Explicit Travelling Wave Solutions of Two Nonlinear Evolution Equations

Abdulkadir Ertas* and Mustafa Mızrak

1 Department of Mathematics, Art-Science Faculty, Dicle University, Diyarbakir, Turkey
2 Department of Mathematics, Ziya Gokalp Faculty of Education, Dicle University, Diyarbakir, Turkey

Received: 3 Apr. 2014, Revised: 12 May 2014, Accepted: 15 May 2014
Published online: 1 Sep. 2014

Abstract: In this paper, we applied the sine-cosine method and the rational functions in exp(ksi) method for the modified Kawachara equation and the Damped Sixth-order Boussinesq Equation, respectively. New solitons solutions and periodic solutions are explicitly obtained with the aid of symbolic computation.

Keywords: Travelling wave solutions, the sine-cosine method, the rational functions in exp(ksi) method

1 Introduction

We are living in a nonlinear world. So many physical phenomenon modelled by nonlinear partial differential equations. Therefore solutions of these partial differential equations will help us to much more understanding these physical processes. In the last decades, many methods proposed for obtaining explicit traveling wave solutions of nonlinear evolution equations such as the rational functions in exp(ksi) method\[1\], tanh method\[2,3\], sine-cosine method\[4\], the exp-function method\[5\], the tanh-coth method\[6\], the \((\text{G}^'/\text{G})\)-expansion method\[7,9\], the solitary wave ansatz method\[10,17\], the variational iteration method\[18\], the multiplier approach method\[19\] and so on.

In this paper, we establish solitons and periodic solutions to the modified Kawachara equation, which describes the motion of a water waves with surface tension

\[u_t + u_x + u^2 u_x + pu_{xxx} + qu_{xxxx} = 0, \tag{1} \]

where \(p\) and \(q\) are constants\[20\] and the sixth-order Boussinesq equation with damping term

\[u_{tt} - u_{xx} - u_{xtt} - u_{xxxx} - au_{xxtt} = (u^2)_{xx}, \tag{2} \]

where is \(a\) real constant. It describes the bidirectional propagation of small amplitude long capillary-gravity waves on the surface of shallow water\[21\]. Local, global and asymptotic behavior of solution this equation studied by Polat and Pişkin\[22\] and blow up of the solution of this equation studied by Pişkin\[23\].

2 Analysis of the methods

A partial differential equation (PDE)

\[P(u, u_t, u_x, u_{xx}, \ldots) = 0 \tag{3} \]

can be converted to an ordinary differential equation (ODE)

\[Q(u, u', u'', u''', \ldots) = 0, \tag{4} \]

upon using a wave variable \(u(x,t) = u(\xi)\), \(\xi = x - ct\) where \(u'\) denotes \(\frac{\partial u}{\partial \xi}\). Then (4) is integrated as long as all terms contain derivatives where integration constants are considered zeros.

2.1 The sine-cosine method

The sine-cosine method was developed by Wazwaz\[4\] and was successfully applied to nonlinear evolution equations\[24,27\], to nonlinear evolution systems\[28\].

* Corresponding author e-mail: mmizrak@dicle.edu.tr
The solutions of the reduced ODE (4) can be expressed in the form
\[u(x,t) = \lambda \cos^{\beta}(\mu \xi), \quad |\xi| \leq \frac{\pi}{2\mu} \] (5)
or in the form
\[u(x,t) = \lambda \sin^{\beta}(\mu \xi), \quad |\xi| \leq \frac{\pi}{\mu} \] (6)
where \(\mu, \lambda \) and \(\beta \) are parameters that will be determined, \(\xi = x - ct \), \(\mu \) and \(c \) are the wave number and the wave speed, respectively.

The assumption (5) gives
\[
(u^{\prime})^{\prime}(\xi) = -n\beta \mu^{2} \lambda^{3} \cos^{\beta-1}(\mu \xi) \sin(\mu \xi), \\
(u^{\prime\prime})^{\prime}(\xi) = -n\beta^{2} \mu^{3} \lambda^{4} \cos^{\beta-2}(\mu \xi) + n\mu^{2} \lambda^{5} \beta (n\beta - 1) \cos^{\beta-2}(\mu \xi),
\] (7)
where similar equations can be obtained for the sine assumption. Substituting the sine-cosine assumptions and their derivatives into the reduced ODE gives a trigonometric equation of \(\sin^{R}(\mu \xi) \) or \(\cos^{R}(\mu \xi) \) terms. The parameters are then determined by first balancing the exponents of each pair of cosine to determine \(R \). We next collect all coefficients of the same power in \(\cos^{k}(\mu \xi) \) where these coefficients have to vanish. This gives a system of algebraic equations among the unknowns \(\mu, \lambda \) and \(\beta \) that will be determined. The solutions proposed in (5) and (6) follow immediately.

2.2 The rational functions in \(\exp(\xi) \) method

This method firstly proposed by B. Q. Lu and et al. in 1993 [1]. Later studied by many researchers [29,30].

In this method, we shall seek a rational function type of solution for a given partial differential equation, in terms of \(\exp(\xi) \) of the following form
\[U = \sum_{k=0}^{m} \frac{a_{k}}{(1 + e^{\xi})^{k}} \] (8)
where \(a_{0}, a_{1}, \ldots, a_{m} \) are some constants to be determined from the solution of (4).

Differentiating (8) with respect to \(\xi \), introducing the result into (4) and setting the coefficients of the same power of equal to zero, we obtain algebraic equations. The rational function solution of the (3) can be solved by obtaining \(a_{0}, a_{1}, \ldots, a_{m} \) from this system.

3 Application of the sine-cosine method

In this section, we will first use the sine-cosine method to develop solitary wave solutions to the modified Kawachara equation.

Using the wave variable \(\xi = x - ct \), (2) into an ODE
\[(1-c)u + \frac{u^{2}}{3} + pu'' + qu^{(4)} = 0 \] (9)
Substituting the cosine assumption (5) into (9) gives
\[
(1-c)\lambda \cos^{\beta}(\mu \xi) + \frac{3}{4} \mu^{2} \beta^{2} \lambda \cos^{\beta-2}(\mu \xi) + p\lambda^{2} \beta (\beta - 1) \cos^{\beta-2}(\mu \xi) + q \mu^{4} \beta^{4} \lambda \cos^{\beta-2}(\mu \xi) - 2q \mu^{4} \lambda \beta (\beta - 1) (\beta^{2} - 2\beta + 2) \cos^{\beta-2}(\mu \xi) + q \mu^{4} \lambda \beta (\beta - 1) (\beta - 3) \cos^{\beta-4}(\mu \xi) = 0.
\] (10)
Equating the exponents and the coefficients of like powers of cosine function leads to
\[
\beta (\beta - 1) (\beta - 2) (\beta - 3) \neq 0, \\
\beta - 4 = 3\beta, \\
(1-c)\lambda - 4p\mu^{2} \lambda + 16q \mu^{4} \lambda = 0, \\
p\mu^{2} \lambda - 12q \mu^{4} \lambda = 0, \\
\lambda^{3} + 12q \mu^{4} \lambda = 0.
\] (11)
Solving this system (11) yields
\[\beta = -2, \\
\mu = \mp \frac{1}{4} \sqrt{\frac{5(1-c)}{p}}, p \neq 0 \\
\lambda = \mp \frac{1}{2} \sqrt{\frac{5(1-c)}{2}}, \\
c = \frac{4p - 25}{28q}, q \neq 0.
\] (12)
This leads, for \(\frac{1-c}{p} > 0 \), the following periodic solutions
\[
u_{1,2}(x,t) = \mp \frac{3}{2} \sqrt{\frac{5(1-c)}{2}} \sec^{2} \left(\frac{1}{4} \sqrt{\frac{5(1-c)}{p}} (x - ct) \right), \\
\left| \frac{1}{4} \sqrt{\frac{5(1-c)}{p}} (x - ct) \right| < \frac{\pi}{2}
\] (13)
and
\[
u_{3,4}(x,t) = \mp \frac{3}{2} \sqrt{\frac{5(1-c)}{2}} \csc^{2} \left(\frac{1}{4} \sqrt{\frac{5(1-c)}{p}} (x - ct) \right), \\
\left| \frac{1}{4} \sqrt{\frac{5(1-c)}{p}} (x - ct) \right| < \pi.
\] (14)
However, for \(\frac{1-c}{p} < 0 \), we obtained the solitons solutions

\[u_{5,6}(x,t) = \pm \frac{3}{2} \sqrt{\frac{5(c-1)}{2p}} \text{sech}^2 \left(\frac{1}{4} \sqrt{\frac{5(c-1)}{p}} (x - ct) \right), \]

and

\[u_{7,8}(x,t) = \pm \frac{3}{2} \sqrt{\frac{5(c-1)}{2p}} \text{csch}^2 \left(\frac{1}{4} \sqrt{\frac{5(c-1)}{p}} (x - ct) \right). \]

4 Application of rational function type of solution

Now, we will find a rational function type of solution to the sixth-order Boussinesq equation with damping term, in terms of \(\exp(\xi) \). Firstly, we make the transformation

\[u(x,t) = U(\xi), \quad \xi = \alpha(x - \beta t) \]

and (2) becomes

\[(\beta^2 - 1)U'' + a\alpha\beta U''' - \alpha^2\beta^2 U^{(4)} - \alpha^4 U^{(6)} = (U^2)' \]

Balancing \(U^{(6)} \) with \((U^2)' \) in (18) gives \(m = 4 \). So that, the rational exponential method assumes finite expansion

\[U(\xi) = a_0 + \frac{a_1}{1 + e^\xi} + \frac{a_2}{(1 + e^\xi)^2} + \frac{a_3}{(1 + e^\xi)^3} + \frac{a_4}{(1 + e^\xi)^4} \]

where \(a_j (j = 0, 1, 2, 3, 4) \) are constants to be determined later. Substituting (19) in (18) and equating the coefficients of the powers \(e^\xi \), we then get the following algebraic relations:

\[-a_1 - 2a_0a_1 - a_1\alpha^4 - a_1\alpha^4 + a_1\beta^2 - a_1\alpha^2\beta^2 = 0, \]

(20a)

\[-6a_1 - 12a_0a_1 - 4a_1^2 - 4a_2 - 8a_0a_2 + 54a_1\alpha^4 - 64a_0\alpha^4 - 2a_1\alpha\beta - 8a_0\alpha\beta + 6a_1\beta^2 + 4a_2\beta^2 + 6a_1\alpha^2\beta^2 - 16a_0\alpha^2\beta^2 = 0, \]

(20b)

\[-14a_1 - 28a_0a_1 - 22a_1^2 - 22a_2 - 44a_0a_2 - 18a_1\alpha^2 - 9a_1 - 18a_0\alpha \]

\[-134a_0\alpha^4 + 818a_1\alpha^4 - 729a_0\alpha^4 + 8a_1\alpha\beta - 26a_0\alpha\beta - 27a_0\alpha\beta + 14a_1\beta^2 + 22a_2\beta^2 + 9a_1\beta^2 + 34a_1\alpha^2\beta^2 + 2a_1^2\alpha^2\beta^2 - 81a_1\alpha^2\beta^2 = 0, \]

(20c)

\[-14a_1 - 28a_0a_1 - 48a_1^2 - 48a_2 - 96a_0a_2 - 84a_1\alpha^2 - 16a_1 - 42a_0\alpha \]

\[-84a_0\alpha^4 + 32a_1\alpha^4 + 3a_1\beta - 32a_0\beta - 16a_1\beta - 32a_2\alpha^2 + 434a_0\alpha^2 + 499a_1\alpha^2 + 34a_0\alpha\beta + 12a_1\alpha\beta - 78a_0\alpha\beta \]

\[-64a_0\alpha\beta + 4a_2\beta^2 + 48a_1\beta^2 + 42a_2\beta^2 + 11a_1\alpha^2 + 116a_1\beta^2 + 116a_1\alpha^2 + 4a_2\alpha^2 + 132a_2\beta^2 - 4a_2\alpha^2 + 32a_0\beta^2 - 256a_0\alpha^2 = 0, \]

(20d)

\[-50a_1^2 - 50a_0a_2 - 100a_0a_1 - 150a_1\alpha^2 - 60a_2 - 150a_0\alpha^2 + 120a_0\alpha^4 - 50a_1\alpha^4 + 250a_2\alpha^4 + 120a_0\alpha^2 \]

\[-367a_1\alpha^2 + 2154a_0\alpha^2 + 50a_1\alpha^2 + 50a_1\alpha^2 + 45a_1\alpha^2 + 285a_0\alpha^2 + 285a_0\alpha^2 + 285a_0\alpha^2 - 60a_0\alpha^2 = 0, \]

(20e)
Explicit Travelling Wave Solutions of Two Nonlinear...
References

Abdulkadir Ertas, Professor of Mathematics at Dicle University, Turkey. His interests are the nonlinear PDEs. Since 2011, he is the dean of Art-Science Faculty, Siirt University, Turkey.

Mustafa Mizrak, received the MS and PhD degrees in applied mathematics. He is a lecturer in Dicle University, Turkey. His research interests are in the areas of applied mathematics.