
Progr. Fract. Differ. Appl.3, No. 3, 191-197 (2017) 191

Progress in Fractional Differentiation and Applications
An International Journal

http://dx.doi.org/10.18576/pfda/030302

On a Fractional Oscillator Equation with Natural
Boundary Conditions

Assia Guezane-Lakoud1, Rabah Khaldi1 and Delfim F. M. Torres2,3,∗

1 Laboratory of Advanced Materials, Department of Mathematics, Badji Mokhtar–Annaba University, P.O. Box 12, 23000 Annaba,
Algeria

2 Center for Research and Development in Mathematics and Applications (CIDMA), Department of Mathematics, University of Aveiro,
3810-193 Aveiro, Portugal

3 African Institute for Mathematical Sciences (AIMS-Cameroon), P. O. Box 608 Limbe, Cameroon

Received: 19 Dec. 2016, Revised: 24 Jan. 2017, Accepted: 24 Jan. 2017
Published online: 1 Jul. 2017

Abstract: We prove existence of solutions for a nonlinear fractional oscillator equation with both left Riemann–Liouville and right
Caputo fractional derivatives subject to natural boundaryconditions. The proof is based on a transformation of the problem into an
equivalent lower order fractional boundary value problem followed by the use of an upper and lower solutions method. To succeed with
such approach, we first prove a result on the monotonicity of the right Caputo derivative.
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1 Introduction

Fractional calculus is an interesting field of research due to its ability to describe memory properties of materials and,
therefore, providing a better representation of physical models. Because of this, the study of nonlinear fractional
differential equations has attracted a lot of attention andmany papers and monographs are devoted to the subject [1,2,3].
Here, we are concerned with the solvability of a nonlinear fractional oscillator equation involving both
Riemann–Liouville and Caputo fractional derivatives withnatural boundary conditions:

ω2u(t)−CDp
1− Dq

0+u(t) = f (t,u(t)) , 0≤ t ≤ 1, ω ∈ R, ω 6= 0, (1)

with the initial condition
u(0) = 0 (2)

and the natural condition (see [4,5])
Dq

0+u(1) = 0, (3)

where 0< p,q< 1, CDp
1− is the right side Caputo derivative,Dq

0+ denotes the left side Riemann–Liouville derivative,u is
the unknown function, andf ∈C([0,1]×R,R). We denote problem (1)–(3) by (P1). Note that ifp= q→ 1, then problem
(P1) is a classical oscillator boundary value problem [6].

Oscillator equations appear in different fields of science,such as classical mechanics, electronics, engineering, and
fractional calculus, being a subject of strong current research: see, e.g., [7,8,9] and references therein. Different methods
are used to solve such equations, for example, by the Laplacetransform method or by using numerical methods [10]. Since
some phenomena obey an equation of motion with fractional derivatives, oscillator equations with fractional derivatives
are a particularly interesting subject to study [4,5,10,7,11,12].

Blaszczyk studied numerically the associated linear problem of(P1) with f (t,u(t)) = Ag(t), see [5]. In [4], Agrawal
discussed the relationship between transversality and natural boundary conditions in order to solve fractional differential
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equations. Moreover, he gave some interesting examples [4]. To the best of our knowledge, most works in the literature
have studied problem(P1) only numerically and with a termf in the right-hand side of equation (1) that does not depend
on u. Differently, here we study problem(P1) by the lower and upper solutions method, considering a more general
situation where the nonlinear termf is a function ofu. This is important since the physical phenomena described by the
differential equations are mainly of nonlinear nature.

The method of upper and lower solutions is an efficient tool inthe study of differential equations [13]. Indeed, when
we apply this method, we prove not only existence of solution, but we also get its location between the lower and upper
solutions. The method was first introduced by Picard in 1893,later developed by Dragoni, and then becoming a useful
tool to prove existence of a solution for ordinary as well as fractional differential equations [14,15,16,17,18].

The paper is organized as follows. Section2 is devoted to some definitions on fractional calculus and properties that
will be used later. We also define the upper and lower solutions for problem(P1). Our results are given in Sections3
and4. The main result is Theorem2, which establishes existence of solution for problem(P1). To prove it, we make use
of several auxiliary results. The first of them is given in Section 3, where we provide a monotonicity result for the right
Caputo derivative. In Section4, we convert problem(P1) into an equivalent Caputo boundary value problem of orderp
that, under some conditions on the nonlinear termf , is used to prove existence of solutions for problem(P1) between the
reversed ordered lower and upper solutions. Moreover, we construct explicitly the upper and lower solutions. The new
results of the paper are then illustrated through an examplein Section5.

2 Preliminaries

This section is devoted to recall some essential definitionson fractional calculus [1,2,3]. We also define some concepts
related to upper and lower solutions.

Definition 1. Let g be a real function defined on[0,1] andµ > 0. Then the left and right Riemann–Liouville fractional
integrals of orderµ of g are defined respectively by

I µ
0+g(t) =

1
Γ (µ)

∫ t

0

g(s)
(t − s)1−µ ds

and

I µ
1−g(t) =

1
Γ (µ)

∫ 1

t

g(s)
(s− t)1−µ ds.

The left Riemann–Liouville and the right Caputo fractionalderivatives of order0< µ < 1 of function g are

Dµ
0+g(t) =

d
dt

(

I1−µ
0+ g

)

(t)

and
CDµ

1−g(t) =−I1−µ
1− g′(t),

respectively.

With respect to the properties of Riemann–Liouville and Caputo fractional derivatives, we recall here two of them.
Let 0< µ < 1 and f ∈ L1 [0,1]. Then,

1. I µ
0+Dµ

0+ f (t) = f (t)+ ctµ−1 almost everywhere on[0,1];
2. I µ

1−
CDµ

1− f (t) = f (t)− f (1).

Now, we give the definition of lower and upper solutions for problem(P1). By AC2 [0,1] we denote the following
space of functions:

AC2 [0,1] :=
{

u∈C1 [0,1] |u′ is an absolutely continuous function on[0,1]
}

.

Definition 2. Functionsα,β ∈ AC2 [0,1] are called, respectively, lower and upper solutions of problem(P1) if

1. ω2α (t)−CDr
1−Dq

0+α (t)− f (t,α (t))≤ 0 for all t ∈ [0,1] and all r∈ [p,1) and, moreover,α (0)≥ 0, Dq
0+α (1)≥ 0;

2. ω2β (t)−C Dr
1−Dq

0+β (t)− f (t,β (t))≥ 0 for all t ∈ [0,1] and all r∈ [p,1) and, moreover,β (0)≤ 0, Dq
0+β (1)≤ 0.

Functionsα andβ are lower and upper solutions in reverse order ifα (t)≥ β (t), 0≤ t ≤ 1.

Remark. If α andβ are, respectively, lower and upper solutions of problem(P1), then they are still lower and upper
solutions for the sequence of problems generated by the boundary conditions (2)–(3) and the fractional differential
equations obtained from (1) by replacingp by r for all r ∈ [p,1).
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3 Monotonicity for the Right Caputo Derivative

We begin by proving a useful monotonicity result for the right Caputo derivative. Theorem1 provides the right counterpart
of the main result of [19], which was recently obtained for the left Caputo fractional derivativeCDr

0+ f (t). It will be needed
in the proof of our Lemma4.

Theorem 1. Assume that f∈C1[0,1] is such thatCDr
1− f (t)≥ 0 for all t ∈ [0,1] and all r∈ (p,1) with some p∈ (0,1).

Then f is monotone decreasing. Similarly, ifCDr
1− f (t)≤ 0 for all t and r mentioned above, then f is monotone increasing.

Proof. The proof is based on the following well-known propriety:

0≤ lim
r→1−

CDr
0+ f (t) = lim

r→1−
I1−r
0+ f ′(t) = f ′(t)

(see Theorem 2.10 of [20]). For the right Caputo fractional derivativeCDr
1− f (t), one can prove the following analogue

property:
0≤ lim

r→1−
CDr

1− f (t) = lim
r→1−

− I1−r
1− f ′(t) =− f ′(t). (4)

Using (4), the proof follows in the same way as in [19].

Remark. Property (4) and Theorem1 can be obtained straightforwardly from the results of [20,19] by using the duality
theory of Caputo–Torres between left and right fractional operators [21].

4 Existence of Solutions

First we solve a Riemann–Liouville fractional problem of orderq:
{

Dq
0+u(t) = v(t) , 0≤ t ≤ 1,

u(0) = 0.
(P2)

Lemma 1. For 0< q< 1, the solution of problem(P2) is given by

u(t) =
1

Γ (q−1)

∫ t

0
(t − s)q−1v(s)ds. (5)

Proof. We get (5) by applying the properties of the Riemann–Liouville derivative and the initial conditionu(0) = 0.

Let E :=C([0,1] ,R) be equipped with the uniform norm||u||= max
t∈[0,1]

|u(t)|. Define the operatorT onE by

Tv(t) =
1

Γ (q)

∫ t

0
(t − s)q−1v(s)ds= Iq

0+v(t) , t ∈ [0,1] .

Thus,u(t) = Tv(t). SinceDq
0+u(1) = 0, problem(P1) is equivalent to the following Caputo boundary value problem:

{

ω2Tv(t)−CDp
1−v(t) = f (t,Tv(t)) , 0≤ t ≤ 1,

v(1) = 0.
(P3)

Let us make the following hypotheses:

(H1) there exists a nonnegative constantA such that

ω2x− f (t,x)≤ A(1− t)1−r

for 0≤ t ≤ 1, 0≤ x≤ A
Γ (q+1) , and for allr ∈ [p,1);

(H2) there exists a constantB≤ 0 such thatA≥ |B| and

ω2x− f (t,x)≥ B(1− t)1−r

for 0≤ t ≤ 1, B
Γ (q+1) ≤ x≤ 0 and forr ∈ [p,1).
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Lemma 2. If hypotheses(H1) and(H2) hold, then problem(P1) has a lower and an upper solution.

Proof. Settingϕ (t) = A(1− t), it follows that

0≤ Tϕ (t) = Iq
0+ϕ (t) =

Atq(q+1− t)
Γ (q+2)

≤
A

Γ (q+1)
.

Now we prove thatα (t) = Tϕ (t) is an upper solution of problem(P1). We have for allr ∈ [p,1) that

ω2Tϕ (t)−CDr
1−ϕ (t)− f (t,Tϕ (t))

=
−A

Γ (2− r)
(1− t)1−r +ω2Tϕ (t)− f (t,Tϕ (t))

≤−A(1− t)1−r +ω2Tϕ (t)− f (t,Tϕ (t))

≤ 0.

In addition,α (0) = Tϕ (0) = 0 andDq
0+α (1) = ϕ (1) = 0. Thus,α (t) = Tϕ (t) is a lower solution of problem(P1).

Similarly, if we setψ (t) = B(1− t), thenβ (t) = Tψ (t) is an upper solution of problem(P1).

Lemma 3. Under hypotheses(H1) and (H2), the upper and lower solutions of problem(P1) satisfyβ (t) ≤ α (t) and
Dq

0+β (t)≤ Dq
0+α (t) for all 0≤ t ≤ 1.

Proof. Sinceα (t) = Tϕ (t) andβ (t) = Tψ (t) are, respectively, lower and upper solutions of problem(P1), then from

α (t) =
A(q+1− t)tq

Γ (q+2)
≥ 0, β (t) =

B(q+1− t)tq

Γ (q+2)
≤ 0,

we get that
Dq

0+α (t) = ϕ (t) = A(1− t)≥ B(1− t) = ψ (t) = Dq
0+β (t) .

This completes the proof.

We consider a sequence of modified problems

{

−CDr
1−v(t) = Fv(t) , 0≤ t ≤ 1,

v(1) = 0
((P4)r )

for r ∈ [p,1), where the operatorF : E → E is defined by

Fv(t) =−ω2T min[ϕ ,max(v,ψ)]+ f (t,T min[ϕ ,max(v,ψ)]) , 0≤ t ≤ 1.

Next lemma gives the relation between the solution of a modified problem ((P4)r ) and the solution of problem(P1).

Lemma 4. If v is a solution of problem((P4)p), then u= Tv is solution of problem(P1) satisfying

β (t)≤ u(t)≤ α (t) and Dq
0+β (t)≤ Dq

0+u(t)≤ Dq
0+α (t)

for all 0≤ t ≤ 1.

Proof. Firstly, for r ∈ [p,1), we prove that ifvr is a solution of problem ((P4)r ), thenψ (t) ≤ vr (t) ≤ ϕ (t). Putting
ε (t) = vr (t)−ϕ (t), and using the initial conditionsvr (1) = ϕ (1) = 0, it yields ε (1) = 0. Suppose the contrary, i.e.,
that there existst1 ∈ [0,1[ such thatvr (t1) > ϕ (t1). From the continuity ofε, we conclude that there existb ∈ [t1,1)
anda∈ [0, t1] such thatε (b) = 0 andε (t) ≥ 0, t ∈ [a,b]. Applying the right Caputo fractional derivative and taking into
account the definition of lower solution, we get

CDr
1−ε (t) = CDr

1−vr (t)−
CDr

1−ϕ (t)

= ω2T min[ϕ ,max(vr ,ψ)]− f (t,T min[ϕ ,max(vr ,ψ)])−CDr
1− Dq

0+α (t)

≤ 0
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for t ∈ [a,b]. Thanks to Theorem1, we know thatε is increasing on[a,b]. Sinceε (b) = 0, we conclude thatvr (t)≤ ϕ (t),
t ∈ [a,b], which leads to a contradiction. Similarly, we prove thatψ (t)≤ vr (t), t ∈ [0,1]. From the above discussion, ifv
is a solution of problem((P4)p), then

−CDp
1−v(t) = (Fv)(t) =−ω2Tv(t)+ f (t,Tv(t)) .

Thus,v is a solution of (P3) and, therefore,u= Tv is a solution of(P1). Finally, the monotonicity of operatorT implies

Tψ (t)≤ Tv(t)≤ Tϕ (t) , t ∈ [0,1].

This achieves the proof.

Now we are ready to formulate and prove our main result of existence of solution for problem(P1).

Theorem 2. Assume that hypotheses(H1) and(H2) hold. Then, problem(P1) has at least one solution u such that

β (t)≤ u(t)≤ α (t)

and

Dq
0+β (t)≤ Dq

0+u(t)≤ Dq
0+α (t)

for all 0≤ t ≤ 1.

Proof. Define the operatorRonE by Rv(t) = I p
1−Fv(t), 0≤ t ≤ 1. Set

Ω := {v∈C[0,1] ,ψ (t)≤ v(t)≤ ϕ (t) ,0≤ t ≤ 1} ,

where

M := max
{∣

∣ω2x− f (t,x)
∣

∣ ,β (t)≤ x≤ α (t) ,0≤ t ≤ 1
}

.

Let v∈ Ω . Taking into account thatβ (t)≤ T (min[ϕ ,max(v,ψ)])≤ α (t), then

|Rv(t)| ≤ I p
1−

∣

∣−ω2T (min[ϕ ,max(v,ψ)])+ f (t,T min[ϕ ,(max(v,ψ))])
∣

∣

≤
M

Γ (p+1)
.

Thus,R(Ω) is uniformly bounded andR(Ω)⊂ Ω . For simplicity, denote

g(t) =−ω2T (min[ϕ ,max(v,ψ)])+ f (t,T min[ϕ ,max(v,ψ)]) .

For 0≤ t1 < t2 ≤ 1, we have

|Rv(t1)−Rv(t2)| ≤
∣

∣I p
1−g(t1)− I p

1−g(t2)
∣

∣

≤
1

Γ (p)

∫ t2

t1
(s− t1)

p−1 |g(s)|ds

+
1

Γ (p)

∫ 1

t2

(

(s− t1)
p−1− (s− t2)

p−1
)

|g(s)|ds

≤
M

Γ (p+1)
((1− t1)

p− (1− t2)
p)→ 0 ast1 → t2.

Therefore,R(Ω) is equicontinuous. We conclude, by the Arzela–Ascoli theorem, thatR is completely continuous. Then,
by Schauder’s fixed point theorem,Rhas a fixed pointv∈ Ω . We conclude thatu= Tv is a solution of(P1) satisfying, by
Lemma4, β (t)≤ u(t)≤ α (t) andDq

0+β (t)≤ Dq
0+u(t)≤ Dq

0+α (t), 0≤ t ≤ 1. The proof is complete.
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5 An Illustrative Example

We present a simple example to illustrate our results. Consider problem(P1) with ω = 1, p= q= 1
2, and

f (t,x) = x−
1

100
(1− t)

1
2 , 0≤ t ≤ 1.

If we chooseA= 1
100 andB=− 1

100, then we get

ω2x− f (t,x) =
1

100
(1− t)

1
2 ≤ A(1− t)1−r

and

ω2x− f (t,x) =
1

100
(1− t)

1
2 ≥ 0≥ B(1− t)1−q

for 0≤ t ≤ 1 and for allr ∈ [p,1). Then all assumptions of Theorem2 hold. Consequently, problem

u(t)−CD1/2
1− D1/2

0+ u(t) = u(t)−
1

100
(1− t)

1
2 , 0≤ t ≤ 1,

u(0) = 0, D1/2
0+ u(1) = 0,

has a solutionu such thatβ (t)≤ u(t)≤ α (t). By direct computations we get

α (t) =
A(q+1− t)tq

Γ (q+2)
=

t
1
2
(

3
2 − t

)

100Γ
(

5
2

) ≥ 0, β (t) =−
t

1
2
(

3
2 − t

)

100Γ
(

5
2

) ≤ 0,

and

u(t) =
t

1
2

100

(

1−
2t
3

)

.

6 Conclusion

In this paper we have proved a useful monotonicity result forthe right Caputo derivative. We solved the Riemann–Liouville
fractional problemDq

0+u(t) = v(t) of orderq, 0≤ t ≤ 1, subject to the initial conditionu(0) = 0. Then, under hypotheses
(H1) and(H2), we proved that the nonlinear fractional oscillator problem (1)–(3) with both left Riemann–Liouville and
right Caputo fractional derivatives, denoted by(P1), has a lower and an upper solution, respectivelyα (t) andβ (t), such
that β (t) ≤ α (t) andDq

0+β (t) ≤ Dq
0+α (t) for all 0 ≤ t ≤ 1. A relation between the solution of problem(P1) and the

solution of a sequence of modified problems was established,which allowed us to prove existence of solution for problem
(P1). We finished by considering a simple illustrative example. Our results show the usefulness and effectiveness of the
upper and lower solutions method in the study of a general class of fractional oscillator equations with physical relevance.
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