

Applied Mathematics & Information Sciences An International Journal

http://dx.doi.org/10.12785/amis/070440

Large Scale Linear Programming in the Windows and Linux computer operating systems

Saeed Ketabchi¹, Hossein Moosaei^{2,*}, Hossein Sahleh² and Mohammad Hedayati²

¹Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran

²Department of Mathematics, University of Boinourd, Boinourd, Iran

³Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran ⁴Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran

Received: 10 Oct. 2012, Revised: 14 Nov. 2012, Accepted: 12 Dec. 2012 Published online: 1 Jul. 2013

Abstract: In this study, calculations necessary to solve the large scale linear programming problems in two operating systems, Linux and Windows 7 (Win), are compared using two different methods. Relying on the interior-point methods, linear-programming interior point solvers (LIPSOL) software was used for the first method and relying on an augmented Lagrangian method-based algorithm, the second method used the generalized derivative. The performed calculations for various problems show the produced random in the Linux operating system (OS) and Win OS indicate the efficiency of the performed calculations in the Linux OS in terms of the accuracy and using of the optimum memory.

Keywords: Augmented Lagrangian method, generalized Newton method, linux operating system, LIPSOL, windows operating system

1 Introduction

Linear programming (LP) is an important class of optimization problems and is used extensively in economics, operations research, engineering, and many other fields.

In this paper we consider the primal linear programming in the standard form

$$f_* = \min_{x \in X} c^T x, \quad X = \{x \in \mathbb{R}^n : Ax = b, x \ge 0\}, (P)$$

where $A \in \mathbb{R}^{m \times n}$, $c \in \mathbb{R}^n$, and $b \in \mathbb{R}^m$ are given, *x* is primal variable, 0_i denotes the i-dimensional zero vector. In this work we present two methods for solving problem (P). The first method -which is a Matlab-based package for solving linear programs by interior-Point methods- is LIPSOL (the function linprog in Matlab). The second method is based on augmented Lagrangian method. [1, 2, 3, 4]

Initially, some problems with different sizes are produced randomly through providing generated problem and then calculations are done in the Win OS. Though the second algorithm enjoys a higher efficiency than

MATLAB LINPROG according to the results, it cannot solve the large-scale problems. Now, the operating system is changed from the Win to the Linux and the produced problems are solved using both methods in the Linux OS. It can be observed that the unsolved problems by the Win OS are solved by the Linux OS. These results show the higher efficiency and flexibility of the Linux OS than the Win OS to make calculations and to solve large scale problems using various methods.

This paper is organized as follows. Augmented Lagrangian method is discussed in Section 2. In Section 3, some examples on various randomly generated problems are provided to illustrate the efficiency and validity of our proposed method. Concluding remarks are given in Section 4.

In this work by A^{\top} and $\|.\|$ we mean the transpose of matrix A and Euclidean norm respectively and a_{+} replaces negative components of the vector *a*, by zeros.

2 Augmented Lagrangian Method

In this section we consider problem (P). Assume that the solution set X_* of primal problem (P) is nonempty, hence

^{*} Corresponding author e-mail: hmoosaei@gmail.com

the solution set U_* of dual problem is also nonempty, and $x \in \mathbb{R}^n$ be an arbitrary vector. Next Theorem tells us that we can get a solution of the dual problem of (P) from the unconstrained minimization problem.

Theorem 1. Assume that the solution set X_* of problem (P) is nonempty. Then there exists $\alpha_* > 0$ such that for all $\alpha \ge \alpha_*$ the unique least 2–norm projection *x* of a point \bar{x} onto X_* is given by $x = (\bar{x} + \alpha (A^T u(\alpha) - c))_+$ where $u(\alpha)$ is a point attaining the minimum in the following problem:

$$\min_{u \in \mathbb{R}^m} \Phi(u, \alpha, \bar{x}),\tag{1}$$

where

 $\Phi(u, \alpha, \bar{x}) = -b^T u + \frac{1}{2\alpha} \parallel (\bar{x} + \alpha(A^T u - c))_+ \parallel^2$. In addition, for all $\alpha > 0$ and $x \in X_*$, the solution of the convex, quadratic problem (1), $u_* = u(\alpha)$ is an exact solution of the dual problem i.e. $u(\alpha) \in U_*$. The proof is given in [1].

Now, we describe how can be solved the unconstrained optimization problem (1). The function $\Phi(u, \alpha, \bar{x})$ is augmented Lagrangian function for the dual of the linear programming (*P*) (see [5]),

$$f_* = \max_{u \in U} b^T u, \quad U = \{ u \in R^m : A^T u \le c \}$$
 (D)

The function $\Phi(u, \alpha, \bar{x})$ is piecewise quadratic, convex, and just has the first derivative, but it is not twice differentiable. Suppose *u* and $s \in \mathbb{R}^m$, for gradient of $\Phi(u, \alpha, \bar{x})$ we have

$$\|\nabla \Phi(u,\alpha,\bar{x}) - \nabla \Phi(s,\alpha,\bar{x})\| \le \|A\| \|A^T\| \|u-s\|,$$

this means $\nabla \Phi$ is globally Lipschitz continues with constant $K = ||A|| ||A^T||$. Thus for this function generalized Hessian exist and is defined the $m \times m$ symmetric positive semidefinite matrix [6,7,8,9]

$$\nabla^2 \Phi(u, \alpha, \bar{x}) = AD(z)A^T,$$

where D(z) denotes an $n \times n$ diagonal matrix with i-diagonal element z_i equals to 1 if $(\bar{x} + \alpha (A^T u(\alpha) - c)_i > 0$ and equal to 0 otherwise. Therefore we can use generalized Newton method for solving this problem and to obtain global termination we must use a line-search algorithm see [10]. In the following algorithm we apply the generalized Newton method with a line-search based on the Armijo rule [11].

Algorithm 1 Generalized Newton method with the Armijoo rule

Choose any $u_0 \in \mathbb{R}^m$ and $\varepsilon \ge 0$ i=0; while $\|\nabla \Phi(u_i)_{\infty}\| \ge \varepsilon$ Choose $\alpha_i = max\{s, s\delta, s\delta^2, ...\}$ such that $\Phi(u_i) - \Phi(u_i + \alpha_i d_i) \ge -\alpha_i \mu \nabla \Phi(u_i) d_i,$ where $d_i = -\nabla^2 \Phi(u_i)^{-1} \nabla \Phi(u_i), s > 0$ be a constant, $\delta \in (0, 1)$ and $\mu \in (0, 1).$ $u_{i+1} = u_i + \alpha_i d_i$ i = i + 1;end

In this algorithm, the generalized Hessian may be singular, thus we used a modified Newton direction as following:

$$-(\nabla^2 \boldsymbol{\Phi}(u_i) + \delta I_m)^{-1} \nabla \boldsymbol{\Phi}(u_i),$$

where δ is a small positive number ($\delta = 10^{-4}$), and I_m is the identity matrix of m order.

Now we introduce the following iterative process (multiplies method for the dual LP problem (D)):

$$u^{k+1} = \arg\min_{u \in \mathbb{R}^n} \{ -b^T u + \frac{1}{2\alpha} \parallel (x^k + \alpha (A^T u - c))_+ \parallel^2, (2) \}$$

$$x^{k+1} = (x^k + \alpha (A^T u^{k+1} - c))_+,$$
(3)

where x^0 is an arbitrary starting point and the solution of the problem (2) has been obtained by **Algorithm 1**.

Theorem 2. Let the solution set X_* of the problem (P) be nonempty. Then, for all $\alpha > 0$ and an arbitrary initial x^0 the iterative process (2), (3) converges to $x_* \in X_*$ in finite number of step k and the primal normal solution \hat{x}_* was obtained after the first iteration from above process, i.e. k = 1. Furthermore, $u_* = u^{k+1}$ is an exact solution of the dual problem (D).

The proof of the finite global convergence is given in [5]

3 Numerical results

In this section we present some numerical results on various randomly generated problems to the problem (P). The problems are generated using the following MATLAB code:

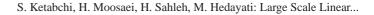
%lpgen: Generate random solvable lp: minc'x s.t. Ax = bx > 0. %Input: m,n,d(ensity); Output: A,b,c; (x, u): primal-dual solution m=input('Enter m:') n=input('Enter n:') d=input('Enter d:') pl=inline('(abs(x)+x)/2')A=sprand(m,n,d); A=100*(A-0.5*spones(A)); x=sparse(10*pl(rand(n,1))); u = spdiags((sign(pl(rand(m,1)-rand(m,1)))),0,m,m)*(rand(m,1)-rand(m,1)); $b = A^*x;$ c=A'*u+spdiags((ones(n,1)sign(pl(x))),0,n,n)*10*ones(n,1); format short e; [norm(A * x - b), norm(pl(A' * u - c)), c' * x - b' * u]

m, \overline{n}, d		time(sec)	$ x^* $	$ Ax^* - b _{\infty}$	$\ (A^T u^* - c)_+\ _{\infty}$	$ c^T x^* - b^T u^* $
800, 1000, 1	linprog			Out of memory		
	lpf	26.06	1.3250e + 001	4.6280e - 009	1.3358e - 012	2.2695e - 008
1000, 1200, 1	linprog			Out of memory		
	lpf	45.91	1.3072e + 001	5.8478e - 009	1.7586e - 012	-1.6425e - 008
800, 10000, 1	linprog			Out of memory		
	lpf	97.20	9.0806e + 000	1.1331e - 008	5.6843e - 013	8.8519e - 008
2000, 30000, 0.1	linprog	162.51	3.2136e + 001	1.2335e - 008	5.79e - 013	5.82e - 007
	lpf	29.31	13.372	3.9063e - 009	6.8212e - 013	-5.6716e - 009
3000, 4000, 0.1	linprog			Out of memory		
	lpf	87.35	1.3993e + 001	8.2518e - 009	8.5265e - 013	4.9171e - 008
10000, 15000, 0.01	linprog			Out of memory		
	lpf			Out of memory		
10000, 150000, 0.01	linprog			Out of memory		
	lpf			Out of memory		
100, 10000000, 0.01	linprog	814.07	1.1705e + 005	4.0059e - 007	1.00e - 007	1.82e - 001
	lpf	218.86	4.3655e - 001	2.0084e - 007	7.1054e - 015	-2.8666e - 007

Table 1: Comparison of linprog~ and lpf in Win

Table 2: Comparison of linprog and lpf in Linux

m, n, d		time(sec)	$ x^* $	$ Ax^* - b _{\infty}$	$ (A^T u^* - c)_+ _{\infty}$	$ c^T x^* - b^T u^* $
800, 1000, 1	linprog	45.84	1.8190e + 01	3.4152e - 10	8.01e - 13	4.97e - 06
	lpf	23.83	1.3250e + 01	4.6280e - 09	1.3358e - 12	2.2695e - 08
1000, 1200, 1	linprog			Out of memory	r	
	lpf	44.59	1.3072e + 01	5.8478e - 09	1.7586e - 12	-1.6425e - 08
800, 10000, 1	linprog			Out of memory		
	lpf	90.41	9.0806e + 00	1.1331e - 08	5.6843e - 13	8.8519e - 08
2000, 30000, 0.1	linprog	161.72	3.2136e + 01	9.4724e - 10	5.78e - 13	5.82e - 07
	lpf	34.65	13.372	3.9063e - 09	6.8212e - 13	-5.6716e - 09
3000, 4000, 0.1	linprog	291.53	2.3014e + 01	6.4369e - 10	1.02e - 12	9.65e - 09
	lpf	113.95	1.3993e + 01	8.2518e - 09	8.5265e - 13	4.9171e - 08
10000, 15000, 0.01	linprog			Out of memory		
	lpf	3243.50	1.4390e + 01	6.0431e - 09	3.1264e - 13	-1.2012e - 07
10000, 150000, 0.01	linprog			Out of memory		
	lpf	4215.10	5.5538e + 01	1.1173e + 05	1.1108e - 01	3.8562e + 05
100, 10000000, 0.01	linprog	212.72	1.1705e + 05	4.4343e - 07	1.00e - 07	1.82e - 01
	lpf	140.01	4.3655e - 01	2.0084e - 07	7.1054e - 15	-2.8666e - 07



The test problem generator generates a random matrix A for a given m,n and density d and the vector b. The elements of A are uniformly distributed between -50 and +50. In all computations were performed, our variant augmented Lagrangian method and the generalized Newton method and Armijo line search, were implemented in MATLAB code. We used *Core 2 Duo* 2.53 GHz with main memory 4 GB. The computation results are shown in Table (1) and Table (2). We present comparison between the method is based on *LIPSOL* see [12] in MATLAB (**linprog**) and our algorithm (**lpf**) in Windows and Linux.

Computational results show that, some of the unsolved problems in the Win OS are solved in the Linux OS.

The starting vector used in all following examples is $x^0 = 0$. In all solved examples $\alpha = 10/d^{0.5}$, $tol = 10^{-10}$. The total times of computations in each example is given the third column of the table. The accuracy of optimality conditions of LP problems are in the last three columns.

4 Conclusion

1556

Two methods have been offered in this paper to solve linear programming problem. Initially, some problems are produced randomly and then they will be solved by two offered methods in the Win OS. Though the second algorithm enjoys a higher efficiency than MATLAB LINPROG according to the results, it cannot solve the large-scale problems. Then the produced problems are solved using the both methods in the Linux OS, the results show that some of the unsolved problems in the Win OS are solved in the Linux OS.

References

- Yu G. Evtushenko, A I. Golikov and N. Mollaverdi, Optimization Methods and Software 20, 515 (2005).
- [2] Yu G. Evtushenko and A I. Golikov, Dynamics of nonhomogeneous systems 2, 63 (1998).
- [3] J. Zhou, X. Xu and J. Tang, Appl. Math. Inf. Sci 6, 337 (2012).
- [4] Z F. Pang, B. Shi and L. Huang, Appl. Math. Inf. Sci 6, 515 (2012).
- [5] A S. Antipin, Nonlinear programming methods based on primal and dual augmented Lagrangian (Institute for System Studies, Moscow, 1979).
- [6] J B. Hiriart-Urruty, J J. Strodiot and V H. Nguyen, Applied Mathematics and Optimazation 11, 43 (1984).
- [7] C. Kanzow, H. Qi and I. Qi, Journal of Optimazition Theory and Applications 116, 333 (2003).
- [8] O L. Mangasarian, Journal of Optimization Theory and Applications 121, 1 (2004).
- [9] O L. Mangasarian, Optimization Methods and Software 17, 913 (2002).

- [10] J. Nocedal, S J. Wright, Numerical Optimization, (Springer Science, New York, 1999).
- [11] L. Armijoo, Pacifice Journal of Mathematics 16, 1 (1966).
- [12] Y. Zhang, Optim. Methods Softw 10, 1 (1998).

Saeed Ketabchi an Associate Professor is Mathematics of Applied University of Guilan. in His research interests are Optimization, Machine Learning, infeasible systems, Stochastic programming and parallel computing. He has published and submitted

some papers .

Hossein Moosaei an Assistant Professor is of Applied **Mathematics** at University of Bojnourd. His research interests include Optimization. Machine Learning, infeasible systems, Linear complementarity problem, and Matrix computational. He has

published and submitted some scientific papers .

Hossein Sahleh is an Associate Professor of Pure Mathematics in University of Guilan with many years of experience in research and teaching. His main interest is in topological groups and cohomology of groups.

Mohammad Hedayati obtained his MS.C in University of Guilan. He has been studying on Linux computer operating system