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1 Introduction metric spaces and thereby extending the workldf py
replacing the metric space which was the domain of a

The field of fixed point theory has attracted the attentionsmultivalued mapping with a normal cone in a complete

of many mathematicians for over nine decades. In 1922¢cone metric space. Ismet al[4] introduced the notion of

S. Banach %] established a famous fundamental fixed topological vector space valued cone metric space and

point theorem (called Banach contraction principle). In obtained some common fixed point results. Azam and

fixed point theory, the contractive conditions on Mehmood P] worked on multivalued fixed point

underlying mappings play a crucial role in finding theorems in topological vector space valued-cone metric

solutions of fixed point problems. Banach contractionspaces and consequently improved the result€,a% 9].

principle is widely known as a strong source of metric In a related work, Akbaet al[1] introduced the notion of

fixed point theory. The principle is applicable in several cone rectangular metric space and prove Banach

branches of mathematics. For instance, it has been used tmntraction mapping principle in cone rectangular metric

study the existence of solutions of linear and nonlinearspace setting. Similar results are containecBid,[8,12].

integral equations, systems of linear equations as well as

to prove the convergence of algorithms in computational In this article, we define the notion af-normal cone

mathematics. In respect of its importance, Banachmetric space and thereafter prove some fixed point

contraction principle has been extended in differenttheorems of contractive mappings satisfying weak

directions (seel], 2,4,8,9]). contractive conditions om-normal cone metric space.
Also, an example of a complete cone metric space is

In 2007, Huang and Zhang9], replaced the real given. This work improves many results in the literature.

numbers by ordering Banach space and introduced thén particular, it extends the ideas &]

concept of cone metric spaces thereby establishing som€&hroughout this work, the set of real and natural numbers

fixed point theorems for contractive type mappings inwill always be denoted by? and. 4" respectively.

normal cone metric spaces. They also discussed some

properties of convergence of sequences in the new space.

In the same article, completeness notion of the introduce® Preliminaries

spaces was discussed. Rezapour and Hamlbadzhi [

modified the results of9] for the case of cone metric Inthis section, relevant concepts needed in the main sesult

spaces in absence of the normality condition. Cho andare presented. The definition of cone metric spaces and

Bae [7] extended the notion of Hausdorff distance to conerelated concepts fron®] are given as follows:

* Corresponding author e-maghagaris@ymail.com

(@© 2018 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.18576/jant/060104

22

N SS ¥

M. S. Shagari et alm-Normal Cone Metric Spaces

Let E be a real Banach space aRda nonempty subset
of E. P is said to be aoneif and only if it satisfies the
following conditions:

()P is closed andP # {0};
(ila,be #Z,a,b>0,x,y € P= ax+byeP;
(i) PN (—P) = {0}, where—P = {—x: x € P}.

For any given cond® C E, we can define a patrtial
ordering< on E with respect td® by x <y if and only if
y—xe€ P We writex < yif x<ybutx#yandx<yto
meany — X € intP, whereintP denotes the interior d?.

The coneP is callednormalif there is a numbeK > 0
such that for alk,y € E,

0<x<y= x| <K]ly].

1)

The least positive numbe( satisfying (1) above is
called thenormal constantof P. The coneP is called

3 Results and Discussion

In what follows, by extending the notion of Archimedean
property of the natural numbers to arbitrary elements in a
Banach spacé&, the concept ofeflective Archimedean
property of a Banach space is introduced. Consequently,
the idea ofm-normal coneis also established.

We must mention here that the weakness of this work in
its present form is our inability to give a non-trivial
example of am-normal cone metric space in which the
cone satisfies the reflective Archimedean property. Hence,
via the proposed definitions, only theoretical concept is
presented hoping to fill-up missing gaps in subsequent
article as soon as possible. For an example of a cone
metric space , se@J.

Definition 5.Two positive vectors x and y in a Banach
space E are said to have a reflective Archimedean

regular if every increasing sequence which is boundedProperty if there exists an integer m such thatymx if

above is convergent.

and only if y< m*x,0 < A < 1, where A is called a
bi-conditional index.

The least positive integer m satisfying the above
inequality is called the Archimedean constant for P.

Definition 1.[9] Let X be a nonempty set. Suppose there is

a cone P in E such that the mapping
d: X x X — E satisfies

()d(x,y) > 0 andd(x,y) =0 <= x=Y, VX, y € X;
(i d(x,y) = d(y,x) forall x,y € X;
(i) d(x,y) < d(x,z) +d(zy) for all x,y € X.

Thend is called acone metricon X and(X,d) is called a
cone metric space

In the remaining part of this paper, we shall simply write
X to mean(X,d). It will be stated when used otherwise.

Definition 2.[9] Let X be a cone metric space afixh} a
sequence in X with& X. Then

(i)if for every c € E with 0 < ¢, there exists a natural
numbemg such that for alh > ng, d(xy,X) < c, then
{Xn} is said to beconvergenand{x,} converges tc.

(ii)if for every c € E with 0 < c there exists amp € .4/
such that for alh,m > ng,d(xn,Xm) < ¢, then{xp} is
called a Cauchy sequencen X. If every Cauchy
sequence irX converges to a point iX, thenX is
called acomplete cone metric space

Definition 3.[6] Let X be a non-empty set. A poireX is
said to be a fixed point of the self-mapping X — X if
Tx=X. Forany other pointke X with TX =x*, if x=x",
then T is said to have a unique fixed point in X.

Definition 4.[6] Two positive reals x and y are said to have
Archimedean property if there exists an integerrd such
that y< mx.

Definition 6.A cone P in a Banach space E is called m-
normal if it possesses a reflective Archimedean property.

Lemma llet X be a cone metric space and P an
m-normal cone. Then the sequerag} in X converges to

x if and only if

d(Xn,X) —> 0, (N — ©0).

Proof. Suppose{x,} converges to. This means for
everyc € E with 0 < c, there exists a natural numbey
such that for alh > ng,

d(Xn,X) < C. 2

Lete > 0 be given angm< ¢ for anym > 0. SinceP

is m-normal, then2) impliesd(xn,X) < ¢ < cm< €. This
meansd(x,,x) < ¢*m < £,¥n > ng,0 < A < 1. Hence,
d(Xn,X) — 0, (n — o).
Conversely, letd(x,,Xx) — 0,(n — ). Forc € E, let
0 < ¢ be given. Thenc — 0 € intP. That is,
c—Xx=Ilimx, € intP. Thereforec — d(xn,X) € intP. This
shows thatl(xy,X) < c.

Lemma2Let X be a cone metric space and P an
m-normal cone. A sequencg,} in X is a Cauchy
sequence if and only if(ety, Xm) — O, (N,M — ).

Proof. Suppose xn} is a Cauchy sequence¥a Lete >0
be given. Choose € E with 0 < c andcm< €,m > 0.
Then there exists am € .4 such that for alh,m > ng,

®3)

d(Xn, Xm) € c< cm
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Lemma 3Let X be a complete cone metric space, P anWe shall show that the sequenden} is a cauchy

m-normal cone andx,} a sequence in X. Thefxy} is
a Cauchy sequence if and only if)d,x) — 0, (n,m —

oo),

Proof. Suppose thafx,} is a Cauchy sequence. This
means for everg € E with 0 < ¢, there exists ang € .4/
such that for alh,m > ng,

d(Xn, Xm) < C. (4)
Let £ > 0 be given ang&m< & for anym > 0. SinceP is
m-normal, then 4) implies d(Xn,Xm) < mo< A <1
That is , d(Xn,Xm) < &,¥n,m > ng. This shows that
d(Xn, Xm) — O, (N,m — o).
Conversely, led(xn,Xm) — 0,(n,m — ). Forc € E,
let 0 < ¢ be given. Then
c—0¢€intP = c— d(Xy,Xm) € intP. This means
d(xn, xm) < ¢. Hence {xn} is a Cauchy sequence.

Lemma4let X be a cone metric space and P an
m-normal cone. Lefx,} and{y,} be any two sequences
in X such that x — x and

Yn — ¥, (N — ). Then dxq,yn) — d(x,y), (N — o).

Proof. Suppose{x,} and {y,} converge tox andy
respectively. This means for amyc E with 0 < c, there
existni, o € 4 such that for alh > ny,ny,

(%, X) < g 5)

< g (6)

Letcm< € for anye,m> 0. Forn > maxny, ny), we see
that

d(Yn,y)

d(Xn,Yn) < d(Xn,X) +d(X,y) +d(Y,Yn) (7)
d(x,y) < d(X,%n) +d(Xn,Yn) +d(¥n,Y) (8)
From (7) and @), it follows that
d(%n,Yn) —d(xy)| < d(Xn, X) +d(¥n,Y)
<c<me<eéE. 9)
Since P is mmnormal, then @) implies

|d(%n,yn) — d(x,y)| < m'c < €. Sincee is arbitrary, it
follows thatd(xn,yn) — d(X,y), (N — ).

sequence. For each positive integewe have
d(%n,%n+1) = d(TX-1, TX1) < 0rd(Xn—1,%n)

S azd(xn—ZaXn—l) S e S and(X07X1)
For anyn > m, we have

d(Xn,Xm) < d(Xm,Xmy1) +d(Xmy1,Xmi2) + -+ +d(Xa-1,%)
< (@™+a™ 4+ a™ d(x0, %)

m

<

d(Xo,Xl) S aAd(XO’Xl) - 0<n1m i oo), |:a: llimﬂ]

By the

1-a

Hence {x,} is a Cauchy sequence.
completeness of, x, — X, for somex € X. Now,

d(Txx) < d(TXTx) +d(Tx,X)
S ad(xa Xn) + d(xn+1vx)

(10)

SinceP is m-normal, (L0) implies
d(Txx) < a*d(X, %) +d(Xns1,X) — O, (N — oo)-

That isT x= X, showing thak is a fixed point ofT.
Assumex* is another fixed point of . Then
d(x*,x) =d(Tx", Tx) < ad(x*,x), This impliesd(x",x) <
a’d(x*,x). Thatis(1— a?)d(x*,x) < 0; proving thatx =
X"

Theorem 2Let X be a complete cone metric space and P
an m-normal cone . For € E, withO < ¢, X € X and the
set of open ball BXp) = {x € X : d(xp,X) <r}. Suppose
the mapping T. X — X satisfies the contractive condition

d(Tx Ty) < a*d(x,y),Vx,y € B (xo)-

where0 < a < 1,0< A < Land dTxp, %) < (1—a’)r.
Then T has a unique fixed point in(Rp).

Proof. For o = 0, the result holds trivially. Suppose
a’ +# 0. It suffices to only prove tha, (xo) is complete
and Tx € B,(xo). Let {x,} be a Cauchy sequence in
Br(X0). Then{x,} is also a Cauchy sequenceXn Since
X is complete x, — X, for somex € X. Hence,

d(xo,X) < d(Xo,%n) +d(Xn,X) < d(Xn,X)+r =T, (N — 00)-

This shows thax € B, (Xp). ThereforeB; (xo) is complete.
Now,

Theorem 1Let X be a complete cone metric space, P angx, Tx) < d(xo, T%) +d(TXo, TX)

m-normal cone . Suppose the mappingX — X is a
contraction, then T has a unique fixed point in X.

< (1—aM)r+a’d(xg,x) =r.

Proof. SinceT is a contraction, this means that there ThereforeTxe By (xo).

exists ama € (0,1) such that for alk,y € X, d(Tx Ty) <
ad(x,y).

Choose any pointg € X and let a sequendgs,} in X be
defined by

X1 =TxXo, X =Tx, X3 =TX, - ,Xnp1=TX, -

Theorem 3Let X be a complete cone metric space and
P an m-normal cone. Suppose the mappingXl — X
satisfies the contractive condition

d(TxTy) <a[d(Txx)+d(Ty,y)+pd(X,Ty),VX,y € X],
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where 0< a < 1,0< p < 1. ThenT has a unique fixed
pointin X.

Proof. Suppose # 0. Choose any poing € X and let
a sequence of points of be defined by

X1 =TXo, X =Tx, X3 =TX, -+ ,Xnp1=TX, -

We shall show thafx,} is a Cauchy sequence. Now,

d(Xn1,%) = d(Txe, Txy-1)
< a[d(Tx, %) +d(Tx-1,% 1) +Pd(Xn, TXy1)]
= a[d(Xn1,%) +d(Xn, Xn-1)]

< T d0n X a). 1)

Similarly,
d(Xni2,%n11) = d(Tx1,TX)

< a[d(TXoy1,%n11) +d(T X0, %0) +0d(Xns1, T Xn)]
=a [d(xn+23>(ﬂ+1) + d<xn+1-,xn>]

< <%>2d<xnaxn—l)-

Continuing in this fashion, we see that

- < (L)nd(xl,xo)

d <.
(X1, %) < 1—ao

a

=t"d(x,X%o),where t= g

Forn > m, we get

d(Xm,Xn) < d(Xm,Xm4-1) +d(Xmy1,Xms-2) + - +d(Xn—1,%n)

< (tm+tm+l+...+t”*1) d(x1,%o)
tm
— d .

<17 (X1,X0)

SinceP is anm-normal cone, we see that

(12)

d(vaxn) < d(XlaXO) — 07 (n7 m-— 00)

(1-t)

Therefore, by Lemma, {x,} is a Cauchy sequence.
SinceX is complete, ther, — X, (n — o) for some
xe X.

Since T satisfies a contractive condition, then it is
continuous.

Consequently,
X=IlimxX, = Tx=T(limxp)

= limTx, =limxp1 =X
This shows thax is a fixed point ofT. Now suppose* is
another fixed point oT. Then
d(x,x") = d(Tx TX")
a[d(Txx)+d(TX,x")+ pd(x, TX")]
apd(x,x*)

<

This impliesd(x,x*) = 0. Hencex = x*.
By putting p = 0 in Theoreml, yields the following

corollary as an extension of Kannan contraction mapping.

Corollary 1.(Also,see 9]) Let X be a complete cone
metric space and P an m-normal cone. Suppose the
mapping T: X — X satisfies the contractive condition

d(TxTy) <a[d(Txx)+d(Tyy),vxy € X],
where 0< a < 1. ThenT has a unique fixed point iX.

Theorem 4Let X be a complete cone metric space and P
an m-normal cone. Suppose the mapping
T : X — X satisfies the contractive condition

d(TxTy) < a[d(Txy)+d(Ty,x) +pd(x,y)]vxy € X,

wherea € (0,1),p € [0,1), withm+p <m—a,m> 0.
ThenT has a unique fixed point iX.

Proof. For p = 0, the idea is a replica of Theorem 4
of [9]. So, suppos@ # 0. Then choosey € X and let a
sequencéxn} in X be defined as

X1 =TXo, X = TX, X3 = TX, - Xnp1 =T X,

We want to show thafx,} is a Cauchy sequence. For this,
consider
d(Xn+1,%) = d(T X, TXr-1)
< a [d(TX%,Xn—1) + d(TX—1,%n) + Pd(Xn, Xn—1)]
< a[d(Xn+1,%0-1) + d(Xn, Xa—1) + PA(Xn, Xn—1)]

This implies
1+
doan) <a (16 )dbnxe . @3
On the above steps, using (13), we have

2
d(Xns2,Xne1) < az(i—g) d(Xn,Xn_1). Inductively, it
follows that

1
d(Xni1,%n) < -+ <t"d(x1,%0),where t=a (14—_p) <1

Forn > m, we have
d(Xn, Xm) < d(Xn,Xn-1) +d(Xn-1,Xn-2) + -+ + d (X1, Xm)
< (tn,l_’_tan_’_ . _|_tm) d(x1,%o)

tm
—]d .
< (1_t> (X1,%0)
SinceP is m-normal, we see that

(X Xm) < o d(xq,X0) — 0, (n,m —» ). Hence,

(1A
by Lemma 2, {x,} is a Cauchy sequence. By the
completeness o, x, — X, for somex € X. Now,
consider
d(Txx) < d(Tx), TX) +d(TX,X)

< [d(T %0, %) +d(TX Xn) + pd(Xn, X)] + d(T X0, X)

= a[d(Xn4-1,X) +d(TX Xa) + pd(Xn, X)] +d(Xn11,X)
(15)

(14)
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Letting n — o and using thanrnormality of P, we see  direction, allowing the metric space under discussion to

that be a classical one, then Theorelngives the famous
1 Banach fixed point theorem; fop = 0, we have the
d(TxX) < g—gyx (@802, %)+ apd(x,X) +d(xns2,] — 0, (1 — )- Kannan contraction mapping in Theoreinand putting
p = 0, gives the famous Chatterjea contraction mapping
Hence,Tx=x. in Theoremy.

Assumex* is another fixed point of . Then
d(x,x") = d(Tx TX")

< a[d(Txx) +d(TX, %) + pd(x,x)] Acknowledgement

= a2+ pld(xx"). The authors are grateful to the anonymous referee(s) for a
Clearly, 1- a(2+p) > 0, for p # 0. Henced(x,x*) < 0,  careful checking of the details and for helpful comments

by m-normality of P. Thereforex = x*.This proves that thatimproved this paper.
the fixed point ofT is unique.
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