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Abstract: The aim of the present analysis is to apply a relatively receethod, the residual-power series method (RPSM), in
order to obtain efficient analytical numerical solutions &oclass of nonlinear systems of initial value problems \iititely many
singularities. The solution methodology provided the wiieal solutions in terms of a rapidly convergent seriesweiasily computable
components. This novel approach possesses main advargagengared to other exiting methods; it reproduces exant fehen
the solution is polynomial without linearization or pettation; it can be applied without any limitation on the natof the problem,
type of classification, and the number of mesh points. Nurakgxperiments are discussed quantitatively to illustthé theoretical
statements and to show potentiality, superiority, andieability of the proposed technique for solving such noedinsingular system

of differential equations. The results demonstrate rditgland efficiency of the technique developed.
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1 Introduction impossible to be solved analytically, so they would be
attacked using various approximate and numerical
The analysis of nonlinear system of singular initial value mgthods with great interest by several authors. Thergfore,
problems (IVPs) with interpretation of its numerous this class .of smgula_r systems takes a central seat in the
classical applications in chemistry, mechanics, physicgnathematical modeling literature.
and astrophysics including the thermal behaviors of a The residual-power series method (RPSM) is a
spherical cloud of gas, isothermal gas spheres, theories afumerical as well as analytical method for solving many
thermionic currents, electro-hydrodynamics, and stellartypes of systems of ordinary and partial differential
stability structure, etc.1],2,3,4,5,6,7], needs a constantly equations. The method provides the solution in terms of
growing use of suitable method of mathematical modelsconvergent power series with easily computable
to expand the ability to translate mathematical equations£omponents, whereas the analytical approximate solution
into concrete conclusions concerning the should be constructed in the form of a polynomigl9,
phenomenological analysis, compute the best solution1(Q]. In addition to all, the RPSM is different from the
and describe its evolution in time and space. Thistraditional higher order Taylor series method. The Taylor
configuration gives us a strong motivation to search forseries method is computationally expensive for large
methods in order to solve these systems withorders and suited for the linear problems whilst the RPSM
consideration the difficulties produced by singularities.is an alternative procedure for obtaining analytic Taylor
Unfortunately, investigation about system of singular series solution of systems of singular IVPs. By concept of
IVPs is scarce especially discussion on finding solution.residual error, we get a series solution in practice as well
Indeed, in most cases, these systems are almost truncated series solution. This series solution does not
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exhibit the real behaviors of the problem but gives a good  Generally, the solutions of such systems of singular

approximation to the true solution in the given region. IVPs that are obtained using an existed analytical
The attention in this paper is to obtain a symbolic methods are usually very difficult to be exist in this

approximate RPS solution for system of singular IVPs of manner, so it is required to select an effective suitable

the following form:

(a1, 15 w3(@) +F1 (2,4 (@) = 0,

(a2, f2 (43 (@) +F2 (2.5 () = 0,

(ans i (45(@) +Fn (2,4 (2)) = 0,

1)

/ 1
Yn()+ (@)

7j=1

subject to the initial conditions

(z0) = 37

y )

where  y/(z) (y1.(2), Y2(2), ey Y ()
x € [.TQ,{,U()-I-I)],{,U(), b € Rwithb > 0, fz}j : R — R,
F; : [xo,xz0 + 0] x R" — R, 4,5 = 1,2,...,n, are linear
or nonlinear analytical functiong(z), i = 1,2,...,n,
are also analytical functions on the given interval,
a = (ai(z),az(x), ..., an(z)) such thate; € R for
1 = 1,2,..,n, andy;(z),i = 1,2,...,n, are unknown
functions of independent variableon [z, zo + b] to be
determined. Consequently, we assume thdtr) are
analytical functions and the singular systet) é&nd @)
has a unique analytic solution on the given interval.

numerical method to deal with. In this paper, we are
interested in the series solutions of strongly linear and
nonlinear singular systems based on the RPSM. This
method is efficient and easy to use for solving nonlinear
systems of singular [VPs without linearization,
perturbation, or discretization. Furthermore, the pregos
method has the following characteristics. Firstly, the
RPSM obtains Taylor expansion of the solution as well as
the exact solution is available whenever the solution is
polynomial. Moreover, the solutions and all their
derivatives are applicable for each arbitrary point in the
given interval. Secondly, it does not require any
modification while switching from first order up to higher
order; as a result, the RPSM can be applied directly to the
given problem by choosing an appropriate value for the
initial guess approximation. Thirdly, it is not effected by
computation round off errors and one is not faced with
necessity of large computer memory. Finally, it needs
small computational requirements with high precision and
less time.

The outline of this paper is organized as follows. In
the next section, we present basic facts, notations,
formulation and preliminary results related to the RPSM
for system of singular IVPs. In Section 3, The validity
together with capability of the modified technique is
verified through illustrative examples. The approximate
solutions are found in closed form of a convergent series
with easily computable components, which are coincides
with exact solutions. This article ends in Section 4 with

In literature, there are only few researches dealingsome concluding remarks.
with the approximate solutions for systems of singular
IVPs; For instance, the authors ibl] have developed the
Adomian decomposition method (ADM) to get 2 Formulation of solution for system of
approximate solutions for singular linear system Ofsingular IVPs
transistor circuits. In12], the authors have provided the
reproducing kernel Hilbert space method (RKHSM) to In this section, we employ a new technique based on the
further investigation about numerical solutions for RPSM to find out a series solution for system of singular
singular second-order initial/lboundary value problems|VPs associated with a class of initial conditions. Firsg, w
(IBVPs). Also in [13], the authors have introduced the begin with formulate and analyze of the proposed method
variational iteration method (VIM) to solve singular in relation to solve such singular systems. Afterwards, a
perturbation IVPs with delays conditions. In contrast, theconvergence theorem is presented in order to capture the
existence theorem of solutions of IVPs for nonlinear behavior of solutions.
singular discrete systems have been establishetdrbly The RPSM consists of expressing a solution of
monotone iterative technique combined with the methodsingular system1) and @) as a power series expansion
of upper and lower solutions. For a comprehensiveabout the initial pointr = z,. To achieve our goal, we
introduction in this field, we refer tdlp, 16,17,18,19, 20, suppose that these solutions take the following form
21] in order to know more details about singular IVPs
including their history, applications, method of soluson
and so forth. But on the other aspects as well, the
applications of other versions of series solutions to linea
and nonlinear problems can be found RB2[23 24,25, where y; ()
and for numerical solvability of different categories of approximations.
differential equations one can consult the referer& [ Obviously, whenm
27,28,29,30,31,32]. conditions )]

yile) = yim(x).i=

m=0

1,2,...

7n7

Cim (x —x9)™ are terms of

0, yio(x) satisfy initial
such as
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spi(zo) O - 0
yio(x) = yi(ro) = cio,i = 1,2,...,n, wherey; o(x) 0  sph(xg)--- 0
are called the initial guesses of approximations of Fs= . . ) . )
yi(x),i = 1,2,...,n. Thus, after choosing these initial : : E ) :
guesses, we can calculate the others tepms(xz) for 0 0 sph(zo)
m = 1,2,... as well as approximate the solutiopgz) Cl,s Res;
for singular systeml() and @) according to the following Cos Res}
kth truncated series Cs=| 7 | ,andRess= ; Jfors =1,2,3,....
k Cn,s Res;,
yF(z) = Zc» (x —x0)",i=1,2,....,n. (3) ; ; : ; ;
i t,m ) 7y ey T Now, in order to obtain the first approximate solutions
m=0 yz( )i = 1,2,..n, we setk = 1 and
= o cim (, x9)™. Then, we differentiate
Prior to applying the RPSM, we have to rewrite the both sides of equatiorb) W|th respect tor and substitute
singular systeml) and @), to facilitate, as follows x = x0 to get that
Res%(xo) = (Al-l-Pl)Cl-i-Hl, (6)

Pi@ )+ 3 (@15 fuy (@)

(4) where the matrix3; is given by

+p:(@)F, (2, §(2)) = 0.

—

1 (zo) F1 (2o, ¥ (z0))
5

5
As a consequence to substitute il truncated series =7 (0) Fx (w0, y (o))
y¥(z),i =1,2,...,n,in equation §), we have

p

p;(xo)Fn(Z’Eo, y (20))

Based on the fackes®(z9) = Resi(zg) = 0, it is
N i to be noted that equatioB)(consists ofn linear algebraic
m equations associated tovariables, which can be solved
+Zai jfij<26im a:—xo) ) q

m—1
Res E meim (x — x0)™

m=1

directly by using Mathcad 14 software package. That is to
say,

—
+pl ( Z Cm xr — xO ) b (5) Ol = — (Al + Pl)_l Hl .déf ﬁ(l)
= (6%1)7651)7 "'757(7,1)) )

Wherec7n = (c1m,C2my s Cnm),m = 0,1, k,in . T )
which Resk(z),i = 1,2,...,n, are called the the:ith Thus, the first approximation of singular systet) énd
residual functions. (2) can be written as
Furthermore, thesoth residual functionsRes;®(x) 1 ) )
which is defined asRes$°(z) = limy_,o Rest(z), Yi () = yi(wo) + 5;" (x —w0) i = 1,2,..,m

i=1,2,...,n. Obviously thatRes$°(x) = 0 for eachr in

[0, zo + b], which are infinitely differentiable functions Similarly, in order to obtain the second approximate

solutionsy?(x),i = 1,2, ...,n, we setk = 2 andy?(x) =

P k—1
i[kf :k ©o. Specifically, d(i’“’l_ﬁ)esgo(m?) - an:o cim (x — x9)™. Then, we differentiate both sides
gt Resi(z0) = 0, whereas this relation is a of equation §) twice with respect te: and substitute: =
fundamental rule in RPSM and its applications. o to get the following result:

Throughout this paper, we will use the following
notations of matrices in order to simplify and reduce thec,

1 _ de P
—5 (A1 +2P) " (4o + Hy) < 5

computations:
= (8, 8,...82)
RRSEReE :
1) (1) i) where the matriced, and H- are given, respectively, as
2,1 622 """ G2n
A= 7T Do (2) (2 __,<(2)
- @ B D
(1) <1>_,_ (1) 1 Go2 G
ot G o pam | SEEE TR
. N oo e
Where(i(d) = ai,j#iofi?j(cj,o)v i,j=1,2,...,n, Cff% 527)1 C,(f%
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2 2
where Cl-(_Qj) = (ﬁ;l)) ai,jd(cd,—oyf@j(cj’o), and then set = zq in equation {1) to holds that
i,j=1,2,...,n,and , , n , 4
" . Pi(xo)yi(xo) + - ai jyj(x0) 7= fij (yi(wo)) (12)
G11(2o, ¥ (70)) + py (2)G21 (70, Y (20)) =l
r 5 +p}(20)F; (z, ¥ (20)) = 0.
Grz(o, Y (20)) + Py (29)Ga2(20, ¥ (x0))
Hy= : ) On the other hand, from equatior§) @nd @0), for i =

N " . 1,2,...,n, 0ne can get

Gin(o, Y (%0)) + p,,(x9)G2n (w0, ¥ (x0)) . 5
where Gy, (z0, § (z0)) = 2p§(x0)#‘l0Fi(9€0,§(9€0)) bil@) = vilwo) i (@ —zo) ez (w = w0) . (13)
n 4 N By substituting equation 18) into equation 4),

+jzlcj7lmFi(xOvy(x0))v differentiating both sides of resulting equation with

N N . respect toe, and then setting = xy, it follows that
Gai(zo, Y (x0)) = i1 — Fi(xo, y (20), i =1,2,...,n.

The above result is valid due to the fact that ciapi(zo) + X i jcii 7= fij (yi(wo))
d R 2 _ S =1 i (14)
+-Resi(z0) = 0,i = 1,2,..,n. Hence, the second o 7
approximate solutions of singular systef) &nd @) can +pi(w0) F; (2, Y (20)) = 0.
be written as By comparison equatiorl®) with equation {4), we can

20\ — @ (. _ (2) ()2 conclude that; 1 = y}(xzo). Thus, according to equation
Yi (@) = yi(@o) + 57 (z = 20) 6,7 (2 = 2o)". (7) (13), the approximate(sol)ution of singular systet) &nd
This procedure can be repeated till the arbitrary order(2) can be written as
coefficients of the RPS solutions for the singular system _ , 5
(1) and @) are obtained. Additionally, higher accuracy Yi(%) = ¥i(zo) + ¥i(zo) (x — o) + ¢i2 (x — 20)” + ...
can be achieved by evaluating more components of the ) ) o _(15)
solution, that is to say, one can choose laigén the Corre;pondlngly, fqm = 2, differentiating both sldes of
truncation series3). Moreover, as a matter of fact, the €guation 4) twice with respect ta: as well as setting =
next theorem shows convergence of the RPSM to capturéo Yields that
the behavior of the solutions. 2pi(w0)y;/(x0) + p;/(:co)y;(xo)

Theorem 1.Suppose that y;(z),i = 1,2,...,n, are the y;(xo)%fm (yi(z0))

exact solutions for singular system (1) and (2). Then, the + Z @i,,j / 2.4 e
approximate solutions obtained by the RPSM are in fact =1 ;L (4 (x0)) dyj Ji.g (ilo)) (16)
the Taylor expansion of y; (). ! (o0 ml:}' (%0, ¥ (x0))
+2p;(Zo) | _ 0 R
Proof.Let the approximate solutions for singular system 0 ; Yj (xo)aijl (o, 7(3:0))
(1) and @) be taken the following form +p/ (x0)F, (x;, Y (x0)) = 0.

Ui(x) = cio +ci1 (@ — m0) +cia (@ —20)? + ..y (8) I contrast, by substituting 16) into equation 4),
differentiating both sides of resulting equation twicehwit

fori = 1,2,...,n. Now, in order to prove the theorem, it . .
! A P respect tac, and then setting = z, it follows that

is enough to show that the coefficients,, in equation §)
will be as follows Ac; opi (o) +p§’($0)y;(x0)

1 m . n 201‘ 4 IRAVAvY
Ciym = ﬁyf )(330),2 = 1, 2, ey M. (9) + Z ai. 72/dyjf7.72(%12( 0))
: j=1 +(yj(330)) me (yi(o))
for eachm = 0,1, ..., wherey;(z),i = 1,2, ...,n, are the 2 F; (xo 7(:5(;)) a7
exact solutions for singular systert) @nd @). Clear that 2! (o) B F AT )
for m = 0, the initial conditions 2) gives Pilto) | — 5"y (w0) 7, F (o, Y (20))
j=1 :
Ci,o = yi(xo),z’ = 1, 2, o, n. (10) +p2/($0)Fi ($Q, 7(%0)) = 0
Consequently, form = 1, differentiate both sides of Again, by comparison equatioi®) with equation 17),
equation 4) with respect tar to obtain we can conclude that » = 14/ (o). Thus, according to
) , , equation {5), the approximate solution of singular system
pi(@)y; (@) + pi()y;(2) (1) and @) can be written as
+ 20 iy (@) 3 fi (yi() N 1
j=u A i) = yi(z0)+yi(w0) (& = 20)+ 59} (w0) (& — w0)"+....
+pi(@)F; (2, 7 () (11) o , _
aiFi (z, 7(3;)) _ By continuing in above procedure, it can easily prove that
n v ’ (m) .
+p;(z) 1N 0 =0, Cim = %% (x0),t = 1,2,...,n, form = 3,4,....
J; yj(@) 55 Fi (2, Y (@) Thus, the proof of the theorem is complete.
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Corollary 1.Let y;(x),i = 1,2,...,n, be a polynomial in terms of a finite number of certain well-known
for some i, then the RPSM will obtain the exact solution. functions. Typically, these well-known functions are
defined to be elementary functions. The aim now is to
Now, it will be convenient to have a notation for the discover the exact closed-form solution for equanm (
error in the approximation;(z) ~ y; (). Accordingly,  and 9. Let y¥(x) = 0 andy9(z) = 0 be the initial
let Rem(x) be the difference between(z) and itskth  guesses approximations, then théh truncated series
Taylor polynomial that obtained by the RPSM; that is, aboutz, = 0 for equations18) and (L9) is given by

k k
Remi(z)=y i(x) —y;(z)
oo
= > |yfm)(%) (x — )", vi(@) = 3 cma™ =izt pr’ + .+ e gt
m=0
m=k+1

where the function?em’(z),i = 1,2, ...,n, are called yh(x) = 3 coma™ = o1 + 202 + .. + o gt
m=0

the kth remainder for the RPS approximationp{z). In
fact, it often happens that the remaindeRem?(z)
become smaller and smaller, approaching zerd; gsts

large. Using the RPS algorithm, the values of the

coefficientsc; ,, cam, m = 1,2,3,..., k, can be found
by constructing the followingth residual functions

3 Numerical results and discussion
k
k — 3 m—1 3
In this section, we propose a few numerical simulations of ££¢51 (z) = xsinh(z) mgl meyma™ " + (zsinh(z)
specific examples for singular systert) (and @) to

demonstrate the accuracy and applicability of the RPSM. - _ X m R .
The method provides the solutions in terms of convergent sin(z) - 2) mZ::o c1ma™ + (1 = 3wsinh(z) cos(z))
series with easily computable components, improves the

convergence of the series solution, provides immediate < 3 coma™ — xsinh(x) f1 (w)) ,

and visible symbolic terms of analytical solutions, as well =

as numerical approximate solutions to both linear and k
nonlinear test problems. Specifically, the solvabilityldt ~ Res5(z) = > mcoma™ ! —In(2? + 1) Z €1 mx™
more complex second-order system of singular IVPs is m=1

discussed in last example of our test problems and the i

results have shown remarkable performance. The method +4sin(e”) 2_30 Camz™ — fa().

was used in a direct way without using linearization, "= (20)
perturbation or restrictive assumptions. Throughout this
paper, all computations are implemented by using
Mathcad 14 software package.

Therefore, the 1st-order approximations of the RPS
solutions according to the residual functior0)( are
yi(z) = 0 andyi(z) = 0. Thatis,c;; = 0 andez; = 0
Example 1.Consider the following first-order linear system using-& Res1(0) = 0 and-L Res}(0) = 0. Similarly, the

of singular IVP: 2nd-order approximations of the RPS solutions are
yi(z) = x? andy3(z) = 2% Thatis,c;o = 1 and
yi(z) + (Sin(x) — ﬁh(m)) y1 () c22 = 1 using %Res%(()) = 0 and d2R682(0) = 0.

1 3 cos B Consequently, the 10th-order approximations of the RPS
+ (msinh(ﬂc) - COb(x)) y2(2) = fi(2), solutions ofy; (x) and y»(x) for system 18) and (L9)
yh(z) — In(2? + 1)yr (2) + 4sin(e”)ya(z) = fo(2), according to the facts tha{%Resl (0) = 0 and

(18) 47 Resl®(0) = 0 are given, respectively, as
subject to the initial conditions

y1(0) = 0,y2(0) = 0, (19) yi%(z) = 2% + 2% + %x‘* + %x5 + ixﬁ + Lox7

. T 2ze” +sin(z 8
where{l)( ) (— )((1 + 51n(x));2(+)2x)e + et + 7252° + zo52° + 10857 2 hait?,
3x cos(x , 2(x = 3=0
é%(;;llea:[bmé]e ))sin(x) + wcos(z) — x?e®In(z? + 1), ylO(z) = 22 — %x + 1_20966 _ ng I 362880‘T10

4
x20t2,
In mathematics, an expression is said to be a jg( D e

closed-form expression if it can be expressed analytically (21)
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Correspondingly, the general approximation forms ofwhere f;(z) = 1 sec (2?) tan(z?) — (1 + 2z)sin(z?),

solutions of system1@) and (L9) are given by fa(z) = %CSC (;ﬁ) cot(x?)+(2x—1) cos(z?), andz > 0.
yi(x) = X cima™ =2 Y a1l = 2%, As we mentioned earlier, assume that the initial guess
m=1 3=0 approximation, which is the 1st-order approximation, has
o= m_ By (22) the formyi(z) = 1 andy;(z) = 0. Then, the 15th
ya(x) = ComT" =T ZO(— ) G ® truncated series of the RPS solutionsyfz) andzy,(x)
m= j=

for singular system24) and @5). is given by

= wsin(z), 15 1.4, 1.8 1,12
) =1—- 352" + 552° — =557

which are compatible with the exact solutions for system v (@) 2 2 720

(18) and (19).

Incidentally, the concept of the word "accuracy” =0
refers to how closely a computed or measured value 5 s 16 10 Lo
agrees with the true value. To show the accuracy of the Y (z) = 2° — 52° 4+ 1350 — 5555
present method, we report four types of error functions; 3 , _
The first one is called the absolute error that commonly = > (-1) (jSl)!x‘““.
denoted by  Ewtk and defined as j=0

k _ k . H
Eut;(z) = |y:(z) - y; (x)]; The second one is called the  q1,,¢ he exact solution of singular systed)(and

relative error that denoted bielf and also defined as (25 has a general form that coincides with the exact
Rel¥(z) = Extk(z)/|y:(x)|; The third one is called the ggition

consecutive error that denoted IGon? and defined as
Conk(z) = |yls+1(x) — yf(x)\; Whereas, the last one is yi(z) =Y (1) Lo (x2)2] = cos(a2),

3

called the residual error that denoted BY2S¥(x) and 3=0
i (26)
defined as follows @) io:( yo ( 2)2j+1 (2)
Yy2(x) = 1)) ==y (@ = sin(x?).
pi() FLyk (@) =
Resi(z) = |+ X0 aiy (fiy (vj(@)) |, (23) Consequently, to illustrate the convergence of the

, , k approximate solutiong/¥(z) and y5(z) to the exact
+pi(@)F; (2, Y () solutionsy; (x) andy; (z) with respect to théth-order of
where i — 1,2, o _  the solutions, we present numerical results of Example

(W} (2), v (@), vk (@) , 2 € [ro.70 + b andyl(z),  graphically by Figuresl and 2, which show the exact

i = 1,2,...,n, are thekth-order approximations of the sglutlons and some iterated approximatigyf§z) and

exact solutiony; (), which is obtained by the RPSM. yz(z) for k = 5,10, 15,20, respectively. These graphs
Let us carry out an error analysis of the proposedreveal yhat the proposed. methoql is an effective and

method for this example. In Tablels and 2, the exact Cconvenient method for solving nonlinear singular systems

error has been calculated for variousin the interval ~ With less computational and iteration steps.

[0,2] to measure the extent of agreement between the

kth-order approximation of the RPS solutions when

k = 10,15,20. These two tables illustrates the rapid -

convergence of the method by increasing the orders of /

approximation. It can be seen that the exact errors become /

smaller as the order of solutions increases, that is, as we st

progress through more iterations. However, the errors

indicators confirm the convergence of the method with

respect to theéth-order of the solutions. As a result, the

RPSM provides us with the accurate approximate

solutions of singular systenmi®) and (9).

Example 2.Consider the following first-order nonlinear
system of singular IVP:

Yi (@) = y2(x) + £ (11 () P a(@)
Ya(@) —y1 () = L (v2(2) (@)
subject to the initial conditions

fi(=), (24) Fig. 1 Plots of the exact solutiog, (x) for Example3.
f2 (x)v

However, from the graphical results in Figures 1 and
2, it can be seen that the approximate solutighis) and
y1(0) = 1,92(0) = 0, (25)  y&(x) that obtained by using the RPSM match the results
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Table1 Absolute error forl0th, 15th, and20th-order approximations af: (x) for Examplel.

Node Ext’ (z) Exti® (z) Exti® (z)

0.0 0 0 0

0.2 5.75858805 x 10~ 0 0

0.4 1.20381011 x 10~ 1° 0 0

0.6 1.06320118 x 108 3.33066907 x 10~1° 0

0.8 2.57127877 x 1077 3.40616424 x 10713 4.44089210 x 10716
1.0 3.05861778 x 10~° 1.22857280 x 10~ 1? 4.44089210 x 10716
1.2 2.32299063 x 107° 2.30408581 x 10~1° 1.77635684 x 10715
14 1.29466624 x 10~ 2.75367107 x 107° 1.06581410 x 10~ 14
1.6 5.75356054 x 10~ 2.36658408 x 1078 1.70530257 x 10713
1.8 2.15108918 x 1073 1.58117871 x 10”7 2.06412665 x 10712
2.0 7.01804652 x 1072 8.66165738 x 107 1.91455740 x 10~

Table2 Absolute error forl0th, 15th, and20th-order approximations af. (z) for Examplel.

Node Ext? () Ext;” () Ext? ()

0.0 0 0 0

0.2 1.04083409 x 1016 0 0

0.4 4.19858592 x 10713 0 0

0.6 5.44073675 x 10~ 2.22044605 x 1071¢ 0

0.8 1.71452641 x 10~° 2.14273044 x 10~ 0

1.0 2.48922799 x 1078 7.61946062 x 10713 0

1.2 2.21319329 x 1076 1.40643053 x 10~ 4.44089210 x 10716
14 1.40262258 x 10~° 1.65358172 x 10710 2.22044605 x 1071¢
1.6 6.93722149 x 10~ 1.39747480 x 107° 6.66133815 x 10~1¢
1.8 2.83883278 x 107° 9.17709908 x 10~° 7.99360578 x 10~1°
2.0 1.00031710 x 104 4.93879841 x 1078 8.14903700 x 10~ !4

Fig. 2 Plots of the exact solutiog, (z) for Example3.

Example 3.Consider the following second-order nonlinear

system of singular IVPs:

yi (x) = sin(y(x)) — 2y1(2) — (1 — ) cos(x), 2 > 0,

cos? (x)

Y2(2) = Ty

1 / 2 2
+ (@) —esc*(a),

subject to the initial conditions

y1(0) = 1,51(0) = 0,42(0) = 0,y5(0) = .

of the exact solutiory; (z) andys2(x) very well, which
implies that the errors become smaller as the order of

(27)

(28)

the Using the RPS algorithm, if we select the first two
terms as initial guesses of the approximations as
yi(z) = 1, yb(x) = 0, 3(z) = 0,43(x) = =, then the

approximate solutions increases, and confirm
convergence of the RPSM with respect to ifle-order of
y¥(z),i = 1,2 of the region under consideration.

values of the coefficientsc;,, and cy,, for

m = 3,4,...,k, of the kth truncated series3] can be

found by constructing the followingkth residual

functions, as well as wusing the fact that
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(dfkf_ll Res,f) (29) = (%Resg) (z0) = 0, 4 Concluding remarks

The goal of the present work was to develop an efficient
Resh(z) = o 2’“: m(m — 1)c1m (z — 20)™ 2 and accurate method for the solutions of system of
! - 1ym 0 singular initial value problems. This goal has been

m=2
. achieved by introducing the residual power series method
— zsin ( S megm (z — Io)m1> to solve such classes of singular system. We can conclude
m=1 ’ that the proposed method is powerful and efficient
k technique in finding approximate solution for both linear
+ 3 e1m (x —20)™ + (. — 1) cos(z), and nonlinear system of singular problems. The proposed
m=0 algorithm produced a rapidly convergent series with
L easily computable components using symbolic
sin” (z) > m(m —1) computation software. There is an important point to
m=2 s make here, the results obtained by the RPS method are
Resk(z) — ca,m (T — x0) ! - . .
ess(x) = A 2 very effeptlve and convenient in linear and .nonlmee}r
_ ( ) mclm(x—xo)m_l) cases with Iess computatlongl_work and time. _Thls
m=1 confirms our belief that the efficiency of our technique
+sin? (z) csc? (z) gives it much wider applicability in the future for general
k 2 classes of linear and nonlinear problems.
X <1+ > Cim (x—xo)m> )
m=0
— sin®(z) cos® (z). 9) References
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