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Abstract: Both of deterministic and probabilistic sparse kernel learning (SKL) 
methods are effective for process modeling. Based on the SKL model with a 
polynomial kernel, a simple nonlinear control strategy is investigated. First, an SKL 
identification model is obtained using a polynomial kernel. Then, a predictive control 
performance index, which is characterized as an even-degree polynomial function of 
the manipulated input, is formulated. Consequently, the optimal manipulated input 
can be efficiently obtained by solving a simple root problem of an odd-degree 
polynomial equation because of its special structure. A comparative study on a 
benchmark problem shows its superiority to traditional controllers. Also, some 
attributes of the proposed control strategy can result in a practicable solution for real-
time control. 
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1 Introduction 

The sparse kernel learning (SKL) is a novel nonlinear modeling method originally 
proposed in the machine learning area [1-2]. Support vector regression (SVR) and 
relevance vector regression (RVR) represent deterministic and probabilistic modeling 
methods, respectively. Both of two SKL methods can make predictions based on a linear 
combination of kernel functions, which are defined on a subset of the training samples 
called the support vectors or relevance vectors. The sparse kernel representation can 
avoid the overfitting problem and increase the generalization ability of learning machine 
[1-2].  Therefore, SKL has attracted more attention with the development of SVR and 
RVR, and has found increasing applications for process modeling [3-4]. 

Recently, some SVR model based nonlinear control algorithms have been proposed 
[5-7]. However, these new nonlinear control algorithms confront with some technical 
difficulties, e.g., heavy computation load and large memory requirement. Besides, the 
SVR models adopt the Gaussian kernel function. Thus, the explicit formulation of control 

                                                        
  This work was supported by the National Natural Science Foundation of China (No. 61004136) 
and Zhejiang Provincial Natural Science Foundation of China (No. Y4100457). All correspondence 
of this paper should be addressed to Dr. Yi Liu. 



Yi Liu, Wei Wang                                                                                                                               196 
law cannot be obtained straightforward. Due to this reason, process control engineers 
may not understand why these new control schemes can work well and prone to reject to 
use them. On the other hand, for control applications, it is desirable to keep the control 
scheme as simple as possible for the real-time implementation [8]. 

On the other hand, compared to the widely used SVR model, to our best knowledge, 
the RVR-based control methods have rarely been reported. Therefore, this paper aims to 
discuss and extend a general methodology to design some simple controllers, mainly 
based on a recent proposed control method [8], for nonlinear processes. Both of 
deterministic and probabilistic SKL modeling methods are adopted to design simple 
nonlinear predictive controllers.  

2 The SKL-OPC framework and its Control Strategies 

Many single-input-single-output nonlinear processes can be described by the 
following discrete-time model [3]: 
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where k is the discrete time index, and f(•) is a general nonlinear function; y(k) and u(k) 
represent the controlled output and the manipulated input, respectively; and ny and nu 
denote the process orders, respectively. 

Applying the SKL identification framework for regression problems to the data set SN 
= {(x1, y1), …, (xN, yN)} ⊂ X × R, the prediction ym(k+1) can be formulated as [1-2]: 
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where α = [α1, …, αn]T are the n-dimension weight vector, and n (always much less than 
N) is the number of subset of the training samples, called support vectors or relevance 
vectors. The item <•, •> denotes the dot product and K<x(i), x(k)> is a kernel function 
which handles the inner product in the feature space and therefore the explicit form of 
nonlinear mapping does not need to be known. Note that the bias term b of the regression 
model is not always necessary [1-2]. 

Let yr(k) be the desired output at time k. Then, the control law can be obtained by 
minimizing the one-step-ahead weighted predictive control performance index (CPI) [8] 
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where E(k+1) is the total error of SKL predictive model at time k, and λ > 0 is the control 
effort weighting factor, representing a penalty factor associated with the manipulated 
variable increment. The intention is to obtain the SKL identification model and then to 
achieve the manipulated input u(k) by minimizing the CPI. This is the basic idea and 
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general framework of SKL-OPC [8]. 

Two traditional methods to design the simple controller have been proposed in the 
literature [8]. One adopted an approximate gradient descent (GD) method to iteratively 
optimize the CPI and then get the solution. The other utilized the Taylor linearization 
(TL) method with respect to u(k) at the point u(k-1) to obtain an approximate control law. 
They are noted GD and TL methods, respectively. These two approaches can be adopted 
under the SKL-OPC framework to develop their corresponding kernel control strategies 
[8]. However, both the two control strategies can be regarded as indirect methods (i.e., 
using some kind of approximation to avoid numerical difficulty and obtain the control 
strategy). To overcome this shortcoming, a direct method to design the simple control 
strategy also under the SKL-OPC framework is formulated below. 

Applying the polynomial kernel function, the prediction can be formulated below [8] 
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where the integer p denotes the polynomial degree. For simplicity, some terms in 
equation (2.4) are denoted as [8] 
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Consequently, the CPI at time k is formulated as follows [8] 
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This CPI is an even degree polynomial function of the input, thus the optimal solution is 
derived [8]. 

( ) ( ) ( )

( )

( )

( ) ( )

2 1
2 1

0

2 2
2 2

2 1
2 1

0

, 0, , 2 3

where

1

p
p l

l
l

l j m
j m l

p j m
j m p

p j m
j m p

J u k u k A u k

A p m l p

A p m

A p m u k

β β

β β λ

β β λ

−
− −

=

+ =

−
+ = −

−
+ = −

∂ ∂ = =      


= − = −


 = − +

 = − − −

∑

∑

∑

∑

L                                     (2.7) 

The control strategy adopts the polynomial kernel function and utilizes the rooting 
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method to obtain the optimal process input u(k), thus the controller here is referred to as 
SKL-PKR for abbreviation. When an SVR model and a RVR model are adopted, the 
related controllers are named SVR-PKR and RVR-PKR, respectively. 

Note that sparseness is generally regarded as a good feature for the learning machine. 
Using a sparse model, the predictions for new samples depend only on the kernel 
function evaluated with a subset of the training samples. This means that the memory 
requirement is small and, correspondingly, that the computation time on the test samples 
is short [2]. As a result, a controller based on the SKL model will be easier to implement. 

Generally, SVR and sparse least-squares SVR (SLSSVR) can both be described as 
being in equation (2.2). The RVR method, as an alternative SKL algorithm with Bayesian 
technique, shares the similar function form as SVR and thus can also be formulated in 
this form. Moreover, RVR is implemented through a probabilistic manner and has no 
limitation of the kernel function form [2]. Recently, it has been reported that the 
sparseness of RVR is much better than that of SVR and SLSSVR, while the prediction 
performance of these learning models are comparative [2]. Thus, these SKL algorithms 
are utilized to identify the process model in this paper. 

Both of SVR and SLSSVR are deterministic SKL modeling methods. In other words, 
they are not probabilistic. Based on the statistical viewpoint, all statistical inferences and 
decisions should be made through the probabilistic manner. For this reason, it is 
necessary to express the uncertain characteristic of the process data in both modeling and 
prediction steps [2]. It should be better to adopt the RVR method to identify a process 
when its measurement noise is significant. Especially, the RVR model can be developed 
offline and only to be used for online prediction because it has involved a high 
computational complexity [2,4]. Therefore, this paper adopts the RVR model to extend 
the application of SKL-PKR controllers. 

3 Comparison Study of a Benchmark Problem 

In this section, a benchmark example is illustrated to demonstrate the performance of 
the proposed SKL-PKR controllers, using both of deterministic and probabilistic SKL 
modeling methods, and meanwhile to verify the simplicity and advantage. The simulation 
environment is Matlab V7.1 with CPU main frequency 1.7 GHz and 512 M memory. The 
benchmark example is a spring-mass-damper system with a hardening spring [9]. 

2
3

2

dy d y y y u
dt dt

+ + + =                                    (3.1) 

First, the deterministic environment is investigated. A sequence of 100 samples is 
used to train an SVR model and an RVR model, respectively. The output and input 
vectors are chosen as y(k+1) and x(k) = [y(k), y(k-1), u(k), u(k-1)], respectively [9]. An 
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offline SVR identification model is obtained using the cross-validation approach [1]. And 
an RVR model can be also obtained using some optimal methods [2,4]. It takes less than 
30 minutes to obtain the SVR and RVR models, respectively. Compared to the other 
data-driven modeling methods, the identification procedure is easier to implement. 

To provide a suitable comparison with traditional techniques, a well-tuned 
proportional-integral-derivative (PID) controller and a neural network-generalized 
predictive control (NN-GPC) are also adopted here. The design parameters of nonlinear 
GPC strategy selected is specified in the following index [9]. 
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The performance comparison of all controllers, including SVR-PKR, PID and NN-
GPC, is shown in figure 3.1 (The response of SVR-PKR and RVR-PKR are similar and 
thus only the former is plotted.). The integral absolute error (IAE) of setpoint tracking, 
listed in table 3.1, is used to quantify the performance of controllers. Both of the SVR-
PKR and RVR-PKR controllers have good tracking performance and little overshoot. The 
PID controller is slower for tracking; on the other hand, the NN-GPC strategy has larger 
overshoot. NN-GPC has better instantaneous response than SVR-PKR because of its 
multi-step-ahead prediction and optimization properties. Therefore, it is meaningful to 
develop efficient algorithms for extending SVR-PKR and RVR-PKR to multi-step-ahead 
prediction to achieve better performance. 
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Figure 3.1: Set-points tracking comparison with traditional controllers 

Among controllers, NN-GPC is the most time-consuming, and the computation load 
of PID is the smallest. The whole procedure of 100 steps by SVR-PKR just takes 3.8 s 
(i.e., about 0.04 s for one step), which is much less than the sampling period of this 
system (i.e., 0.2 s). The computation time of RVR-PKR is less than SVR-PKR since its 
model is more sparse. 
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Actually, almost all process measurements are essentially random variables because 

they are always contaminated by random white noises. Therefore, the following part aims 
to compare the performance of RVR-PKR and SVR-PKR controllers in the noise 
environment. To simulate the scenario, the measured process input and output of the 
same sequence are supposed to be corrupted by Gaussian noise. The average simulation 
results show that the RVR method can obtain a more sparse model with better 
identification performance than SVR in the noise environment.  

 
Table 3.1. Performance comparison of RVR-PKR and SVR-PKR controllers in the 

deterministic and noise scenarios 
Scenarios Control strategies IAE Time, s 
No noise RVR-PKR 6.6 3.1 
 SVR-PKR 6.7 3.8 
 PID 16.1 1.5 
 NN-GPC 8.2 8.2 
Noise RVR-PKR 9.8 3.2 
 SVR-PKR 10.2 4.7 

Details about the IAE comparison of both controllers are tabulated as table 3.1. All 
the simulation results are the average of 20 running times. Due to the probabilistic 
scenario, the related parameters of both controllers are changed each simulation and not 
listed here. The results show that the RVR-PKR controller can achieve a litter better 
tracking performance than SVR-PKR. Moreover, the computation time required by RVR-
PKR for 100 control steps is much less than SVR-PKR. This is very important for real-
time control, especially for those processes required fast control response. 

4 Conclusions 

A simple nonlinear control framework named as SKL-OPC is proposed and different 
strategies are developed. The SVR-PKR and RVR-PKR control strategies are two natural 
extensions of the SKL-OPC framework, under deterministic and probabilistic scenarios. 
Based on the comparison results of a benchmark problem, the tracking performance and 
the aspect on practical implement are evaluated. Therefore, these two simple SKL-PKR 
controllers are alternative for nonlinear processes. 
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