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Abstract: The aim of the present analysis is to apply a relatively recent method, the residual-power series method (RPSM), in
order to obtain efficient analytical numerical solutions for a class of nonlinear systems of initial value problems withfinitely many
singularities. The solution methodology provided the analytical solutions in terms of a rapidly convergent series with easily computable
components. This novel approach possesses main advantage as compared to other exiting methods; it reproduces exact form when
the solution is polynomial without linearization or perturbation; it can be applied without any limitation on the nature of the problem,
type of classification, and the number of mesh points. Numerical experiments are discussed quantitatively to illustrate the theoretical
statements and to show potentiality, superiority, and applicability of the proposed technique for solving such nonlinear singular system
of differential equations. The results demonstrate reliability and efficiency of the technique developed.
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1 Introduction

The analysis of nonlinear system of singular initial value
problems (IVPs) with interpretation of its numerous
classical applications in chemistry, mechanics, physics
and astrophysics including the thermal behaviors of a
spherical cloud of gas, isothermal gas spheres, theories of
thermionic currents, electro-hydrodynamics, and stellar
stability structure, etc. [1,2,3,4,5,6,7], needs a constantly
growing use of suitable method of mathematical models
to expand the ability to translate mathematical equations
into concrete conclusions concerning the
phenomenological analysis, compute the best solution,
and describe its evolution in time and space. This
configuration gives us a strong motivation to search for
methods in order to solve these systems with
consideration the difficulties produced by singularities.
Unfortunately, investigation about system of singular
IVPs is scarce especially discussion on finding solution.
Indeed, in most cases, these systems are almost

impossible to be solved analytically, so they would be
attacked using various approximate and numerical
methods with great interest by several authors. Therefore,
this class of singular systems takes a central seat in the
mathematical modeling literature.

The residual-power series method (RPSM) is a
numerical as well as analytical method for solving many
types of systems of ordinary and partial differential
equations. The method provides the solution in terms of
convergent power series with easily computable
components, whereas the analytical approximate solution
should be constructed in the form of a polynomial [8,9,
10]. In addition to all, the RPSM is different from the
traditional higher order Taylor series method. The Taylor
series method is computationally expensive for large
orders and suited for the linear problems whilst the RPSM
is an alternative procedure for obtaining analytic Taylor
series solution of systems of singular IVPs. By concept of
residual error, we get a series solution in practice as well
a truncated series solution. This series solution does not
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exhibit the real behaviors of the problem but gives a good
approximation to the true solution in the given region.

The attention in this paper is to obtain a symbolic
approximate RPS solution for system of singular IVPs of
the following form:

y′1(x)+
1

p1(x)

n∑
j=1

(a1,,jf1,j (yj(x)))+F 1

(
x,

→

y (x)
)
= 0,

y′2(x)+
1

p2(x)

n∑
j=1

(a2,,jf2,j (yj(x)))+F 2

(
x,

→

y (x)
)
= 0,

...

y′n(x)+
1

pn(x)

n∑
j=1

(an,jfn,j (yj(x)))+Fn

(
x,

→

y (x)
)
= 0,

(1)
subject to the initial conditions

→

y (x0) =
→

α, (2)

where
→

y (x) = (y1(x), y2(x), ..., yn(x)) ,
x ∈ [x0, x0 + b] , x0, b ∈ R with b > 0, fi,j : R → R,
Fi : [x0, x0 + b] × R

n → R, i, j = 1, 2, ..., n, are linear
or nonlinear analytical functions,pi(x), i = 1, 2, ..., n,
are also analytical functions on the given interval,
→

α = (α1(x), α2(x), ..., αn(x)) such thatαi ∈ R for
i = 1, 2, ..., n, and yi(x), i = 1, 2, ..., n, are unknown
functions of independent variablex on [x0, x0 + b] to be
determined. Consequently, we assume thatyi(x) are
analytical functions and the singular system (1) and (2)
has a unique analytic solution on the given interval.

In literature, there are only few researches dealing
with the approximate solutions for systems of singular
IVPs; For instance, the authors in [11] have developed the
Adomian decomposition method (ADM) to get
approximate solutions for singular linear system of
transistor circuits. In [12], the authors have provided the
reproducing kernel Hilbert space method (RKHSM) to
further investigation about numerical solutions for
singular second-order initial/boundary value problems
(IBVPs). Also in [13], the authors have introduced the
variational iteration method (VIM) to solve singular
perturbation IVPs with delays conditions. In contrast, the
existence theorem of solutions of IVPs for nonlinear
singular discrete systems have been established in [14] by
monotone iterative technique combined with the method
of upper and lower solutions. For a comprehensive
introduction in this field, we refer to [15,16,17,18,19,20,
21] in order to know more details about singular IVPs
including their history, applications, method of solutions,
and so forth. But on the other aspects as well, the
applications of other versions of series solutions to linear
and nonlinear problems can be found in [22,23,24,25],
and for numerical solvability of different categories of
differential equations one can consult the reference [26,
27,28,29,30,31,32].

Generally, the solutions of such systems of singular
IVPs that are obtained using an existed analytical
methods are usually very difficult to be exist in this
manner, so it is required to select an effective suitable
numerical method to deal with. In this paper, we are
interested in the series solutions of strongly linear and
nonlinear singular systems based on the RPSM. This
method is efficient and easy to use for solving nonlinear
systems of singular IVPs without linearization,
perturbation, or discretization. Furthermore, the proposed
method has the following characteristics. Firstly, the
RPSM obtains Taylor expansion of the solution as well as
the exact solution is available whenever the solution is
polynomial. Moreover, the solutions and all their
derivatives are applicable for each arbitrary point in the
given interval. Secondly, it does not require any
modification while switching from first order up to higher
order; as a result, the RPSM can be applied directly to the
given problem by choosing an appropriate value for the
initial guess approximation. Thirdly, it is not effected by
computation round off errors and one is not faced with
necessity of large computer memory. Finally, it needs
small computational requirements with high precision and
less time.

The outline of this paper is organized as follows. In
the next section, we present basic facts, notations,
formulation and preliminary results related to the RPSM
for system of singular IVPs. In Section 3, The validity
together with capability of the modified technique is
verified through illustrative examples. The approximate
solutions are found in closed form of a convergent series
with easily computable components, which are coincides
with exact solutions. This article ends in Section 4 with
some concluding remarks.

2 Formulation of solution for system of
singular IVPs

In this section, we employ a new technique based on the
RPSM to find out a series solution for system of singular
IVPs associated with a class of initial conditions. First, we
begin with formulate and analyze of the proposed method
in relation to solve such singular systems. Afterwards, a
convergence theorem is presented in order to capture the
behavior of solutions.

The RPSM consists of expressing a solution of
singular system (1) and (2) as a power series expansion
about the initial pointx = x0. To achieve our goal, we
suppose that these solutions take the following form

yi(x) =

∞∑

m=0

yi,m(x), i = 1, 2, ..., n,

where yi,m(x) = ci,m (x− x0)
m are terms of

approximations.
Obviously, whenm = 0, yi,0(x) satisfy initial

conditions (2) such as
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yi,0(x) = yi(x0) = ci,0, i = 1, 2, . . . , n, whereyi,0(x)
are called the initial guesses of approximations of
yi(x), i = 1, 2, . . . , n. Thus, after choosing these initial
guesses, we can calculate the others termsyi,m(x) for
m = 1, 2, . . . as well as approximate the solutionsyi(x)
for singular system (1) and (2) according to the following
kth truncated series

yki (x) =
k∑

m=0

ci,m (x− x0)
m , i = 1, 2, ..., n. (3)

Prior to applying the RPSM, we have to rewrite the
singular system (1) and (2), to facilitate, as follows

pi(x)y
′

i(x)+
n∑

j=1

(ai,,j fi,j (yj(x)))

+pi(x)F i

(
x,

→

y (x)
)
= 0.

(4)

As a consequence to substitute thekth truncated series
yki (x), i = 1, 2, ..., n, in equation (4), we have

Reski (x) = pi(x)

k∑

m=1

mci,m (x− x0)
m−1

+

n∑

j=1

ai,,jfi,j

(
k∑

m=0

ci,m (x− x0)
m

)

+pi(x)F i

(
x,

k∑

m=0

→

cm (x− x0)
m

)
, (5)

where
→

cm = (c1,m, c2,m, ..., cn,m),m = 0, 1, ..., k, in
which Reski (x), i = 1, 2, ..., n, are called the thekth
residual functions.

Furthermore, the∞th residual functionsRes∞i (x)
which is defined asRes∞i (x) = limk→∞ Reski (x),
i = 1, 2, ..., n. Obviously thatRes∞i (x) = 0 for eachx in
[x0, x0 + b], which are infinitely differentiable functions
at x = x0. Specifically, dk−1

dxk−1Res∞i (x0) =
dk−1

dxk−1Reski (x0) = 0, whereas this relation is a
fundamental rule in RPSM and its applications.

Throughout this paper, we will use the following
notations of matrices in order to simplify and reduce the
computations:

A1=




ζ
(1)
1,1 ζ

(1)
1,2 · · · ζ

(1)
1,n

ζ
(1)
2,1 ζ

(1)
2,2 · · · ζ

(1)
2,n

...
...

. . .
...

ζ
(1)
n,1 ζ

(1)
2,n · · · ζ

(1)
n,n



,

whereζ(1)i,j = ai,j
d

dcj,0
fi,j(cj,0), i, j = 1, 2, ..., n,

Ps=




sp′1(x0) 0 · · · 0

0 sp′2(x0) · · · 0
...

...
.. .

...
0 0 · · · sp′n(x0)


 ,

Cs=




c1,s

c2,s
...

cn,s


 , andRess=




Ress1
Ress2

...
Ressn


 , for s = 1, 2, 3, ....

Now, in order to obtain the first approximate solutions
y1i (x), i = 1, 2, ..., n, we set k = 1 and
y1i (x) =

∑1
m=0 ci,m (x− x0)

m. Then, we differentiate
both sides of equation (5) with respect tox and substitute
x = x0 to get that

Res1i (x0) = (A1 + P1)C1 +H1, (6)

where the matrixB1 is given by

H1=




p′1(x0)F1(x0,
→

y (x0))

p′2(x0)F2(x0,
→

y (x0))

...
p′n(x0)Fn(x0,

→

y (x0))



.

Based on the factRes∞i (x0) = Res1i (x0) = 0, it is
to be noted that equation (6) consists ofn linear algebraic
equations associated ton variables, which can be solved
directly by using Mathcad 14 software package. That is to
say,

C1 = − (A1 + P1)
−1

H1 :
def
=

→

β(1)

=
(
β
(1)
1 , β

(1)
2 , ..., β(1)

n

)
;

Thus, the first approximation of singular system (1) and
(2) can be written as

y1i (x) = yi(x0) + β
(1)
i (x− x0) , i = 1, 2, ..., n.

Similarly, in order to obtain the second approximate
solutionsy2i (x), i = 1, 2, ..., n, we setk = 2 andy2i (x) =∑2

m=0 ci,m (x− x0)
m. Then, we differentiate both sides

of equation (5) twice with respect tox and substitutex =
x0 to get the following result:

C2 = −
1

2
(A1 + 2P2)

−1
(A2 +H2) :

def
=

→

β(2)

=
(
β
(2)
1 , β

(2)
2 , ..., β(2)

n

)
,

where the matricesA2 andH2 are given, respectively, as

A2=




ζ
(2)
1,1 ζ

(2)
1,2 · · · ζ

(2)
1,n

ζ
(2)
2,1 ζ

(2)
2,2 · · · ζ

(2)
2,n

...
...

. . .
...

ζ
(2)
n,1 ζ

(2)
2,n · · · ζ

(2)
n,n



,
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where ζ
(2)
i,j =

(
β
(1)
j

)2
ai,j

d2

d(cj,0)
2 fi,j(cj,0),

i, j = 1, 2, ..., n, and

H2=




G11(x0,
→

y (x0)) + p
′′

1(x0)G21(x0,
→

y (x0))

G12(x0,
→

y (x0)) + p
′′

2(x0)G22(x0,
→

y (x0))
...

G1n(x0,
→

y (x0)) + p
′′

n(x0)G2n(x0,
→

y (x0))



,

whereG1i(x0,
→

y (x0)) = 2p′i(x0)
d

dx0

Fi(x0,
→

y (x0))

+
n∑

j=1

cj,1
d

dcj,0
Fi(x0,

→

y (x0)),

G2i(x0,
→

y (x0)) = ci,1 − Fi(x0,
→

y (x0), i = 1, 2, ..., n.

The above result is valid due to the fact that
d
dx
Res2i (x0) = 0, i = 1, 2, ..., n. Hence, the second

approximate solutions of singular system (1) and (2) can
be written as

y2i (x) = yi(x0) + β(1)
i (x− x0)+β

(2)
i (x− x0)

2 . (7)

This procedure can be repeated till the arbitrary order
coefficients of the RPS solutions for the singular system
(1) and (2) are obtained. Additionally, higher accuracy
can be achieved by evaluating more components of the
solution, that is to say, one can choose largek in the
truncation series (3). Moreover, as a matter of fact, the
next theorem shows convergence of the RPSM to capture
the behavior of the solutions.

Theorem 1.Suppose that yi(x), i = 1, 2, ..., n, are the
exact solutions for singular system (1) and (2). Then, the
approximate solutions obtained by the RPSM are in fact
the Taylor expansion of yi(x).

Proof.Let the approximate solutions for singular system
(1) and (2) be taken the following form

ỹi(x) = ci,0 + ci,1 (x− x0) + ci,2 (x− x0)
2
+ ...., (8)

for i = 1, 2, ..., n. Now, in order to prove the theorem, it
is enough to show that the coefficientsci,m in equation (8)
will be as follows

ci,m =
1

m!
y
(m)
i (x0), i = 1, 2, ..., n. (9)

for eachm = 0, 1, ..., whereyi(x), i = 1, 2, ..., n, are the
exact solutions for singular system (1) and (2). Clear that
for m = 0, the initial conditions (2) gives

ci,0 = yi(x0), i = 1, 2, ..., n. (10)

Consequently, form = 1, differentiate both sides of
equation (4) with respect tox to obtain

pi(x)y
′′

i (x) + p
′

i(x)y
′

i(x)

+
n∑

j=1

ai,,jy
′

j(x)
d

dyj
fi,j (yi(x))

+p′i(x)F i (x,
−→y (x))

+pi(x)




∂
∂x

Fi (x,
−→y (x))−

n∑
j=1

y′j(x)
∂

∂yj
Fi (x,

−→y (x))


= 0,

(11)

and then setx = x0 in equation (11) to holds that

p′i(x0)y
′

i(x0) +
n∑

j=1

ai,,jy
′

j(x0)
d

dyj
fi,j (yi(x0))

+p′i(x0)Fi (x,
−→y (x0)) = 0.

(12)

On the other hand, from equations (8) and (10), for i =
1, 2, ..., n, one can get

ỹi(x) = yi(x0)+ci,1 (x− x0)+ci,2 (x− x0)
2
+.... (13)

By substituting equation (13) into equation (4),
differentiating both sides of resulting equation with
respect tox, and then settingx = x0, it follows that

ci,1p
′

i(x0) +
n∑

j=1

ai,,jcj,1
d

dyj
fi,j (yi(x0))

+p′i(x0)Fi (x,
−→y (x0)) = 0.

(14)

By comparison equation (12) with equation (14), we can
conclude thatci,1 = y′i(x0). Thus, according to equation
(13), the approximate solution of singular system (1) and
(2) can be written as

ỹi(x) = yi(x0) + y′i(x0) (x− x0) + ci,2 (x− x0)
2
+ ....

(15)
Correspondingly, form = 2, differentiating both sides of
equation (4) twice with respect tox as well as settingx =
x0 yields that

2pi(x0)y
′′

i (x0) + p
′′

i (x0)y
′

i(x0)

+
n∑

j=1

ai,,j

[
y′j(x0)

d
dyj

fi,j (yi(x0))

+
(
y′j(x0)

)2 d2

dy2

j

fi,j (yi(x0))

]

+2p′i(x0)




∂
∂x

Fi (x0,
−→y (x0))

−
n∑

j=1

y′j(x0)
∂

∂yj
Fi (x0,

−→y (x0))




+p′′i (x0)Fi (x0,
−→y (x0)) = 0.

(16)

In contrast, by substituting (15) into equation (4),
differentiating both sides of resulting equation twice with
respect tox, and then settingx = x0, it follows that

4ci,2pi(x0) + p
′′

i (x0)y
′

i(x0)

+
n∑

j=1

ai,,j

[
2ci,2

d
dyj

fi,j (yi(x0))

+
(
y′j(x0)

)2 d2

dy2

j

fi,j (yi(x0))

]

+2p′i(x0)




∂
∂x

Fi (x0,
−→y (x0))

−
n∑

j=1

y′j(x0)
∂

∂yj
Fi (x0,

−→y (x0))




+p′′i (x0)Fi (x0,
−→y (x0)) = 0.

(17)

Again, by comparison equation (16) with equation (17),
we can conclude thatci,2 = 1

2y
′′

i (x0). Thus, according to
equation (15), the approximate solution of singular system
(1) and (2) can be written as

ỹi(x) = yi(x0)+y′i(x0) (x− x0)+
1

2
y′′i (x0) (x− x0)

2
+....

By continuing in above procedure, it can easily prove that
ci,m = 1

m!y
(m)
i (x0), i = 1, 2, ..., n, for m = 3, 4, . . ..

Thus, the proof of the theorem is complete.
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Corollary 1.Let yi(x), i = 1, 2, . . . , n, be a polynomial
for some i, then the RPSM will obtain the exact solution.

Now, it will be convenient to have a notation for the
error in the approximationyi(x) ≈ yki (x). Accordingly,
let Remk

i (x) be the difference betweenyi(x) and itskth
Taylor polynomial that obtained by the RPSM; that is,

Remk
i (x)= y i(x) − y

k

i (x)

=

∞∑

m=k+1

1

m!
y
(m)
i (x0) (x− x0)

m
,

where the functionsRemk
i (x), i = 1, 2, ..., n, are called

thekth remainder for the RPS approximation ofyi(x). In
fact, it often happens that the remaindersRemk

i (x)
become smaller and smaller, approaching zero, ask gets
large.

3 Numerical results and discussion

In this section, we propose a few numerical simulations of
specific examples for singular system (1) and (2) to
demonstrate the accuracy and applicability of the RPSM.
The method provides the solutions in terms of convergent
series with easily computable components, improves the
convergence of the series solution, provides immediate
and visible symbolic terms of analytical solutions, as well
as numerical approximate solutions to both linear and
nonlinear test problems. Specifically, the solvability of the
more complex second-order system of singular IVPs is
discussed in last example of our test problems and the
results have shown remarkable performance. The method
was used in a direct way without using linearization,
perturbation or restrictive assumptions. Throughout this
paper, all computations are implemented by using
Mathcad 14 software package.

Example 1.Consider the following first-order linear system
of singular IVP:

y′1(x) +
(
sin(x)− 2

x sinh(x)

)
y1(x)

+
(

1
x sinh(x) − 3 cos(x)

)
y2(x) = f1(x),

y′2(x)− ln(x2 + 1)y1(x) + 4 sin(ex)y2(x) = f2(x),
(18)

subject to the initial conditions

y1(0) = 0, y2(0) = 0, (19)

wheref1(x) = ((1 + sin(x))x2 + 2x)ex + 2xex+sin(x)
sinh(x) −

3x cos(x) sin(x), f2(x) =
(1 + 4x sin(ex)) sin(x) + x cos(x) − x2ex ln(x2 + 1),
andx ∈ [0, 2].

In mathematics, an expression is said to be a
closed-form expression if it can be expressed analytically

in terms of a finite number of certain well-known
functions. Typically, these well-known functions are
defined to be elementary functions. The aim now is to
discover the exact closed-form solution for equations (18)
and (19). Let y01(x) = 0 and y02(x) = 0 be the initial
guesses approximations, then thekth truncated series
aboutx0 = 0 for equations (18) and (19) is given by

yk1 (x) =
k∑

m=0
c1,mxm = c1,1x+ c1,2x

2 + ...+ c1,kx
k,

yk2 (x) =
k∑

m=0
c2,mxm = c2,1x+ c2,2x

2 + ...+ c2,kx
k.

Using the RPS algorithm, the values of the
coefficientsc1,m, c2,m,m = 1, 2, 3, . . . , k, can be found
by constructing the followingkth residual functions

Resk1(x) = x sinh(x)
k∑

m=1
mc1,mxm−1 + (x sinh(x)

sin(x)− 2)
k∑

m=0
c1,mxm + (1− 3x sinh(x) cos(x))

(
k∑

m=0
c2,mxm − x sinh(x)f1(x)

)
,

Resk2(x) =
k∑

m=1
mc2,mxm−1 − ln(x2 + 1)

k∑
m=0

c1,mxm

+ 4 sin(ex)
k∑

m=0
c2,mxm − f2(x).

(20)

Therefore, the 1st-order approximations of the RPS
solutions according to the residual functions (20) are
y11(x) = 0 andy11(x) = 0. That is,c1,1 = 0 andc2,1 = 0

using d
dx
Res11(0) = 0 and d

dx
Res12(0) = 0. Similarly, the

2nd-order approximations of the RPS solutions are
y21(x) = x2 and y22(x) = x2. That is, c1,2 = 1 and

c2,2 = 1 using d2

dx2Res21(0) = 0 and d2

dx2Res22(0) = 0.
Consequently, the 10th-order approximations of the RPS
solutions ofy1(x) and y2(x) for system (18) and (19)
according to the facts thatd

10

dx10Res101 (0) = 0 and
d10

dx10Res102 (0) = 0 are given, respectively, as

y101 (x) = x2 + x3 + 1
2x

4 + 1
6x

5 + 1
24x

6 + 1
120x

7

+ 1
720x

8 + 1
5040x

9 + 1
40320x

10 =
8∑

j=0

1
j!x

j+2,

y102 (x) = x2 − 1
6x

4 + 1
120x

6 − 1
5040x

8 + 1
362880x

10

=
4∑

j=0

(−1)j 1
(2j+1)!x

2j+2.

(21)
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Correspondingly, the general approximation forms of
solutions of system (18) and (19) are given by

y1(x) =
∞∑

m=1
c1,mxm = x2

∞∑
j=0

1
j!x

j = x2ex,

y2(x) =
∞∑

m=1
c2,mxm = x

∞∑
j=0

(−1)j 1
(2j+1)!x

2j+1

= x sin(x),

(22)

which are compatible with the exact solutions for system
(18) and (19).

Incidentally, the concept of the word ”accuracy”
refers to how closely a computed or measured value
agrees with the true value. To show the accuracy of the
present method, we report four types of error functions;
The first one is called the absolute error that commonly
denoted by Extki and defined as
Extki (x) =

∣∣yi(x)− yki (x)
∣∣; The second one is called the

relative error that denoted byRelki and also defined as
Relki (x) = Extki (x)/ |yi(x)|; The third one is called the
consecutive error that denoted byConk

i and defined as
Conk

i (x) =
∣∣yk+1

i (x) − yki (x)
∣∣; Whereas, the last one is

called the residual error that denoted byRESk
i (x) and

defined as follows

Reski (x) =

∣∣∣∣∣∣∣∣

pi(x)
d
dx
yki (x)

+
∑n

j=1 ai,j
(
fi,j

(
ykj (x)

))

+pi(x)Fi

(
x,−→y k(x)

)

∣∣∣∣∣∣∣∣
, (23)

where i = 1, 2, ..., n, −→y k(x) =(
yk1 (x), y

k
2 (x), ..., y

k
n(x)

)
, x ∈ [x0, x0 + b] and yki (x),

i = 1, 2, ..., n, are thekth-order approximations of the
exact solutionyi(x), which is obtained by the RPSM.

Let us carry out an error analysis of the proposed
method for this example. In Tables1 and 2, the exact
error has been calculated for variousx in the interval
[0, 2] to measure the extent of agreement between the
kth-order approximation of the RPS solutions when
k = 10, 15, 20. These two tables illustrates the rapid
convergence of the method by increasing the orders of
approximation. It can be seen that the exact errors become
smaller as the order of solutions increases, that is, as we
progress through more iterations. However, the errors
indicators confirm the convergence of the method with
respect to thekth-order of the solutions. As a result, the
RPSM provides us with the accurate approximate
solutions of singular system (18) and (19).

Example 2.Consider the following first-order nonlinear
system of singular IVP:

y′1(x)− y2(x) +
1
x
(y1(x))

−2
y2(x) = f1(x),

y′2(x)− y1(x) −
1
x
(y2(x))

−2
y1(x) = f2(x),

(24)

subject to the initial conditions

y1(0) = 1, y2(0) = 0, (25)

wheref1(x) = 1
x
sec
(
x2
)
tan(x2) − (1 + 2x) sin(x2),

f2(x) =
1
x
csc
(
x2
)
cot(x2)+(2x−1) cos(x2), andx ≥ 0.

As we mentioned earlier, assume that the initial guess
approximation, which is the 1st-order approximation, has
the form y11(x) = 1 and y12(x) = 0. Then, the 15th
truncated series of the RPS solutions ofy1(x) andy2(x)
for singular system (24) and (25). is given by

y151 (x) = 1− 1
2x

4 + 1
24x

8 − 1
720x

12

=
3∑

j=0

(−1)j 1
(2j)!x

4j ,

y152 (x) = x2 − 1
6x

6 + 1
120x

10 − 1
5040x

14

=
3∑

j=0

(−1)j 1
(2j+1)!x

4j+2.

Thus, the exact solution of singular system (24) and
(25) has a general form that coincides with the exact
solution

y1(x) =
∞∑
j=0

(−1)j 1
(2j)!

(
x2
)2j

= cos(x2),

y2(x) =
∞∑
j=0

(−1)j 1
(2j+1)!

(
x2
)2j+1

= sin(x2).

(26)

Consequently, to illustrate the convergence of the
approximate solutionsyk1 (x) and yk2 (x) to the exact
solutionsy1(x) andy2(x) with respect to thekth-order of
the solutions, we present numerical results of Example2
graphically by Figures1 and 2, which show the exact
solutions and some iterated approximationsyk1 (x) and
yk2 (x) for k = 5, 10, 15, 20, respectively. These graphs
reveal that the proposed method is an effective and
convenient method for solving nonlinear singular systems
with less computational and iteration steps.

Fig. 1 Plots of the exact solutiony1 (x) for Example3.

However, from the graphical results in Figures 1 and
2, it can be seen that the approximate solutionsyk1 (x) and
yk2 (x) that obtained by using the RPSM match the results
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Table 1 Absolute error for10th, 15th, and20th-order approximations ofy1(x) for Example1.

Node Ext101 (x) Ext151 (x) Ext201 (x)
0.0 0 0 0
0.2 5.75858805 × 10−14 0 0
0.4 1.20381011 × 10−10 0 0
0.6 1.06320118 × 10−8 3.33066907 × 10−15 0
0.8 2.57127877 × 10−7 3.40616424 × 10−13 4.44089210 × 10−16

1.0 3.05861778 × 10−6 1.22857280 × 10−11 4.44089210 × 10−16

1.2 2.32299063 × 10−5 2.30408581 × 10−10 1.77635684 × 10−15

1.4 1.29466624 × 10−4 2.75367107 × 10−9 1.06581410 × 10−14

1.6 5.75356054 × 10−4 2.36658408 × 10−8 1.70530257 × 10−13

1.8 2.15108918 × 10−3 1.58117871 × 10−7 2.06412665 × 10−12

2.0 7.01804652 × 10−3 8.66165738 × 10−7 1.91455740 × 10−11

Table 2 Absolute error for10th, 15th, and20th-order approximations ofy2(x) for Example1.

Node Ext101 (x) Ext151 (x) Ext201 (x)
0.0 0 0 0
0.2 1.04083409 × 10−16 0 0
0.4 4.19858592 × 10−13 0 0
0.6 5.44073675 × 10−11 2.22044605 × 10−16 0
0.8 1.71452641 × 10−9 2.14273044 × 10−14 0
1.0 2.48922799 × 10−8 7.61946062 × 10−13 0
1.2 2.21319329 × 10−6 1.40643053 × 10−11 4.44089210 × 10−16

1.4 1.40262258 × 10−6 1.65358172 × 10−10 2.22044605 × 10−16

1.6 6.93722149 × 10−6 1.39747480 × 10−9 6.66133815 × 10−16

1.8 2.83883278 × 10−5 9.17709908 × 10−9 7.99360578 × 10−15

2.0 1.00031710 × 10−4 4.93879841 × 10−8 8.14903700 × 10−14

Fig. 2 Plots of the exact solutiony2 (x) for Example3.

of the exact solutiony1(x) and y2(x) very well, which
implies that the errors become smaller as the order of
approximate solutions increases, and confirm the
convergence of the RPSM with respect to thekth-order of
yki (x), i = 1, 2 of the region under consideration.

Example 3.Consider the following second-order nonlinear
system of singular IVPs:

y′′1 (x) = sin(y′2(x)) −
1
x
y1(x)−

(
1− 1

x

)
cos(x), x ≥ 0,

y′′2 (x) =
cos2(x)

1+(y1(x))
2 +

(
1

sin(x)y
′

1(x)
)2

− csc2(x),

(27)
subject to the initial conditions

y1(0) = 1, y′1(0) = 0, y2(0) = 0, y′2(0) = π. (28)

Using the RPS algorithm, if we select the first two
terms as initial guesses of the approximations as
y11(x) = 1, y12(x) = 0, y21(x) = 0, y22(x) = π, then the
values of the coefficients c1,m and c2,m for
m = 3, 4, ..., k, of the kth truncated series (3) can be
found by constructing the followingkth residual
functions, as well as using the fact that
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(
dk−1

dxk−1Resk1

)
(x0) =

(
dk−1

dxk−1Resk2

)
(x0) = 0,

Resk1(x) = x
k∑

m=2
m(m− 1)c1,m (x− x0)

m−2

− x sin

(
k∑

m=1
mc2,m (x− x0)

m−1

)

+
k∑

m=0
c1,m (x− x0)

m
+ (x− 1) cos(x),

Resk2(x) =




sin2 (x)
k∑

m=2
m(m− 1)

c2,m (x− x0)
m−2

−

(
k∑

m=1
mc1,m (x− x0)

m−1

)2

+sin2 (x) csc2 (x)




×

(
1+

(
k∑

m=0
c1,m (x− x0)

m

)2
)

− sin2(x) cos2(x).
(29)

Therefore, the10th truncated series of the RPS
solution ofy1(x) andy2(x) for singular system (27) and
(28) is given as follows

y101 (x) = 1− 1
2x

2 + 1
24x

4 − 1
720x

6 + 1
40320x

8

− 1
3628800x

10 =
5∑

j=0

(−1)j 1
(2j)!x

2j ,

y102 (x) = πx.

Consequently, the general forms of the approximate
solutions ofy1(x) andy2(x) for singular system (24) and
(25) are given, respectively, by

y1(x) =

k∑

m=0

c1,mxm =

∞∑

j=0

(−1)j
1

(2j)!
x2j = cos(x),

and

y2(x) =

k∑

m=0

c2,mxm = πx,

which are coincide with the exact solution, as well as agree
with Corollary1.

Here, our aim is to show how thekth values in the
truncation series equation (3) affects the approximate
RPS solutions. In this regard, thekth-order approximation
yk1 (x) andyk2 (x), x ∈ [0, 1], for variousk and the exact
error are calculated, as well as the error analysis is
performed. Furthermore, the maximum and average error
functions ofyk1 (x) andyk2 (x) for singular system (24) and
(25) have been listed in Table 3, for
xi = i

10 , i = 0, 1, 2, . . . , 10, to illustrates the rapid
convergence of the RPSM and to measure the extent of
agreements between thekth-order approximate RPS
solutions whenk = 5, 10, 15, 20.

4 Concluding remarks

The goal of the present work was to develop an efficient
and accurate method for the solutions of system of
singular initial value problems. This goal has been
achieved by introducing the residual power series method
to solve such classes of singular system. We can conclude
that the proposed method is powerful and efficient
technique in finding approximate solution for both linear
and nonlinear system of singular problems. The proposed
algorithm produced a rapidly convergent series with
easily computable components using symbolic
computation software. There is an important point to
make here, the results obtained by the RPS method are
very effective and convenient in linear and nonlinear
cases with less computational work and time. This
confirms our belief that the efficiency of our technique
gives it much wider applicability in the future for general
classes of linear and nonlinear problems.
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