), $GDI(\overline{K_{n,m}}) = n + 1$. \square

The next result is an immediate consequence of Proposition (2.1) and Proposition (2.5).

Corollary 2.3. $GDI(K_{n,m}) = GDI(\overline{K_{n,m}})$ if and only if n = m + 1.

Remark 2.2.

- 1. For a path P_p , $GDI(P_p) = GDI(\overline{P_p})$, if and only if p = 3, 4, 5.
- 2. For a cycle C_p , $GDI(C_p) = GDI(\overline{C_p})$,
- 3. For a complete K_p , $GDI(K_p) = GDI(\overline{K_p})$,
- 4. For a star $K_{1,p-1}$, $p \ge 4$, $GDI(K_{1,p-1}) \ne GDI(\overline{K_{1,p-1}})$.

Mycielski's construction

Let *G* be a graph with $V(G) = \{v_1, v_2, ..., v_p\}$, and let $U = \{u_1, u_2, ..., u_p\} \cup \{x\}$. A graph $\mu(G)$ is obtained by adding the vertices of *U* to *G* such that u_i is a adjacent to all of the vertices of $N(v_i)$, and *x* is adjacent to all of the vertices of $U = \{u_1, u_2, ..., u_p\}$.

Theorem 2.9. For $p \ge 2$,

$$GDI(\mu(P_p)) = \begin{cases} 4, & \text{if } p = 2; \\ p+1, & \text{if } p \geq 3. \end{cases}$$

Proof. Let $V = \{v_1, v_2, ..., v_p\}$, be the vertex set of P_p , and let $V(\mu(P_p)) = \{v_1, v_2, ..., v_p\} \cup \{v_1', v_2', ..., v_p'\} \cup \{x\}$ and $|V(\mu(P_p))| = 2p + 1$. The following cases are considered: **Case 1**: For p = 2, since $\mu(P_2) \cong C_5$, from proposition (2.1), $GDI(\mu(P_2)) = 4$.

Case 2: For p = 3, consider $S = \{v_2, v_2', x\}$, a global dominating set of $\mu(P_3)$ such that |S| = 3 and $m(\mu(P_3) - S) = 1$. This implies that $GDI(\mu(P_3)) \le |S| + m(\mu(P_3) - S) = 4$.

Case 3: For $p \ge 4$, consider $S = \{v_2, v_3, ..., v_{p-1}\} \cup \{x\}$, a global dominating set of $\mu(P_p)$ such that |S| = p - 1 and $m(\mu(P_p) - S) = 2$. Thus

$$GDI(\mu(P_p)) \le |S| + m(\mu(P_p) - S) = p - 1 + 2 = p + 1.$$
 (2.3)

Now we show that the number $|S|+m(\mu(P_p)-S)$ is minimum. If S_1 is any global dominating set that is different from set S such that $m(\mu(P_p)-S_1)=1$, then $|S_1|\geq p+1$ and hence $|S_1|+m(\mu(P_p)-S_1)\geq p+2$, also if $m(\mu(P_p)-S_1)\geq 2$, it is clear that $|S_1|+m(\mu(P_p)-S_1)\geq |S|+m(\mu(P_p)-S)$. Hence, for any global dominating set S_1 ,

$$|S_1| + m(\mu(P_p) - S_1) \ge p + 1.$$
 (2.4)

From (2.3) and (2.4), $GDI(\mu(P_p)) = p + 1$. \square

Theorem 2.10.

$$GDI(\mu(C_p)) = \begin{cases} p+2, & \text{if } p = 3,4,5; \\ \frac{2p}{3} + 4, & \text{if } p \equiv 0 \text{ (mod 3) and } p \geq 6; \\ \lceil \frac{2p}{3} \rceil + 4, & \text{if } p \equiv 1,2 \text{ (mod 3) and } p \geq 6. \end{cases}$$

Proof. Let $V(\mu(C_p)) = \{v_1, v_2, ..., v_p\} \cup \{v_1', v_2', ..., v_p'\} \cup \{x\}$ and $|V(\mu(C_p))| = 2p+1$. To prove this result, the following cases are considered:

Case 1: For p = 3,4,5. If we remove all vertices of C_p and the vertex x, we get a total disconnected graph so that order of the largest component of $\mu(C_p)$ is 1, this implies that $GDI(\mu(C_p)) = p + 2$.

Case 2: For $p \ge 6$. We consider a global dominating set of $\mu(C_p)$ as follows:

• When $p \equiv 0 \pmod{3}$, p = 3k for some integer $k \ge 2$. Consider $S = \{v_1, v_2, v_4, v_5, v_7, v_8, ..., v_{p-4}, v_{p-2}, v_{p-1}\} \cup \{x\}$, then $|S| = \frac{2p}{3} + 1$ and $m(\mu(C_p) - S) = 3$. This implies that

$$GDI(\mu(C_p)) \le |S| + m(\mu(C_p) - S) = \frac{2p}{3} + 4.$$
 (2.5)

To discuss the minimality of $|S|+m(\mu(C_p)-S)$, we consider any set S_1 as global dominating set different from S such that $m(\mu(C_p)-S_1)=2$, then $|S_1|\geq p+1$. Thus $|S_1|+m(\mu(C_p)-S_1)\geq p+3$, if $m(\mu(C_p)-S_1)=1$, then $|S_1|\geq p+1$. Thus $|S_1|+m(\mu(C_p)-S_1)\geq p+2$. Finally, suppose that $m(\mu(C_p)-S_1)\geq 3$, it is clear that $|S_1|+m(\mu(C_p)-S_1)\geq |S|+m(\mu(C_p)-S)$. Hence, for any global dominating set S_1 ,

$$|S_1| + m(\mu(C_p) - S_1) \ge \frac{2p}{3} + 4.$$
 (2.6)

Therefore, from (2.5) and (2.6), $GDI(\mu(C_p)) = \frac{2p}{3} + 4$. • When $p \equiv 1 \pmod{3}$, p = 3k + 1 for some integer $k \ge 2$. Consider $S = \{u_1, u_2, u_4, u_5, u_7, u_8, ..., u_{p-3}, u_{p-2}, u_p\} \cup$

2. Consider $S = \{u_1, u_2, u_4, u_5, u_7, u_8, ..., u_{p-3}, u_{p-2}, u_p\}$ $\{x\}$, and $|S| = \lceil \frac{2p}{3} \rceil + 1, m(\mu(C_p) - S) = 3$. Therefore,

$$GDI((\mu(C_p)) \le |S| + m(\mu(C_p) - S) = \lceil \frac{2p}{3} \rceil + 4.$$
 (2.7)

To show that the number $|S| + m(\mu(C_p) - S)$ is minimum, let us consider any global dominating set S_1 of $\mu(C_p)$

different from S such that $m(\mu(C_p) - S_1) = 2$, then $|S_1| \geq p+1$. Thus $|S_1| + m(\mu(C_p) - S_1) \geq p+3$, also, if $m(\mu(C_p) - S_1) = 1$, then $|S_1| \geq p+1$, so that $|S_1| + m(\mu(C_p) - S_1) \geq p+2$. If $m(\mu(C_p) - S_1) \geq 3$, it is easy to show that $|S_1| + m(\mu(C_p) - S_1) \geq |S| + m(\mu(C_p) - S)$. Hence, for any global dominating set S_1 ,

$$|S_1| + m(\mu(C_p) - S_1) \ge \lceil \frac{2p}{3} \rceil + 4.$$
 (2.8)

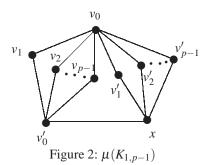
From (2.7) and (2.8), we have $GDI(\mu(C_p)) = \lceil \frac{2p}{3} \rceil + 4$. • When $p \equiv 2 \pmod{3}, p = 3k + 2$ for some integer $k \geq 2$. Consider $S = \{u_1, u_2, u_4, u_5, u_7, u_8, ..., u_{p-3}, u_{p-1}, u_p\} \cup \{x\}$, then $|S| = \lceil \frac{2p}{3} \rceil + 1$ and $m(\mu(C_p) - S) = 3$. This implies that

$$GDI(\mu(C_p)) \le |S| + m(\mu(C_p) - S) = \lceil \frac{2p}{3} \rceil + 4.$$
 (2.9)

The proof follows similar to that of above Case. Hence, $GDI(\mu(C_p)) = \lceil \frac{2p}{3} \rceil + 4$. This completes the proof. \square

Theorem 2.11. $\gamma_g(\mu(K_{1,p-1})) = 3$.

Proof. Let $V(\mu(K_{1,p-1})) = \{v_0, v_1, v_2, ..., v_{p-1}\} \cup \{v_0', v_1', v_2', ..., v_{p-1}'\} \cup \{x\}$. Then $|V(\mu(K_{1,p-1}))| = 2p + 1$. Figure 2 shows the graph Since $\mu(K_{1,p-1}).$ $deg(v_0) = 2p - 2, deg(v'_0) = p$ and deg(x) = p, we choose v_0, v'_0, x , as global dominating set of $\mu(K_{1,p-1})$, this means that $S = \{v_0, v'_0, x\}$. To prove that the set S is minimum, we consider $S_1 = \{v_0, v_0'\}$, we see that the set S_1 is a dominating set of $\mu(\tilde{K_{1,p-1}})$, but it is not dominating set of $\overline{\mu(K_{1,p-1})}$, since the vertices $\{v_1, v_2, v_3, ..., v_{p-1}\}$ is not dominated by v_0, v_0' . Thus S_1 is not a global dominating set of $\mu(K_{1,p-1})$. If we consider $S_1 = \{v_0, x\}$, then S_1 is a domination set of $\mu(K_{1,p-1})$. But $\{v'_1, v'_2, ..., v'_{p-1}\}$ is not dominated by the vertices $\{v_0,x\}$ in $\mu(K_{1,p-1})$, so S_1 is not a global dominating set of $\mu(K_{1,p-1})$. Finally if $S_1 = \{v'_0, x\}$, clearly, S_1 is not dominating set of $\mu(K_{1,p-1})$, therefore, it is not global dominating set of $\mu(K_{1,p-1})$. Hence, $\gamma_g = 3$. \square



Theorem 2.12. $GDI(\mu(K_{1,p-1})) = 4$.

Proof. Let $V(\mu(K_{1,p-1})) = \{v_0, v_1, v_2, ..., v_{p-1}\} \cup \{v'_0, v'_1, v'_2, ..., v'_{p-1}\} \cup \{x\}$. Then $|V(\mu(K_{1,p-1}))| = 2p+1$. Consider $S = \{v_0, v'_0, x\}$, a global dominating set of $\mu(K_{1,p-1})$ such that |S| = 3 and $m(\mu(K_{1,p-1})) = 1$. This implies that $GDI(\mu(K_{1,p-1})) \leq |S| + m(\mu(K_{1,p-1}) - S) = 4$. Clearly, |S| and $m(\mu(K_{1,p-1}) - S)$ are minimum, since |S| is a γ_g -set and $m(\mu(K_{1,p-1})) = 1$ is also the minimum, this completes the proof. \square

Theorem 2.13. $GDI(\mu(\overline{K_p})) = p + 2$.

Proof. Let $V(\overline{K_p}) = \{v_1, v_2, ..., v_p\}$ and $V(\mu(\overline{K_p})) = \{v_1, v_2, ..., v_p\} \cup \{v_1', v_2', ..., v_p'\} \cup \{x\}$. Since $\mu(\overline{K_p}) = \overline{K_p} \cup K_{1,p}$, we choose all vertices of $\overline{K_p}$ and central vertex x of $K_{1,p}$ as global dominating set, this means that $S = \{v_1, v_2, ..., v_p, x\}$, since $N(x) = \{v_1, v_2, ..., v_p\}$, and $N(v_i) = \{v_1', v_2', ..., v_p'\}, 1 \le i \le p$ in $\overline{\mu(\overline{K_p})}$, then S is dominating set of $\overline{\mu(\overline{K_p})}$, so S is global dominating set of $\mu(\overline{K_p})$. Thus |S| = p + 1 and $m(\mu(\overline{K_p}) - S) = 1$. Then $GDI(\mu(\overline{K_p})) = p + 2$. Clearly, we can not remove any vertex of S, since all vertices $v_1, v_2, ..., v_p$ are an isolated vertices and the vertex x is adjacent to $v_1', v_2', ..., v_p'$, hence the result. \square

Proposition 2.6. If G is one of the following graphs: $K_{1,3}, P_4, P_5, C_3, C_4$, or $C_3 + e$, then GDI(G) = q.

Observation 2.4 *If G is one of the graphs:* $K_{n,m}$, *where* $n \le m$ *and* m - n = 4, $S_{2,2}, P_p, p = 12, 14, 16$ *or* $C_p, p = 12, 14, 16$, *then* $GDI(G) = \frac{|V(G)|}{2}$.

Remark 2.3. If $G \cong K_p, P_3$, or C_4 , then GDI(G) = p.

Proposition 2.7. For any graph G without isolated vertices, $GDI(G) \ge \frac{(2q-p(p-3))}{2}$.

Proof. Since $GDI(G) \ge \gamma_g(G)$, we get the result by Proposition (1.1). \square

Definition 2.3. [12] The switching of a vertex v of G means removing all the edges incident to v and adding edges joining v to every vertex which are not adjacent to v in G. We denote the resultant graph by G_{psv} .

Theorem 2.14. If C_{psv} is a graph obtained by switching of a vertex in cycle C_p , then

$$GDI(C_{psv}) = \begin{cases} 3, & \text{if } p = 3,4; \\ 4, & \text{if } p = 5; \\ 5, & \text{if } p = 6; \\ \lceil 2\sqrt{p-4} \rceil + 1, & \text{if } p \ge 7. \end{cases}$$

Proof. Let $v_1, v_2, ..., v_p$ be the vertices of C_p , and C_{psv} denote the graph obtained by switching of a vertex v of C_p . Let the switched vertex be v_1 . We have the following cases:

Case 1: p = 3. Since $C_{3sv} \cong K_1 \cup K_2$, then it is clear that $GDI(C_{3sv}) = 3$.

Case 2: p = 4. Since $C_{4sv} \cong K_{1,3}$ and from Proposition (2.1), $GDI(C_{4sv}) = 3$.

Case 3: p = 5. Consider $S = \{v_1, v_3, v_4\}$, a global dominating set of C_{5sv} , and $m(C_{5sv} - S) = 1$. This implies that $GDI(C_{5sv}) \leq |S| + m(C_{5sv} - S) = 4$. Now, we show that the number $|S| + m(C_{5sv} - S)$ is minimum. If the vertex v_1 is removed from set S, then v_1 will not be dominated by any vertex of S in $\overline{C_{5sv}}$, so $S_1 = \{v_3, v_4\}$ is a dominating set of C_{5sv} but not a dominating set of $\overline{C_{5sv}}$. So, $S_1 = \{v_3, v_4\}$ is not a global dominating set of C_{psv} . Hence, S is a minimum. On the other hand, if we suppose that any set S_1 other than S such that $m(C_{5sv} - S_1) \geq 2$, then $|S_1| \geq 3$, hence $|S_1| + m(C_{5sv} - S_1) \geq 5$. Then, for any $S_1, |S_1| + m(C_{5sv} - S_1) > |S| + m(C_{5sv} - S)$. Then $GDI(C_{5sv}) = 4$.

Case 4: p = 6. Consider $S = \{v_1, v_3, v_4, v_5\}$, a global dominating set of C_{6sv} , and $m(C_{6sv} - S) = 1$. This implies that $GDI(C_{6sv}) \leq |S| + m(C_{6sv} - S) = 5$. The proof follows similar to that of case 3. Then $GDI(C_{6sv}) = 5$.

Case 5: For $p \ge 7$. Since $N(v_1) = \{v_3, v_4, ..., v_{p-1}\}$, $N(v_2) = \{v_3\}$ and $N(v_p) = \{v_{p-1}\}$, hence the set $S_1 = \{v_1, v_3, v_{p-1}\}$ is a dominating set of C_{psv} . Since $N(v_1) = \{v_2, v_p\}$ and $N(v_3, v_{p-1}) = \{v_2, v_3, v_4, ..., v_p\}$ in \overline{C}_{psv} , then $S_1 = \{v_1, v_3, v_{p-1}\}$ is a dominating set of C_{psv} and $C_{psv} - S_1 = P_{p-5} \cup 2K_1$, so $m(C_{psv} - S_1) = p - 5$. Let $S_2 = \{v_i/v_i \in I - set \ of \ P_{p-5}\}$. Take $V_1 = \{v_i/v_i \in I - set \ of \ P_{p-5}\}$ and $|V_1| = |S_2|$. Consider $S = S_1 \cup S_2$, then S is a global dominating set of C_{psv} (as $S_1 \subseteq S$), $|S_1| + |S_2| = |S_1| + |V_1|$ and $C_{psv} - S = 2K_1 \cup P_{p-5} - V_1$, hence, $m(C_{psv} - S) = m(2K_1 \cup P_{p-5} - V_1)$. By Theorem (1.2),

$$|S| + m(C_{psv} - S) = |S_1| + |V_1| + m((2K_1 \cup P_{p-5}) - V_1)$$

= $|S_1| + I(2K_1 \cup P_{p-5})$
= $3 + \lceil 2\sqrt{p-4} \rceil - 2 = \lceil 2\sqrt{p-4} \rceil + 1$.

Then

$$GDI(C_{psv}) = \lceil 2\sqrt{p-4} \rceil + 1.$$
 (2.10)

We show that the minimality of $|S| + m(C_{psv} - S)$. If S_3 is any global dominating set of C_{psv} which containing one vertex from S_1 , namely v_1 , and does not containing any vertex of S_2 such that $|S_3| = k < p$. Then

$$|S_3| + m(C_{psv} - S_3) = k + p - k = p > |S| + m(C_{psv} - S).$$
(2.11)

For more details, put $S_3 = \{v_1, v_2, v_p\}$, a global dominating set such that S is $\gamma_g - set$ of $C_{psv}, |S_3| = 3$ and $m(C_{psv} - S_3) = p - 3$, then

$$|S_3| + m(C_{psv} - S_3) = 3 + p - 3 = p > |S| + m(C_{psv} - S).$$
(2.12)

Consider S_5 be another global dominating set of C_{psv} such that $S_5 = S_2 \cup S_4$, where $S_4 = \{v_2, v_p\}$. Then

$$m(C_{psv} - S_5) = p - |S_2| - 2$$
. Therefore,
 $|S_5| + m(C_{psv} - S_5) =$

$$= |S_2| + 2 + p - |S_2| - 2 = p$$

$$> |S| + m(C_{psv} - S).$$
(2.13)

Hence, from (2.10), (2.11), (2.12) and (2.13), $GDI(C_{psv}) = [2\sqrt{p-4}] + 1$. \square

Theorem 2.15. If K_{psv} is a graph obtained by switching of a vertex in K_p , then $GDI(K_{psv}) = p$.

Proof. Let $v_1, v_2, ..., v_p$ be the vertices of K_p , and K_{psv} denotes the graph obtained by switching of a vertex v of K_p . Let the switched vertex be v_1 . Since $K_{psv} \cong K_1 \cup K_{p-1}$, then from Proposition (2.1), $GDI(K_{psv}) = GDI(K_1 \cup K_{p-1}) = p$. \square

Theorem 2.16. If F_{nsv} is a graph obtained by switching of a vertex in F_n , then

$$GDI(F_{nsv}) = \begin{cases} n+2, & \text{if the switched vetex is } v; \\ 5, & \text{if the switched vetex is } v_1. \end{cases}$$

Proof. Let $v, v_1, v_2, ..., v_{2n}$ be the vertices of F_n , and F_{nsv} denotes the graph obtained by switching of a vertex v of F_n . We have the two cases:

Case 1: Let the switched vertex be v as in the Figure 3. Since $F_{nsv} \cong K_1 \cup nK_2$, consider $S = \{v, v_1, v_3, v_5, v_7, ..., v_{2n-1}\}$, a global dominating set of F_{nsv} and $m(F_{nsv} - S) = 1$. Therefore,

$$GDI(F_{nsv}) \le |S| + m(F_{nsv} - S) = n + 2.$$
 (2.14)

We discuss the minimality of $|S| + m(F_{nsv} - S)$. To do it, we must take into consideration of minimality of both |S|and $m(F_{nsv} - S)$. So if we remove the vertex v from the set S, then there does not exist a vertex in S dominating v, and one can note that each v_i and v_{i+1} are adjacent and removal of v_i from set S, leaves v_{i+1} not dominated by any vertex of S, therefore, |S| = n + 1. While in F_{nsv} , the vertex v is enough to be a global dominating set since $N(v) = \{v_1, v_2, ..., v_{2n}\}$, hence S is γ_g set of F_{nsv} . It remains to show that if S_1 is any global dominating set different from S, then $|S_1| + m(F_{nsv} - S_1) \ge n + 2$. Since $m(F_{nsv} - S_1) = 1$, it is clear that S is minimum. If we consider $m(F_{nsv} - S_1) = 0$, then $|S_1| = 2n + 1$ and $|S_1| + m(F_{nsv} - S_1) = 2n + 1 > |S| + m(F_{nsv} - S)$, also if - S_1) \geq 1, $|S_1| + m(F_{nsv} - S_1) \ge |S| + m(F_{nsv} - S)$. Hence, for any global dominating set S_1 ,

$$|S_1| + m(F_{nsv} - S_1) \ge n + 2.$$
 (2.15)

Then from (2.14) and (2.15), $GDI(F_{nsv}) = n + 2$.

Case 2: Let the switched vertex be v_1 as in the Figure 3. Since $N(v) = \{v_2, v_3, ..., v_{2n}\}$, we consider $S = \{v, v_1, v_2\}$, a global dominating set of F_{nsv_1} and $m(F_{nsv_1} - S) = 2$. Therefore

$$GDI(F_{nsv_1}) \le |S| + m(F_{nsv_1} - S) = 5.$$
 (2.16)

To show that the number $|S|+m(F_{nsv_1}-S)$ is minimum, we must show that |S| is minimum and $m(F_{nsv_1}-S)$ is also minimum. Since v_2 is adjacent to the vertices $\{v_1,v_3,v_4,...,v_{2n}\}$ in $\overline{F_{nsv_1}}$, if v_2 is removed from set S, then $\{v_3,v_4,...,v_{2n}\}$, will not be dominated by any vertex in $\overline{F_{nsv_1}}$. Then $S'=\{v,v_1\}$ is not dominating set of $\overline{F_{nsv_1}}$, so S' is not a global dominating set of F_{nsv_1} . Thus S is minimum. For $m(F_{nsv_1}-S)$, if S_1 is any global dominating set other than S, then $|S_1|+m(F_{nsv_1}-S_1)\geq 2$. If $m(F_{nsv_1}-S_1)=1$, then $|S_1|\geq 2n$, so $|S_1|+m(F_{nv_1}-S_1)\geq 2n+1$. If $m(F_{nv_1}-S_1)\geq 2$, it is easy $|S_1|+m(F_{nv_1}-S_1)\geq 5$. Then for any global dominating set S_1 ,

$$|S_1| + m(F_{nsv_1} - S_1) \ge 5.$$
 (2.17)

Therefore, from (2.16), and (2.17), $GDI(F_{nsv_1}) = 5$. \square

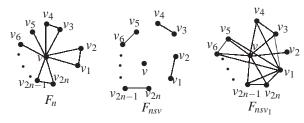


Figure 3: F_n , F_{nsv} , F_{nsv_1}

3 Conclusion

In this paper, we introduced the concept of global domination integrity of graphs, we have obtained the bounds and some properties for global domination integrity of graphs. Relation between global domination integrity and some parameters are established. The global domination integrity of several other families of graphs is an open problem.

References

- K. S. Bagga, L. W. Beineke, R. E. Pippert and R. L. Sedlmeyer, Some bounds and an algorithm for the edgeintegrity of trees, *Ars Combinatoria*, 35A (1993), 225-238.
- [2] C. A. Barefoot, R. Entringer and H. Swart, Vulnerability in graphs - A comparative survey, J. Combin. Math. Combin. Comput., 1 (1987), 12-22.
- [3] G. Chartrand and I. Lesniak, Graphs and Digraphs (2nd edn), (Wadsworth, Monterey, CA), 1986.
- [4] M. Cozzens, D. Moazzami and S. Stueckle, The tenacity of a graph, in graph theory, combinatorics, and algorithms, (*Kalamazoo*, *MI*, *Wiley*, *New York*), **1**, **2** (1992), 1111-1122.
- [5] J. W. Grossman, F. Harary and M. Klawe, Generalized ramsey theorem for graphs, X: Double stars, *Discrete Mathematics*, 28 (1979), 247-254.
- [6] F. Harary, Graph Theory, Addison Wesley, Reading Mass, 1969.

- [7] T. W. Haynes, S. T. Hedetimiemi and P. J. Slater, Fundamentals of domination in graphs, *Morcel Dekker Inc*, 1998.
- [8] L. B. Piazza, F. S. Roberts, and S. K. Stueckle, Edgetenacious networks, Networks, 25 (1995), 7-17.
- [9] E. Sampathkumar, The global domination number of a graph, *J. Math. Phys. Sci.*, **23** (1989), 377-385.
- [10] Sultan Senan Mahde, Veena Mathad and Ali Mohammed Sahal, Hub-integrity of graphs, Bulletin of International Mathematical Virtual Institute, 5 (2015), 57-64.
- [11] R. Sundareswaran and V. Swaminathan, Domination Integrity in Graphs, *Proceedings of International Conference* on Mathematical and Experimental Physics, Prague, 3-8 August (2009), 46-57.
- [12] S. K. Vaidya, S. Srivastav, V. J. Kaneria and K. Kanani, Some cycle related cordial graphs in the context of vertex switching, RMS-Lecture notes, 13 (2010), 243-252.

Sultan Senan Mahde was born in Yemen. He got his B. Sc. degree in Mathematics in 2004 from Thamar university, Thamar, Yemen. He got his M. Sc. degree from King Faisal university, Saudia Arabia. He is right now a Ph.D. student at university of Mysore, India.

He has published 11 research articles in international and national journals of repute in the field of Graph Theory. His area of interest includes graph theory, discrete mathematics, and analysis.

Veena Mathad was born in India. She completed her M. Sc. (1995), and M.Phil. (1996) degree in Mathematics and awarded Ph.D (2005) in Mathematics from Karnatak university, Dharward, India. Her research interests are graph transformations, Domination in graphs,

Distance parameters in graphs, Stability parameters of graphs.