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Abstract: The modern flight control systems are complex since they havea non-linear nature. Also, modern aerospace vehicles are
expected to have non-conventional flight envelopes and, in order to operate in uncertain environments, they must guarantee a high level
of robustness and adaptability. A Neural Networks controller can be used in applications with manned or unmanned aerialvehicles.
The paper shows the mathematical model for hexacopter dynamics and a comparison between two different technique for stabilization
and trajectory control: proportional,integral, derivative controller and real rime system controller based on Neural Networks. Numerical
simulations are performed in order to validate both mathematical model and control approaches.

Keywords: Hexacopter, UAV, Flight Control, Real-Time System, NeuralNetwork, PID

1 Introduction

The Unmanned Aerial Vehicles, shortly UAVs and also
known as drone, are aircraft characterized by the absence
of a pilot on board and represent very promising vehicle
for flight in indoor/outdoor environment. Their flight is
managed by means of a proper control system, under the
supervision of a navigator or pilot on the ground.
Anyhow, the flight operations of an UAV must comply
with the same rules and procedures of the aircraft with on
board pilot and flight crew. In fact, in recent years, the
guidelines of flight certification for UAVs are designed to
provide an increased reliability, accuracy and safety.
UAVs are widely used both in military and civil
application such as fire prevention and emergency
operations, surveillance, search and rescue. It is clear that
the main goal of UAVs consists in avoiding any risk for
pilots and aircrew and allowing the execution of “dull,
dirty and dangerous” missions, often at a lower cost than
conventional aircraft. For this reason, a relevant featureof
UAVs is related to flight management and trajectory
control strategy with the aim of automatically reaching a
desired position under a specific orientation. For as UAVs
were conceived, it is crucial define an efficient and
accurate control system. UAV could carry expensive
instrumentation, such as sensors or cameras, and
therefore high demands are set on a well working

automatic flight control strategy. These research field is
multidisciplinary and involves areas like aeronautics,
computer science, mathematics, electronics, mechanics,
automatic control, signal processing, and so on. Among
UAVs, great interest is produced by hexacopters or
hexarotors, which are aircraft with six rotors placed on
the vertices of a hexagon-shaped structure. The
propulsion system consists of three pairs of counter
rotating fixed pitch blades: in details, the blades located
on the same arm rotate in opposite direction [1].
In literature there exist a lot of different control technique
and traditional methods involve Lyapunov function [2]
[3], back-stepping [4] [5] and nonlinear dynamic
inversion [6] [7]. Furthermore, in order to manage the
dynamics of a quadrotor, the authors in [8] introduce a
strategy based on backstepping and proportional,
integrative, derivative (PID) action. In [9] attitude control
of a quadrotor aircraft has been faced and the strategy
introduced can make the attitude error uniformly ultimate
bounded. Finally, in [10] the problem of aircraft
stabilization is debated.
Recently proposed approaches are based on soft
computing techniques [11] [12]. Among these, Neural
Network (shortly NN) controllers have been proposed as
adaptive controller for nonlinear system applied simply
based on observation and experience without a deep
knowledge of the dynamical system, [13]. Therefore NNs
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represent a very efficient tool in flight control. In [14] a
detailed analysis is carried out in order to validate the use
of NNs in flight control applications. The proposed
control system satisfies standard conditions for stability
and proves that adaptive Neural Network is able to reach
the hovering configuration even in presence of failures
and damage. In [15] the authors present a stability and
convergence analysis of a NN adaptive flight control.
Because of the instability related to high-gain learning, a
recursive least-squares learning law is presented.
Numerical results show that high frequency oscillations,
due to unmodeled dynamics, can be avoided by means of
this improvement. The authors of [16] introduce an
original NN controller for adaptive dynamic inversion
flight control systems. The main idea consists in avoiding
error caused by mathematical modelling and actuator
damages through adaptive NN. The variation of
aerodynamic coefficients is proposed in [17], in which
on-line learning NNs, based on Lyapunov control theory
for weight update rules, are implemented. The proposed
approach seems to be more stable than conventional
back-stepping controller. Finally, the adaptive NN method
presented in [18] evidences that a joint connection
between online and background learning methods
generates a robust and efficient adaptive flight controller
which guarantees good performance even in uncertain
environments.

In this paper a comparison between a non adaptive
and an adaptive control technique is presented. In details,
starting from results proposed [19], the use of NN and
PID controller for hexacopter flight management is
presented. The NN differs from that presented in [19]
since considers different input parameters. Specifically,in
the [19] input parameters are quaternions and positions,
while in this work are the angular velocities and positions.

2 Dynamical system and non adaptive
control strategy

It is assumed that the hexacopter is a rigid body and
therefore classical Newton-Euler equations has been
chosen in order to deduce the dynamics of the drone. The
peculiarity of our model compared to the usual dynamical
system consists in parametrizing in terms of quaternions
the three dimensional rotations, instead of Euler angles
[20]. The dynamics of the hexacopter can be decomposed
into translational and rotational component, considering
the internal and external influences acting on it. In details,
denoting withm the mass of the aircraft,ξ = (x , y , z )
its position vector with respect to the inertial frame,Fg

the gravitational force,TB the total thrust,Q the
orthogonal transformation matrix from the body frame to
the inertial one, the translational component reads:

m ξ̈ = Fg +Q TB. (1)

while the rotational component of the motion is:

q̈ =
d

d t
(S ν) (2)

in which q = (q0 , q1 , q2 , q3 ) is the quaternion
representing the orientation of the hexacopter andS is the
velocity transformation matrix. The angular velocityν
has to satisfy the following differential equation:

I ν̇ + ν × (I ν) + Γ = τB (3)

where I is diagonal inertial matrix,Γ represents the
gyroscopic effects whileτB = [τφ τθ τψ]

T the roll, pitch
and yaw moment vector, generated by angular velocity
and acceleration of the rotor.
Therefore, equations (1), (2) and (3) with an initial
condition, describe the motion and evolution of the drone.
Anyhow,the only mathematical model is not sufficient to
manage the flight and to stabilize the UAV, then the
introduction of a proper control system is necessary. A
typical non adaptive controller is the PID (Proportional
Integral Derivative) control technique, that is very robust,
accurate and performance. The controller PID general
structure is based on measurement of error as
e(t) = xd(t) − x(t) between the desired and the actual
state of the dynamical system. The control inputs, total
thrust and angular moment in our case, are computed as a
linear combination of the error, its time integral and its
derivative, i.e:

u(t) = KP e(t) + KI

∫ t

0

e(s)ds+ KD

d

dt
e(t) (4)

The three term control in (4) represent the present errors,
the accumulation of past errors and a prediction of the
future errors, respectively. The coefficientsKP , KI , KD

represent theproportional, integrative and derivative
gains, and are tuned via trial and error.
The PID controller is applied to the system describing the
motion of the hexacopter in order to achieve a target
position under a specific orientation, [21]. The hexacopter
is controlled by simply modifying the angular velocities
of the six rotors.

3 Real-Time System Model

The development of a suitable real-time environment for
flight control must fulfill several constraints in order to
ensure the timely processing of information. The
constraints include the real-time communication, the
real-time scheduling of system tasks, the performance
predictability and the prevention and the reaction to
critical situations. The proposed real-time system for
flight control is characterized by the architecture shown in
Figure1and is based on NN.
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Figure 1: Real-time System Architecture

3.1 Real-time scheduling

The hexacopter system consists of hardware and software
components and the tasks running on the microcontroller
are subject to stringent timing constraints [22], which
must be enforced by the operating system in order to
guarantee stability and achieve a desired performance
level. The dynamics of the system-environment
interactions impose real-time constraints, specified by
deadlines, response times, activation periods, input-output
delays and jitter requirements. For this reason, the
application performance are closely linked to the
operating system, because the timing behavior strictly
depends on task scheduling, interrupt handling,
synchronization protocols, and resource management
algorithms. In order to enforce timing constraints a static
scheduling can be used but this solution is not flexible to
changes and is weak under overload conditions. On the
contrary, a priority-based kernel is a more suitable choice
in order to support dynamic control applications with
variable computational requirements [23].

In order to predictably manage concurrent activities
with periodic and aperiodic activations and explicit timing
constraints, the real-time scheduling, used within the
proposed system, is based on ERIKA (Embedded Real
tIme Kernel Architecture) Enterprise real-time kernel
[24].

Several real-time operating systems are available in
the market, however only few of them are suitable for
small embedded microcontrollers with limited processing
resources. For example, QNX Neutrino [25] , Wind River
VxWorks [26] , open source kernels related to Linux,
such as RTLinux [27], Linux-RK [28] , are kernels
commonly used in real- time control applications but
most of them are designed for medium size applications
and are not suited for small micro- controllers. On the
contrary, the ERIKA Enterprise real-time operating
system [24] is specifically designed for minimal

Initialization
Real-time
Positioning

x

yz

Positions

Figure 2: Neural Network Controller procedures

embedded systems with limited onboard resources. This
real-time kernel is configurable both in terms of services
and kernel objects (tasks, resources, and events) and also
supports advanced scheduling mechanisms, such as Rate
Monotonic (RM) [29] and Earliest Deadline First (EDF)
[30] algorithms.

Inside the proposed real-time system, three grouped
concurrent tasks (hard real-time, soft real-time and
non-real-time) manage the flight control application. In
order to prevent any accidental situation, the deadline of
the hard real-time tasks should be guaranteed explicitly.
The tasks are managed both trough a fixed priority and
EDF with preemption thresholds. Real-time tasks have
higher priority than other tasks. On the contrary, the
non-real time tasks are executed after the completion of
real time tasks. Therefore, the real-time scheduling
module is able to supports the dynamic reconfiguration of
concurrent tasks without loss of any hard deadline of
real-time tasks.

3.2 Neural Network Controller

The real-time system is based on a NN controller in order
to control hexacopter trajectories. The algorithm that
characterizes the proposed neural network is shown in
Figure2 and the procedures on which it is based are:

–Initialization: the neural network controller takes as
input several setup information, in order to initialize
the real-time positioning process, such as tables that
contain angular velocities and positions;

–Real-time Positioning: the controller trains a Non
Linear Autoregressive with External Input (NARX)
neural network component by using the information
from Initialization block.

The neural network controller takes as input the angular
velocities of the six rotors (ω1, ω2, ω3, ω4, ω5, ω6) and
then evaluates the estimated coordinates (x, y, z).
Moreover, the results are stored in a database, containing
both historical of previous positions and angular
velocities. In fact, these values are used for neural
network training in order to increase performance.
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The predictor associated with the NARX model [31] is
presented according the following equation:

ŷ(t|θ) = ŷ(t|t− 1, θ) = g(ϕ(t), θ) (5)

whereŷ is the value of the variable y at time t predicted
by the model;θ is a vector containing the weights of the
neural network;g is the function realized by the neural
network andϕ(t) is a vector containing the regressors,
given by:

ϕ(t) = [y(t−1)...y(t−na)u(t−nk)...u(t−na−nk+1)]T

(6)
whereu refers to the set of inputs andna, nb andnk are
the parameters defining the order of the regressors.

The proposed neural network, implemented in the
micro-controller is composed by 20 hidden neurons
(trained using the Levenberg-Marquardt algorithm [32]),
number of delays equal to 2 and it uses a symmetric
sigmoid transfer function. Furthermore, the network is
created and trained in open loop form so it is supplied
with correct past outputs during training in order to
produce the correct current outputs.

The early stopping technique has been used in order to
guarantee good generalization performances to the model
and prevent the risk of over-fitting the training data. The
entire available dataset is split in three subsets: a training
set, a validation set and a test set. The training data set
is used for computing the gradient of the cost function,
which is a function of the MSE (Mean Squared Error), and
updating the network weights. The error on the validation
set is monitored during the training process.

In the proposed NN the training set comprises 60% of
the data, whereas 20% of the data is used as validation set
and the remaining 20% is retained as test set. The
forecasting performances of the networks will be assessed
using the test set data and against the error measures
presented in Table2, whereYi is the value of the i-th
actual observation and̂Yi is its forecasted value. The
forecast error is calculated as follow:

ei = Yi − Ŷi (7)

while the scaled error is determined with the following
equation:

sei =
ei

(

∑Nt

i=2
|Yi − Ŷi|

)

/Nt−1

(8)

4 Numerical Results

This section deals with comparison between the PID
controller and a real-time system, based on a NN model.
First of all, given a squared path as desired position, the
implementation of the PID scheme provides the angular
velocities of the six rotors for trajectory control. Then,
such velocities are the input of the NN which is trained in
order to obtain the target position as output.

Figure 3: Hardware board
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Table 1: Parameters for numerical simulation

Parameters Value

k 2.980e-6 [kg m]
b 1.140e-7 [kg m2]
d 0.225 [m]
g 9.81 [m/s2]
m 0.468 [kg]
Ixx 4.856e-3 [kg m2]
Iyy 4.856e-3 [kg m2]
Izz 8.801e-3 [kg m2]
Ir 3.357e-5 [kg m2]

Table 2: Error measures used to evaluate the performances of the
NARX model

Error measure Formula

Mean Squared Error (MSE) mean(e2i )

Root Square Mean Error (RMSE)
√
MSE

Mean Absolute Error (MAE) mean(|ei|)
Median Absolute Error (MdAE) median(|ei|)
Mean Absolute Scaled Error (MASE) mean(|sei|)

Table 3: Performance measures (Training epochs = 102)

Error measure Value

MSE 1.21 ∗ 10−8

RMSE 1.34 ∗ 10−4

MAE 2.42 ∗ 10−8

MdAE 1.01 ∗ 10−8

MASE 1.41 ∗ 10−4

4.1 PID and Neural Network Performance

The model(1), (2) and (3) controlled via PID technique (4)
is implemented by choosing parameters listed in Table1.

As flight controller based on a NN concerns, the
processing unit is the Microchip PIC24FJ256GB108
microcontroller [33], which integrates the control features
of a Micro-Controller Unit (MCU) with the processing
and throughput capabilities of a Digital Signal Processor
(DSP). The used prototyping board based on the
Microchip PIC24FJ256GB108 microcontroller is shown
in Figure 3. In Figure 4 and Figure5 are depicted the
validation performance and training state of the networks
respectively, wheremu is the Marquardt adjustment
parameter andvalfail represents the number of iterations
for which the validation error continuously increased after
the last decrease. It is necessary to note that lower values
of MSE are better while zero means no error.
Furthermore, the results obtained with the NARX model
on the test set data are shown in Table3. From obtained
results it is clear that errors values are considerably lower
and this means excellent performance of the neural
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Figure 6: Output of NN and PID compared with desired
trajectory

network.
Figure 6 shows thex, y and z coordinates computed
through the PID and NN technique. It results a good
agreement between two approaches.
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5 Conclusions

In this work the dynamical model of a hexarotor is
proposed. Two different approaches for drone control has
been discussed, comparing the results obtained.
Comparison between obtained results show that both of
proposed methods are efficient and accurate, showing a
good agreement with the given desired trajectory. Future
work will concern the optimization both of the neural
network and the PID controller in order to maximize their
performance even in presence of aerodynamic effects.
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