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Abstract: This paper proposes a framework of decision support sysi2&5) for emergency medical service scheduling. The
scheduling decision rules embedded in the DSS consideritieei@ on the average response time and the percentage afi¢dical
service requests that are responded within fifteen minuteshais usually ignored in traditional scheduling polici&he challenge in
designing the DSS lies in the stochastic and dynamic naturegoest arrivals, fulfillment processes, and compleXitabnditions

as well as the time-dependent spatial patterns of some péeesicomplicate the decisions in the problem. To illusttae proposed
DSS’s usage in practice, a simulator is developed for perifty some numerical experiments to validate the effecéssrand the
efficiency of the proposed DSS.

Keywords: Decision support systems; Emergency medical service; Aanloe scheduling.

1 Introduction this intuitive scheduling policy cannot guarantee a high
percentage of the requests that can be responded within
fifteen minutes. In reality, the criterion on the percentage
bf fifteen minute response is more important than the
criterion on the average response time. How to design a
ood decision support system (DSS) for emergency

Emergency transportation on ambulances and othe
specialized vehicles is important for rescuing people
when their health is in risk of irreparable damage. Rising
costs Of medical equipments, increasing callvo_lumes, aNGhedical service scheduling so as to ensure a high
worsening traffic conditions in metropolis make

dical . ol tors f . - percentage of fifteen minute response is critical for the
emergency medical service control centers face increasinflarqency  medical  service control centers i

fietropolises. Moreover, the scheduling decisions are in a
control centers are supposed to schedule ambulances fro[ﬂ/namic environment where the spatial distribution of

their bases (waiting locations) so that medical service otential requesters is changing along the time, and the

requesters can be reached in a time efficient manner. 1Q, 4 a) patterns of traffic situations in the metropolises a
usual practice, the emergency medical transportation iS5, giferent in peak hours and off-peak hours. The
scheduled by some criteria and protocols provided by, jance travelling and serving processes are also in a

regulatory authorities. The emergency medical service,qpastic environment where the travel time for a certain

requests have dn‘fc_arent priorities from each qther. EVeryjourney may contain randomness; the service time at the
priority level requires an ambulance to arrive at the

o) . e ) X request calls’ scenes and hospitals is also uncertain. The
patient’s location within a particular response time. FOr 51,40 'mentioned dynamic and stochastic nature of the
the requests with high pr|or|t’|es, a’T‘bU'aT‘C‘?S L.Jsua”yrequest arrivals and ambulance fulfillment processes as
should arrive at the patients’ location within fifteen \ o 55 the environments complicates the ambulance
minutes, which is a golden time and during which the 500 qyjing decision. Therefore, this paper makes an
patients should be timely transported to a proper

; X explorative study on designing a DSS for schedulin
healthcare center where appropriate medical team ca b y gning g

. . o . Qmbulances efficiently.
give the patients sophisticated medical treatments. The y

widely used ambulance scheduling policy is to dispatch  The remainder of this paper is organized as follows.
the closest ambulance to a requester’s location. HoweveSection 2 is the literature review. Section 3 gives a
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framework of the proposed DSS. The core of the DSSresponded within fifteen minute. We seize the random

i.e., the embedded decision rule, is elaborated in Sectioevolution of the system over time, and the stochastic

4. Some numerical experiments are performed in Sectiomature of request arrivals, fulfilment processes, and

5 for a further investigation on the proposed DSS. Closingcomplex traffic conditions as well as the time-dependent

remarks and conclusions are outlined in the last section. spatial patterns of some parameters to establish some
formulae with a set of proper parameters which are based
on the historical data of the request arrivals during a

2 Related works certain time period. Some experiments are also performed
to validate the effectiveness and the efficiency of DSS.

The early studies on the resource optimization of the

emergency medical service are mainly related with the

minimal covering modelq], which tries to minimize the ..

number of ambulances necessary so as to cover af Framework of the decision support system

demand point, and the maximal covering modg], [

which tries to maximize the total demand coverage givenThis section proposes a design of decision support system
a feet of fixed size. In the recent years, some SChO'ar.‘EDSS) for emergency medical service Schedu”ng_ The
concentrate on the dispatching policies. For examplegystem receives requests that may come from any location
Centrality policy B], which evolved from the nearest at any time in a city. Then the system must make a
neighbor (NN) policy, is proposed in an effort to reduce decision timely. Thus the system is a type of real-time
the response time in demanding emergency situationspSS. The framework of the DSS contains five core
The auction mechanism] based on trust is designed for modules. Six databases are also embedded in the DSS so
dispatching ambulances for ~emergency patientas to support the decision processes of modules. The

transportation. Besides the above studies on ambulancgetails on these modules are elaborated in the following
dispatching, some scholars focus on the ambulanceypsections.

redeployment. One stream of the studies on the

redeployment models is to apply integer programming

methods when an ambulance dispatching decision needs ]

to be made$,6,7,8,9]. Another stream of the studies is 3.1 Request receiver module
based on applying integer programming methods in a

spare time. Dispatchers manage to dispatch so as 10 keefg,g request receiver module is to receive service requests
the ambulance configuration close to the one suggesteflym hatients through call centers, and transfer the reques
by the lookup table, which contains the number of iy, 5 structured form so that the requests can be handled

available ambulances and the place the ambulancesy oiher modules. A request for medical service is a five-
should be dispatched.(]. Besides the studies by using efgm tuple, which i.s den%ted as follows:

the integer programming, some studies employ the Request:(LO, TM, HP,AT, AN)
approximate dynamic programming (ADP), which is a LO: the Ioca:[ion Z)f tr{e sérvice requester.

useful approach to optimize the ambulance dispatching. i h )
Berman [L1,12,13] represents the first papers that provide TM: the request on the response time. It means an

a dynamic programming approach for the ambmanceambulance should grrivg at the patient’s Ioce}tion (i,e) LO
redeployment problem, and this approach was revisitedVithin @ response time (i.e., TM). If TM = 0, it means the
recently by Zhang et al 4. ADP is also used to solve ighest priority; an ambulance should arrive at LO as
resource allocation problem4H,16,17] and large-scale SOON as possible. _ _ _

fleet management.B,19]. However, these papers follow .H P: the set of hospltgls which are sgltable for t'he
an exact dynamic programming formulation, and as isPatient. If HP = NULL, it means there is no special
often the case, this formulation is tractable only in réduirements on hospital.

oversimplified versions of the problem with few vehicles ~ AT: the ambulance type. There are two types of
and small transportation networks. Salmero’n and Apteambulance: type-A is an advanced vital support vehicle
[20] develop a two-stage stochastic optimization model to(SVA), type-B is a basic vital support vehicle (SVB). If
guide the allocation of budget to acquire and positionAT = A, it means an SVA is needed. If AT = B, it means
relief assets. Maxwell 41,22] design some optimize any type of ambulances are acceptable for the patient.
algorithm by using the ADP approach in order to make  AN: the number of ambulances that are needed by the
ambulance redeployment decisions in a dynamic settingervice requester. For some accidents, there are a number
under uncertainty. of casualties that need more than one ambulance.

When compared with the above mentioned studies, Another function of the request receiver module is the
this paper provides some advantages. In contrast to som@aintenance on historical database of requests. Based
DSSs that only consider the average response time, ouren the historical data, the distribution of the request
captures both the criteria on the average response timgequencies in regions can be obtained so as to support
and the percentage of the medical service requests that asame decision processes in other modules.
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3.2 Instruction sender module which records every ambulance’s performance during
fulfilling their assigned tasks. For example, the estimated
The instruction sender model is to send instructions totime and actual time for an ambulance arriving at a certain
ambulances. The instructions are the results of thdocation reflect the ambulance’s performance, which may
decision process embedded in the DSS; they are alsbe influenced by the ambulance driver’s experiences.
structured information. An instruction’s structure iscaés
five-item tuple, which is denoted as follows:
Instruction:(Al,LA, TA,LH, TH)

Al: the index of the ambulance that receive the 35 DeCISIOHIIIEll]ng module

instruction.
LA: the location of the accident, where the ambulanceThe decision making module is a core part for the DSS.
should arrive first. The decision process embedded in this module is
TA: the target time (or the estimated time), before triggered by a request that is delivered from the ‘request
which the ambulance should arrive at LA. receiver module’. The output of the decision making
LH: the location of the hospital, where the ambulancemodule is the instructions that are delivered to
should carry the patient to. ambulances through the ‘instruction sender module’. For
TH: the target time (or the estimated time), before the decision process between the above inputs and
which the ambulance should arrive at LH. outputs, some support information is obtained from the

An instruction for an ambulance reflects the routes fortravel  time  analysis module’ and ‘ambulance
the ambulance: ‘its current locations ‘LA — ‘LH’ —  Management module’. For a received request, which
‘its base location’. During the route from LH to its base, @mbulance should be assigned with the task, which
the ambulance may be assigned with another task, and gaespital should the ambulance transport the patient to, are

to the next LA directly. So we need not to include the targetthe decisions that should be made by the module in a
time of arriving at its base in the instruction. short time. For making these decisions, some rules are

needed, and should be maintained in a database that is
connected with the decision making module. The
database could be named tgcision rule base, which is

3.3 Travel time analyss module elaborated in the next section.

The city map module maintains the basic information on
the roads in the city. Given a route’s source and
destination, time, and date, the module can output afl Decision rules embedded in the DSS
estimated time for an ambulance traveling through the

route. The module connects two databasestil)map  The decision rules are the core for designing and

database, from which the route length between two jmplementing the DSS. The decision rules can work when
locations can be obtained; (Z)istorical database of 5 request (i.e(,LO, TM, HP, AT, AN)) is received. The
trips, from which the estimated traveling speeds in someq it of the rules is the assignment of an ambulance to

roads during some periods can be obtained. Based on th@e request. The main ideas of the rules are: if the request
data from the above two sources, the module can estimatg very urgent, i.e., TM = 0, the ambulance that can arrive

the travel time for an ambulance traveling between twog; the |ocation of the patient (i.e., LO) in the shortest time
locations. The traffic information among roads is obtainedgpqid be assigned with the task. If the request is not very
from a sensor network that is usually contained in aCity’Surgent, i.e., TM> 0, there may be several ambulances
traffic infrastructure project. The real-time traffic s&to 5t can arrive at LO within the time window [0, TM].
all the roads of the city can be captured dynamically\yhen choosing an ambulance from these candidates, we
through the sensor network. have three criteria: (1) the earlier it can return to its base
the higher priority it is chosen; (2) the more available
ambulances are idle in its base, the higher priority it is
3.4 Ambulance management module chosen; (3) the less requests may emerge in the
neighborhood of its base, the higher priority it is chosen.
The ambulance management module is to acquire andhe details on the decision rules are shown in Table.1.
manage the real-time data on every ambulance’s status, In the decision rulesg and 3 are two important
location, and undertaking task. The status of anparameters, the setting of which has influence on the
ambulance could be: idle at its base, traveling to anperformance of the rules. There is no optimal setting on
accident location, stay at an accident location,the a and 3 parameters for all the situations. When
transporting a patient to a hospital, travelling to its hase applying the above decision rules in reality, the DSS
and etc. The module also maintains two databases: (13hould determine a proper setting on tlae and 8
trajectory database, which records all the travelling parameters according to the historical data of the request
routes of an ambulance; (erformance database, arrivals during a certain time period.
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Table 1: Decision rules embedded in the DSS

Input: a requestLO, TM,HP, AT, AN)
Output: an ambulance* is assigned to fulfill the request
Define a set U = all the ambulances whose statuslisat its base’ or * travelling to its base'’.
IF AT =A, THEN

U + set{u € U;and u.type = A.
END IF
For all the ambulances& U, acquire their current locations, i.e.,u.location.
ObtainTe(u.location, LO) by ‘travel time analysis module’.

/| Te is the estimated travel time between u.location and LO.
Obtain T(u) on the basis o by ‘Ambulance management module’.

/I T(u) is the estimated time for ambulance travelling froocation to LO.
10 /IT(u)=Te £ Ay, A yis estimated according to u’s past performances.
11 IFTM =0, THEN
12 U =argminey T(u)
13 ELSE
14 U<set{ueUand T(ux T™M }.
15 IFU=9@ THEN
16 u* = argminey T(u)

O©CoO~NOOPR~WNERE

17 ELSE
18 IF HP = NULL, THEN
19 HP <« the hospital that is nearest to LEND | F
20 END IF
21 ForV u € U, obtain T'(u) and T"(u).
22 /I T'(u) is the estimated time for ambulance travellingnfrLO to HP.
23 /' T"(u) is the estimated time for ambulance travellingnfirHP to its base.
24 ForV u € U, calculate G(u) = T(u)+T’(u)+T"(u).
25 /I C(u) is the first criterion, which is the smaller, the better
26 ForV u € U, obtain G(u), i.e., the number of available ambulances in s base now.
27 /I G(u) is the second criterion, which is the larger, the better.
28 ForV u € U, obtain G(u), i.e., the average rate for a request emerging in the
29 neighborhood of u’s base.
30 /I G3(u) is the third criterion, which is the smaller, the better.
31 /I The region is a circle area with its center at u’s baseradilis equal to a certain value.
32 U =argminey {Cy(u) - a x Cp(u) + x Ca(u) })
33 /la and are parameters for the weighted sum of the three criteria.
34 ENDIF
35 END IF
5 Numerical experiments For patients, the first few hours are the best time (golden

hours) for giving them some proper treatments. Thus the
Some numerical experiments are performed to investigataverage response time for all the requests reflects the
the performance of the proposed DSS and the decisioservice level of a city’s medical service response DSS. In
rules contained in the system. A simulator is built for addition, the percentage of the requests that are responded
performing the comparative experiments. The simulatorin fifteen minutes is also used as a criterion in the
generates a number of requests by following the Poissoxperiments.

distribution. Then the simulator locates the generated o experiments are based on some comparisons with

requests in speci}‘ip locations apcording to th'e dist'ritnutio two other scheduling strategies, which are introduced as
of requests densities among different areas in a city. Hergy; ;o

the simulator uses Shanghai city as the example in the ,

experiments. Shanghai is the largest city by population in ~ Strategy 1: For the urgent requests (i.e., TM = 0) and
China. Shanghai has a population of over 23 million and athe non-urgent requests (i.e., TMO), the ambulance that
land area of about 6340 square kilometers. In such £an arrive atthe LO is dispatched.

megalopolis, the medical service call center usually Strategy 2: For the urgent requests (i.e., TM = 0), the
receives a request and set off an ambulance every 1.2mbulance that can arrive at the LO in the shortest time is
minute on average. Facing so many arriving medicaldispatched. For the non-urgentrequests (i.e., ¥ ), the
service requests, a good DSS on ambulance scheduling ambulance that can take patients at the LO and take them
very necessary for reducing the average response timeo the LH in the shortest time is dispatched.
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Three series of comparative experiments arealso performed to validate the effectiveness and efficiency
conducted by changing the number of requestsofthe DSS.
ambulances, and ambulance bases. These experiments can By comparing with the literature on the related topics,
help to investigate the influence of the parameters on théhe contributions of this paper are mainly as follows.
outperformance of the proposed DSS by comparing withMost related studies on DSSs for emergency medical
some traditional methods. The comparative experimentascheduling only concentrate on the average response time.
results are listed in the following tables. _ However, this intuitive scheduling policy cannot
The results in Table.2 show that the average tife ( guarantee a high percentage of the requests that can be
increases and the percentage of requests that amesponded within fifteen minutes. In reality, the criterion
responded in fifteen minutesi6,) decreases with the on the percentage of fifteen minute response is more
number of requests growing for all the schedulingimportantthan the criterion on the average response time.
strategies. For the comparison between the proposed DS®oreover, the DSS in this paper also considers a dynamic
and the two other strategies, Table.1 indicates that thenvironment where the spatial distribution of potential
proposed DSS'F is longer than the two strategies, but it requesters is changing along the time, and the spatial
outperforms with respect to the criterion d®sy. In patterns of traffic situations in the metropolises are also
addition the outperformance degree of the proposed DSdifferent in peak hours and off-peak hours. The
on the criterionP;s,, becomes more and more evident ambulance travelling and serving processes are also in a
with the number of requests growing. In reality, the stochastic environment where the travel time for a certain
criterion onPysy, is more important than the criterion on journey may contain randomness; the service time at the
T. Thus the proposed DSS is more suitable for realisticrequest calls’ scenes and hospitals is also uncertain. The
environments than the two intuitive strategies. above mentioned dynamic and stochastic nature of the
For the demo example in the experiments, i.e.,request arrivals and ambulance fulfillment processes as
Shanghai, the city has 1200 requests every day onvell as the environments makes this study is different
average. According to the results in Table.2, it indicatesfrom the existing studies in the related areas.
that the proposed DSS can ensure 80% of all the requests There are also limitations in this study. There are
can be responded within fifteen minutes on average. some parameters contained in the decision rules. How to
Similar as the above experiments, the comparisorpptimize them is an interesting issue for the further
under different numbers of ambulances is performed andnvestigations. For example, the initial deployment of
the results are shown in Table.3. ambulances is an important decision problem in this area.
The results in Table.3 show that tiedecreases and In addition, the emergency medical services include
the Pign increases with the number of ambulancesVarious types of resources. This paper mainly considers
growing for all the scheduling strategies. For the the ambulances. The scheduling problems on some
comparison between the proposed DSS and the two othdhedical equipments, medical service teams, and etc. can
strategies, Table.1 indicates that the proposed DSS'@lso be studied in the future.
performance is worse than the two other strategies on the
criteria of both theT and theP;5,, when the number of
ambulances is not sufficient. When the number of 7 Acknowledgements
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