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Abstract: Recently, a new entropy based divergence measure has been introduced which is much like Kullback-Leibler divergence.
This entropy measures the distance between an empirical and a prescribed survival function and is a lot easier to compute in continuous
distributions than the K-L divergence. In this paper we show that this distance converges to zero with increasing sample size and
we apply it to estimate Weibull parameters. Detailed simulations show a higher performance of the new estimation method than the
commonly used maximum likelihood and linear regression methods in Weibull scale parameter estimation. Using unbiasing factors
provided in this paper for Weibull shape parameter estimation, one can obtain unbiased estimation for Weibull modulus.
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1. Introduction

Since the Kullback-Leibler divergence has been defined as
a measure of distance between two probability distribu-
tions[1], it has been extensively utilized in numerous appli-
cations of science and engineering. Although, it is linked
with statistical subjects such as model selection and pa-
rameter estimation, it has been applied in many other an-
alytical and experimental concepts. The reader is recom-
mended to see [2,3] for a list of applications.

However, there are some limitations and difficulties in
utilizing the K-L divergence for continuous distributions.
For two continuous random variablesX andY with prob-
ability density functionsf andg respectively, the K-L di-
vergence off relative tog is defined by:

D(f ||g) =
∫

R
f(x) ln

f(x)
g(x)

dx. (1)

This definition is based on the density of two random vari-
ables which in general may or may not exist [3]. More-
over, if we suppose the existence of the densities, it is al-
ways difficult to properly estimate them from sample data.

Above all, even by increasing the sample size, there is no
guarantee that the estimated density would converge to its
true measure. To overcome the mentioned problems, dif-
ferent K-L estimation methods have been proposed by re-
searchers, e.g. methods defined in [4–6]. Also, several al-
ternative measures have been defined in the literature, e.g.
in [7,8].

The above problems still remain when one wants to
measure the distance between a set of sample data and a
probability density function using the K-L divergence. Re-
cently, Liu [9] has defined a new divergence measure be-
tween sample data and a probability distribution which is
based on the survival function of the random variableX,
namelyF (x) = P (X > x), instead of its density func-
tion f(x). The survival function is more regular than the
density function because it always exists, can be easily es-
timated from sample data, and its estimation is convergent
by the law of large numbers. Moreover, in practice what
is of interest and/or measurable in reliability theory is the
survival function. For example, in describing the life span
of a ceramic under a uniaxial tensile stress, the aim of in-
terest is not whether the life span equalsx, but whether
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it exceedsx. The introduced divergence measures the dis-
tance between an empirical and a prescribed survival func-
tion and Liu has used it to estimate the parameters of expo-
nential and uniform distributions. But in spite of the good
results, the new measure has not been used seriously in
parameter estimation sine then.

In this paper we have used the new divergence mea-
sure, called Kullback-Leibler divergence of Survival func-
tions (KLS), to estimate the parameters of a Weibull dis-
tribution. We chose the two-parameter Weibull distribu-
tion since its survival function has a simple form. Also,
our results would generalize the previous work of Liu for
exponential distribution. Besides, the Weibull distribution
has been vastly utilized in many scientific disciplines es-
pecially materials science. For a list of applications of the
Weibull family of distributions see [10,11].

The rest of the paper is organized as follows: an outline
of the Weibull distribution is mentioned in Section 2. In
Section 3 the KLS definition is restated and the Weibull
parameter estimation using the KLS is described. Section
4 provides a simulation study to show the advantages of
the KLS parameter estimation over the alternative methods
and in Section 5 conclusions are made.

2. The Weibull distribution

Weibull distribution has become a well-established mod-
eling tool in many scientific areas such as biology, envi-
ronment, health, material and social science. The statisti-
cal variation in such scientific measurements can be de-
scribed properly with the two-parameter Weibull survival
function:

F (x) = exp
[
−

(x

σ

)m]
, x ≥ 0, m, σ > 0, (2)

wherem andσ are the shape and scale parameters respec-
tively. F (x) is also called probability of success in relia-
bility theory and is widely used in materials science when
fracture strength of brittle materials is measured. This is
because of the well-known ”weakest link property” stating
that the minimum of independent, identically distributed
random variables (not necessarily Weibull distributed) has
an approximate Weibull distribution, subject to some mild
conditions concerning the distribution of such random vari-
ables. Bearing in mind that a piece of material can be viewed
as a concentration of many smaller material cells, each of
which has its random breaking strengthXi when subjected
to stress. Thus the strength of the concentrated total piece
is the strength of its weakest link, that ismin(X1, · · · , Xn),
i.e., approximately Weibull.

In practice, it is usually necessary to fit a set of exper-
imentally measured data into the Weibull equation given
in (2), i.e. to estimate the two parametersm andσ. There
have been several approaches for the estimation of these
two parameters in the literature. Maximum likelihood and
linear regression methods are the most widely used ones

due to their precision and simple computations, respec-
tively. These methods are not discussed in this paper and
the reader is recommended to see [10,12] for detailed meth-
odology. The wide range of the Weibull applications in en-
gineering and materials science motivated the authors to
apply the new divergence measure in Weibull parameters
estimation and compare the results with commonly used
estimation methods. The results are provided by simula-
tion and gathered in Section 4.

3. Kullback-Leibler divergence of Survival
functions

The key idea to the KLS definition is to use survival func-
tions in place of density functions in the Kullback-Leibler
divergence and add a new term to make sure the new mea-
sure is always positive. This definition also represents the
well established principle that the logarithm of the proba-
bility of an event should represent the information content
in the event. First, recall a basic definition.

Definition 1.LetX1, X2, · · · be a sequence of positive, in-
dependent and identically distributed (i.i.d) random vari-
ables from a non-increasing survival functionF (x,Θ) =
PΘ(X > x) with supportSx and vector of parametersΘ.
Define the empirical survival function of a random sample
of sizen by

Gn(x) =
n−1∑

i=0

(1− i

n
) I[X(i),X(i+1))(x), (3)

whereI is the indicator function and(0 = X(0) ≤)X(1) ≤
X(2) ≤ . . . ≤ X(n) are the ordered sample.

Below we restated the KLS definition.

Definition 2.LetF (x,Θ) be the true survival function with
unknown parametersΘ andGn(x) be the empirical sur-
vival function of a random sample of sizen fromF (x,Θ).
Define the Kullback-Leibler divergence of Survival func-
tionsGn andF by

KLS(Gn||F ) =
∫ ∞

0

Gn(x) ln
Gn(x)
F (x)

−[Gn(x)−F (x)] dx.

(4)

The two following theorems show that the KLS is a di-
vergence measure which converges to zero with increasing
sample size.

Theorem 1.KLS(Gn||F ) ≥ 0 for all n ∈ N, equality
holds if and only ifGn = F .

proof. It follows from the log-sum inequality and the in-
equalityx ln x

y ≥ x− y, ∀x > 0, y > 0.

Theorem 2.If
∫∞
0

F (x) ln F (x) dx < ∞, the introduced
measure converges to zero asn tends to infinity.
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proof. Note thatGn andF are integrable and (4) can be
simplified to

KLS(Gn||F ) =
∫ ∞

0

Gn(x) ln
Gn(x)
F (x)

dx−[X̄n−E(X1)].

(5)
By the law of large numbers,̄Xn − E(X1) converges to
zero almost surely with increasing sample size, so we need
only to show that the integral part in (5) converges to zero.
In Theorem 9 of [13] it has been stated that

|
∫ ∞

0

Gn(x) ln Gn(x) dx−
∫ ∞

0

F (x) ln F (x) dx | n→∞−→ 0,

(6)
so, it suffices to show that

|
∫ ∞

0

Gn(x) ln F (x) dx−
∫ ∞

0

F (x) ln F (x) dx | → 0,

(7)
asn → ∞. For a fixedn, using the definition ofGn(x)
given in (3) we can write

∫ ∞

0

Gn(x) ln F (x) dx =
n−1∑

i=0

(1− i

n
)
∫ x(i+1)

x(i)

ln F (x) dx.

(8)
Defineh(x) :=

∫ x

0
ln F (t) dt for x ∈ Sx. Notice thath is

well-defined becauseF is monotone on its supportSx and
h(0) = 0. Then, (8) gives
∫ ∞

0

Gn(x) ln F (x) dx =
n−1∑

i=0

(1− i

n
)[h(x(i+1))− h(x(i))]

=
n−1∑

i=0

[h(x(i+1))− h(x(i))]−
1
n

n−1∑

i=0

i [h(x(i+1))− h(x(i))]

=[h(x(n))− h(x(0))]−
1
n

n−1∑

i=0

[(i + 1)h(x(i+1))− i h(x(i))]

+
1
n

n−1∑

i=0

h(x(i+1))

= h(x(n))− h(x(0))−
1
n

(nh(x(n)))− 0) +
1
n

n∑

i=1

h(x(i))

=
1
n

n∑

i=1

h(xi).

Sincex1, x2, · · · , xn are random samples fromF , if we
tendn to infinity

∑n
i=1 h(xi)/n converges toE[h(X)] by

the law of large numbers. On the other hand, using inte-
gration by parts one can obtain

E[h(X)] =
∫ ∞

0

h d(1− F ) =
∫ ∞

0

F (x) ln F (x) dx.

(9)
and the proof is complete.

The KLS divergence is not a metric in the mathemat-
ical sense. It is not symmetric and the triangle inequality
does not hold for it. But it is still good enough for our pur-
poses. Consider the following definition.

Definition 3.LetΘ̂ = arg minΘ KLS(Gn||F ). Call Θ̂ the
KLS estimator ofΘ.

In order to use the KLS to estimate the parameters of
a Weibull distribution, we just have to put the Weibull sur-
vival function given in (2) instead ofF in (4). After sim-
plifying we get

KLS(Gn||F ) =
n−1∑

i=1

(1− i

n
) ln(1− i

n
)∆xi+1

+
∑n

i=1 xm+1
i

n(m + 1)σm
− [ x̄n − σΓ (1 +

1
m

) ],

(10)

where∆xi+1 = xi+1 − xi, x0 = 0 andΓ is the gamma
function defined asΓ (t) =

∫∞
0

xt−1e−x dx for t > 0.
Equation (10) should be minimized for the values ofm and
σ to yield the KLS estimations. Setting the partial deriva-
tive with respect toσ equal to zero, yields

σm+1 =
m

n(m + 1)

∑n
i=1 xm+1

i

Γ (1 + 1
m )

. (11)

After substituting (11) into (10) and after some rearrange-
ments, we get

g(m) =
n−1∑

i=1

(1− i

n
) ln(1− i

n
)∆xi+1 − x̄n

+
m−m/(m+1) + m1/(m+1)

(n(m + 1))1/(m+1)
m+1

√√√√Γm(1 +
1
m

)
n∑

i=1

xm+1
i ,

(12)

which is only a function ofm. Thus,g(m) in (12) should
be minimized form by a non-derivative based optimiza-
tion method. Subsequently,σ is estimated from (11). Ob-
taining a closed-form solution of (12) form is not possible
and it must be solved numerically. This is easily done by
MATLAB’s fminsearch function.

4. Weibull parameters estimation

A series of MATLAB codes was written to generate values
x1, x2, · · · , xn from a Weibull distribution withm = 10
and σ = 1. For convenience we assumedmtrue = 10
andσtrue = 1 throughout this study. This set of simulated
values was used to estimate the Weibull parameters using
the KLS, maximum likelihood (ML) and linear regression
(LR) methods. The procedure was then repeated 10,000
times. Consequently, a total of 10,000 samples were gener-
ated and 10,000 Weibull parameter estimations were pro-
duced using each method. Then the mean valuesm̄ andσ̄,
and sample variancesS2

m andS2
σ were computed using:

m̄ =
104∑

j=1

mj

104
, σ̄ =

104∑

j=1

σj

104
, (13)
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Figure 1: (a)m̄/mtrue (b) S2
m as functions of sample size

S2
m =

104∑

j=1

(mj − m̄)2

104 − 1
, S2

σ =
104∑

j=1

(σj − σ̄)2

104 − 1
, (14)

wheremj andσj represent the estimated Weibull shape
and scale parameters from thejth sample. Clearly, the meth-
od which makes̄m/mtrue andσ̄ be equal to one provides a
better estimation.

To illustrate the effect of the sample size, random sam-
ples of different sizesn = 10, 15, 20, 25, 30, 35, 40, 45
and50 were used. For the linear regression method, we
have used the probability indexPi = i−0.5

n , as it has been
shown to provide the best estimations [12].

Although the above simulation was carried out for arb-
itrary-chosen values ofmtrue = 10 andσtrue = 1, its results
are valid for any value ofmtrue andσtrue, as previous stud-
ies and numerical calculations have shown that the values
of m̄/mtrue and σ̄/σtrue, and their distributions are inde-
pendent of the prescribed values ofmtrue andσtrue [12,14].

Figure 1 (a) shows normalized mean Weibull modu-
lus (m̄/mtrue) of the three different parameter estimation
methods in each sample size. As it can be seen, all three
methods actually overestimate the Weibull modulus. The
KLS method leads to more biased estimations than the
other two methods. Though, its bias decreases more rapidly
with increasing sample size. Obviously the LR method
provides a better estimation from this point of view. How-
ever, the estimation precision is related not only to the bias
but also to the deviation from the true value of the param-
eter.

Figure 1 (b) shows sample variances of the three dif-
ferent methods. Its value for the KLS method is more than
those of the ML and the LR methods for small sample
sizes. For sample sizes more than30, the sample vari-
ances of the KLS lies between that of the maximum like-
lihood and the linear regression. Together, it seems max-
imum likelihood estimation for Weibull modulus is more

precise. The results of the maximum likelihood and linear
regression methods which are presented here are in agree-
ment with previous studies.

The estimators of the Weibull shape parameter are al-
ways biased for the maximum likelihood and linear regres-
sion methods [12,15]. Simulations provided here verified
that also showing that the KLS method provides biased
estimations, too. A general method to correct the statis-
tical bias of the Weibull modulus estimation is to multi-
ply it by an appropriate unbiasing factor [14]. Theses fac-
tors are computed for the KLS estimation method using a
different simulation with a total of 100,000 samples and
provided in Table 1. We show the unbiased estimations of
the KLS method by UKLS. To make comparisons fair, we
have derived unbiased estimations of the maximum likeli-
hood method (UML) using unbiassing factors provided in
ASTM Standard [15]. For the linear regression method we
applied the method described in Wu et. al[16]. Figure 2 (a)
shows the normalized unbiased mean Weibull modulus es-
timations with the KLS method along with that of the ML
and the LR methods. The improvement in UKLS estima-
tions is obvious. It seems that all three estimation methods
perform equitable. Figure 2 (b) provides estimated mean
square errors. Comparison of the three methods reveals
almost equal performance of modulus estimation by the
three methods.

It has been shown in previous studies that the estimated
scale parameter from maximum likelihood and linear re-
gression methods is approximately unbiased. Figure 3 (a)
shows the same results and also demonstrates that the KLS
estimator provides the least biased estimations for every
sample size. Figure 3 (b) illustrates that the sample vari-
ances for the three methods are almost the same.

The parameterσ is in the exponent’s argument,(x/σ)m,
in the Weibull equation. Hence its dispersion may still ex-
ert an important effect on the form of the Weibull survival
function despite the small variation from its true value.
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Figure 2: (a)m̄/mtrue (b) ˆMSEm as functions of sample size
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Figure 3: (a)̄σ/σtrue (b) S2
σ as functions of sample size

Table 1: Unbiasing factors for Weibull modulus estimation using
the DCE method

sample size Unbiasing sample size Unbiasing
n factor n factor
10 0.810 35 0.943
15 0.871 40 0.953
20 0.907 45 0.956
25 0.922 50 0.963
30 0.933

So, based on these results, it is recommended to use the
KLS method at least to estimate the Weibull scale parame-
ter. Moreover, using unbiasing factors one can estimate the
Weibull modulus by the KLS as good as the ML and LR
methods.

Remark. If we setm = 1 from the beginning, the
problem reduces to estimating the scale parameterσ of
an exponential distribution with survival functionF (x) =
exp (−x/σ) , x ≥ 0. The estimation using the KLS would

be σ̂ =
(

1
2n

∑n
i=1 x2

i

)1/2
which is unique, consistent and

its square is the unbiased estimator ofσ2. Given the ML
estimation̂σ = 1

n

∑n
i=1 xi, it’s obvious that the KLS esti-

mation converges in mean square error to the true value of
σ faster than ML estimation. This especial case is studied
in Liu [9].

5. Conclusion

This paper developed a new technique (KLS) for estima-
tion of the Weibull parameters. The new method mini-
mizes an entropy based distance between the empirical
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survival function and the Weibull survival function. De-
tailed results show that the KLS estimator for the scale pa-
rameter provides the least biased estimations for all sample
sizes. Using unbiasing factors one can estimate the Weibull
shape parameter as reliable as the maximum likelihood
and the linear regression methods.

Applying the KLS in goodness-of-fit tests and model-
ing censored experimental data is a future work that will
bring this measure more into attention since survival func-
tion is more easily estimated in case of censored sam-
ples. Furthermore, characteristics of the estimations by this
method are a challenge and the objective of the authors.
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