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Abstract: To make users put much confidence in digital signatures, this paper proposes the first provably secure signature scheme
based on both factoring and discrete logarithms. The new scheme incorporates both the Schnorr signature scheme and the PSS-Rabin
signature scheme. Unless both the two cryptographic assumptions could be become solved simultaneously, anyone would not forge
any signature. The proposed scheme is efficient since the computation requirement and the storage requirement are slightly larger than
those for the Schnorr signature scheme and the PSS-Rabin signature scheme.
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1 Introduction

Since Diffie and Hellman invented the concept of public
key cryptography [1], two families of public key
cryptosystems have been proposed. Diffie-Hellman, and
later ElGamal, DSA, and Elliptic Curve, Pairings are all
in Discrete Logarithm (DL) family, whereas RSA, Rabin
and related systems make up Factoring (FAC) family. It
means that the security of these public key cryptographic
cryptosystems is based the assumption of one mathematic
hard problem, DL or FAC. If the hard problem becomes
easy to be solved, the corresponding cryptosystem will no
longer be secure. DL and FAC are seemingly hard but not
NP-complete, it is possible that the two problems could
be become solved some days later. Some signatures must
be kept in the archives for dozens of years. However, it is
very unlikely that multiple hard problems would
simultaneously become easy to be solved. Although shor
[2] showed that both factoring and discrete logarithm can
be solved by quantum algorithms in polynomial time, but
it will take a long time to put quantum computers into
practice.

Thus several signature schemes tried to base their
security on the two well-known assumptions so as to
enhance security [3,4,5,6,7,8]. Unless both the two
cryptographic assumptions could be become solved
simultaneously, anyone would not forge any signature.

But several literatures have shown these schemes to be
flawed [9,10,11,12,13,14]. Only the Laih-Kuos signature
scheme [15] and the Ismail et al.s signature scheme [16]
have not been broken so far though they have not
provided formal security proofs.

Recently, Zhang et al. [17] proposed an improved
scheme of [8] and claimed that the scheme is provably
secure in the radon oracle model. But their proof has not
showed that a forgery can be used to solve any given FAC
problem and any given DL problem simultaneously. In
fact, the Pollard-Schnorr algorithm [18] can easily forge
the signature for any message if the DL problem is
solved.

Hence it is attractive to design provably secure and
efficient signature schemes based on multiple hard
problem assumptions simultaneously.

The trivial way to enhance security is to sign
messages twice; one adopts a FAC-based signature
scheme and one uses a DL-based signature scheme.
However, more computation and more storage are
required. Furthermore, the two signatures would be
separated. In contrast with the trivial way, the Laih-Kuos
signature scheme is less efficient in terms of computation,
storage and key pairs.

By far, the Schnorr signature scheme and the RSA
signature scheme are most commonly used in the real
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world. They are provably secure under FAC assumption
and DL assumption respectively in the random oracle
model.

In this paper, we will propose the first provably secure
signature scheme based on factoring and discrete
logarithms simultaneously by combining the Schnorr
signature scheme and the PSS-Rabin signature scheme.
We will show that the new scheme is strong existentially
unforgeabable under adaptive chosen-message attacks in
the random oracle model, making better security
confidence than those offered by existing signatures based
on either discrete-log assumption or factoring assumption.
In our security proof, the challenger can solve both FAC
and DL simultaneously with one simulation.

The rest of this paper is organized as follows. In
section 2, we review briefly a precise definition of generic
signature schemes [19], and present the new signature
scheme. Then, we provide a formal security proof in
section 3. Finally, in section 4, we discuss the
performance of the scheme.

2 The proposed signature scheme

In this section, we first review a precise definition of
generic signature schemes [19], and then present the new
signature scheme under the setting as the Schnorr
signature scheme [20] and the Rabin signature scheme
[21].

2.1 Definition

Definition 1 (Signature Scheme)

A signature scheme (Gen, sign, Verify) is a triple of
algorithms:

-The key generation algorithm Gen that when given a
security parameter 1k as input, outputs a pair(sk, pk)
of matching private key and public key. It is clear that
Gen must be a probabilistic algorithm.

-The signing algorithm Sign that when given the pair
(sk, pk) of the matching private key and public key
and a messagem as input, produces a signatureσ .
The signing algorithm might be probabilistic, and in
some schemes it might receive other input as well.

-The verification algorithm Verify that on input
(pk,m,σ ), obtains either invalid or valid, with
property that if (sk, pk) ← Gen(1k) and
σ ← (sk, pk,m), then Verify(pk,m,σ ) = valid. In
general, the verification algorithm need not be
probabilistic.

2.2 The proposed signature scheme

(1)The key generation algorithm:

The authority chooses the public parameters:
p is a large prime number.
q is a prime divisor ofp−1.
g is an element of orderq in the groupZ∗p.
Each signer chooses an elementx in Z∗q, two larger

prime numbers,p1 and q1, and computesn = p1q1,
y= gx (mod p), wherep1 = q1 = 3 (mod 4). And then he
chooses a randoma satisfying Jacobi symbol

(

a
n

)

=−1.
H : {0,1}∗×Z∗p→ Z∗n is a one-way hash function.

The private key of the signer is(x, p1,q1), and the public
key is(p,q,g,y,n,a,H).

The subgroup of the groupZ∗p generated byg can be
replayed by other groups, such as those built on elliptic
curvesGg,p = {g0,g1, · · · ,gq−1}.

(2)The signing algorithm:
For a messagem ∈ {0,1}∗ to be signed, the signer

chooses a new random integerk, 1 < k < q, computes
r = gk (mod p), s= k−H(m, r)x (modq), and computes
c1 andc2, respectively.

c1 =







0, if Jacobi symbol
(

H(m,r)
n

)

= 1,

1, if Jacobi symbol
(

H(m,r)
n

)

=−1.

l = ac1H(m, r).

c2 =







0, if Legendra symbol
(

l
p1

)

=
(

l
q1

)

= 1,

1, if Legendra symbol
(

l
p1

)

=
(

l
q1

)

=−1.

computese such thate2 = (−1)c2ac1H(m, r) (mod n) by
using his private key (x, p1,q1).

The signature of the messagem is (s,e,c1,c2).
Notice that the length of the signature is len(q) + len(n)

+ 2bit.

(3)The verification algorithm:
Any verifier can verify the signature by checking

e2

(−1)c2ac1
(modn) = H

(

m,gsy
( e2

(−1)c2ac1 (modn))(modq)
(modp)

)

.

The verification equation can be regarded as the variants
of either the Schnorr signature [20] or the Rabin signature
[21].

3 Security model and security proof

In this section, we first review the security model of
signature schemes. Then we show that the proposed
signature scheme is strong existentially unforgeable
against chosen message attacks in the random oracle
model assuming that any of the factoring or discrete log
problems is hard.

3.1 Security model of signature scheme

Definition 2 (Security of a signature scheme)
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A probabilistic algorithmF is said to(t,qH ,qS,ε)-breaks
a signature scheme if after running for at mostt steps,
making at mostqH adaptive queries to the hash function
oracles, and requesting signature oracles on at mostqS
adaptively chosen messages,F outputs a new forged
signature pair(m,σ) on some messagem with probability
at leastε, where the probability is taken over the coins of
F , the Gen algorithm and the Sign algorithm and the hash
function oracle.

We say that a signature scheme is(t,qH ,qS,ε)-security
if no forger can(t,qH ,qS,ε)-break it.

Definition 3 (DL assumption)

A probabilistic algorithmD is said to(t,ε)-break a DL
problem in a groupGg,p, if D runs in at mostt steps and
computes the discrete logarithmDLg,p(ga) = a on input
(g, p,q,ga) with probability at least ε, where the
probability is taken over the coins ofD and a chosen
uniformly fromZ∗q.

We say that the DL problem is(t,ε)-security if no
algorithm can(t,ε)-break it.

Definition 4 (FAC assumption)

A probabilistic algorithmF is said to(t,ε)-break a FAC
problem, if F runs in at mostt steps and computes two
primes p andq on inputn,(n = pq), with probability at
leastε, where the probability is taken over the coins ofF ,
andp andq chosen uniformly.
We say that the FAC problem is(t,ε)-security if no
algorithm can(t,ε)-break it.

Goldwasser et al. [22] proposed the standard definition of
the security of signature schemes, as well as the first
construction that satisfies it.

However, the underlying signatures of our new
scheme, the Schnorr signature and the PSS-Rabin
signature, are not deterministic. The signer may generate
several signatures corresponding to a given message. We
adopt a stronger security model, strong existential
unforgeability [23], where the adversary is allowed to ask
for signatures of the same message many times, and he
would obtain useful information from each new answer.
The adversary is required to forge a new signature on a
previously signed message or a new message. This model
gives the adversary more powers and more chances for
success in the following attack game:

Gen: The challenger takes a security parameter 1k and runs
a key-generation algorithm. It gives the adversary the
resulting system parameters and a random public key
of the signer.

Queries: The adversaryA issues queriesq1, . . . ,qm
adaptively:
- Sign query< Mi >.

Response: Finally, the adversary outputs a new signature
σ for a messageM.
The adversaryA wins the game if the outputted
signature(M,σ) is nontrivial, i.e. it is not an answer
of any sign query for the messageM.

The probability is over the random bits used by the
challenger and the adversary.

Notice that the adversary is allowed to ask for
signatures of the same messageMi many times, even of
the messageM.

3.2 Formal security proof

Theorem: Let the hash functionH be random oracle.
Then the proposed signature scheme is Strong
Existentially UnForgeable against adaptive Chosen
Message Attacks (SEUF-CMA) under both the FAC
assumption and the DL assumption. Concretely, suppose
that there is an adversaryA that has advantageε against
the scheme andA runs in step at mostt. Suppose thatA
makes at mostqH queries to the hash functionsH, at most
qS queries to the signature oracle. Then there is an
algorithmD that has advantageε ′ with running stept to
solve the FAC problem and the DL problem
simultaneously, where

t ≈ t ′/2−2qSCexp(Gg,p),

ε ≤ (4qH)(2ε ′)1/3+1/n+qS(qH +qS)/p.

HereCexp(Gg,p) denotes the computation step of a long
exponentiation in the groupGg,p.

Proof. Suppose that we are given a DL problem
(p,q,g,y = gx) and a FAC problem (n = p1q1). We also
choosea at random. The probability ofa satisfying Jacobi
symbol

(

a
n

)

=−1 is 1/2.
We use the random oracle model to show the security

of the proposed signature scheme. Assume that we are
given a SEUF-CMA forgerA that (t,qH ,qS,ε)-breaks the
signature scheme. That is,A is a probabilistic polynomial
time computer program which is supplied with a long
public sequence of random bits, and is allowed to ask a
polynomial number of questions to the random oraclesH,
S. We want to construct a simulator algorithmD, which
takes(p,q,g,y,n,a) as input. AlgorithmD tries to useA
to find the discrete logarithmloggy and the factoring of
the compositen simultaneously.

Algorithm D uses oracle replay technique of
Pointcheval and Stern [19] and simulates two runs of the
signature scheme to the forgerA. Algorithm D answers
A’s hash function queriesH, signature queriesS, and tries
to translateA′s possible forgeries into the solutions to the
discrete logarithm loggy and the factoring of the
composite n simultaneously. AlgorithmD starts the
simulations by providing the same(p,q,g,y,n,a) and the
same long sequence of random bits forA. Then
Algorithm D answersAs queries as follows:

Answering H-oracle queries: If A issues a random oracle
query(mi , r i) where 1≤ i ≤ qH , D looks up theH-list (a
query-answer list, where entry consists of
((mi , r i),hi ,ei ,c1i ,c2i) ) to get the corresponding answer.
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If there is a tuple((mi , r i),hi ,ei ,c1i ,c2i) in the H-list, D
answers withhi . Otherwise D generatesei from Z∗n
uniformly at random and(c1i ,c2i) from {0,1} uniformly
at random, computeshi = e2

i /((−1)c2i ac1i ) (mod n),
answers withhi , and adds((mi , r i),hi ,ei ,c1i ,c2i) to the
H-list.
Answering S-oracle queries: If A issues a signature query
(mi) where 1≤ i ≤ qS, D first picks si uniformly at
random fromZ∗q, ei from Z∗n uniformly at random and
(c1i ,c2i) from {0,1} uniformly at random, computes
hi = e2

i /((−1)c2i ac1i ) (mod n). Then D computes
r i = gsi yhi(modq) (mod p) and answers with(si ,ei ,c1i ,c2i),
and adds((mi , r i),hi ,ei ,c1i ,c2i) to theH-list. If there is a
tuple ((mi , r i),h′i ,e

′
i ,c
′
1i ,c
′
2i) in the H-list with hi 6= h,i , D

aborts and restarts simulation. The probability of this
unfortunate coincidence occurring is at most(qH +qS)/p.

Obviously, the outputs of the simulated oracles are
computationally indistinguishable from those in the real
attacks.

By assumption, with the probabilityε, the forgerA
returns a new valid message and signature pair
(m,s,e,c1,c2). If A has not queriedH(m, r), the
probability

Pr
{

e2

(−1)c2ac1 (modn)

= H
(

m,gsy
e2

(−1)c2ac1 (modn)(modq)
(mod p)

)}

≤ 1/n.
sinceH(m, r) is generated randomly.
Hence, with the probabilityε −1/n−qS(qH +qS)/p, the
forgerA returns a new signature(m,s,e,c1,c2) such that

e2

(−1)c2ac1 (modn) = H
(

m,gsy
e2

(−1)c2ac1 (modn)(modq)
(mod p)

)

andH(m, r) ∈ H-list.
BecauseA has queriedH(m, r), D guesses a fixed

index 1≤ kH ≤ qH and the queryH(m, r) is the kH th
H-oracle queries. Suppose thatD makes good guesses by
chance, denoted by the event GoodGuess. The probability
of the event GoodGuess is

Pr[GoodGuess] = 1/qH .

Algorithm D uses two copies of the signature forgerA. D
gives two copies of the forgerA the same system
parameters(p,q,g,y,n,a) and same sequence of random
bits, and the same random answers to their oracle queries
until at the same time they ask forH(m, r). This is the
forking point. At this point,D gives two independent
random answersh1 = (e′1)

2/((−1)c′21ac′11) (mod n), and
h2 = (e′2)

2/((−1)c′22ac′12) (mod n) to the hash queries
H(m, r) in the two runs. Thus,D obtains two signatures
(m,s1,e1,c11,c21) and(m,s2,e2,c12,c22) such that

e2
1

(−1)c21ac11
(modn) = H

(

m,gsyh1(modq)(modp)
)

andH(m, r) ∈ H-list.

e2
2

(−1)c22ac12
(modn) = H

(

m,gsyh2(modq)(modp)
)

andH(m, r) ∈ H-list.

Hence,r = gs1yh1(modq) = gs2yh2(modq) (mod p)
impliesx= (s1−s2)/(h2−h1) (modq).

Meanwhile,H(m, r) = e2
1/((−1)c21ac11) (modn)

= (e′1)
2/((−1)c′21ac′11) (modn)

implies(e1/e′1)
2 = ((−1)c21−c′21ac11−c′11) (modn).

Notice that (e1/e′1)
2 is a quadratic residue ofZ∗n.

However, neither(−1) nor (a) is a quadratic residue of
Z∗n. Thus (e1/e′1)

2 = 1,−a or (−a)−1 (mod n). But the
probability of (e1/e′1)

2 = 1 is about 1/2. So is that of
e2

2 = (e′2)
2 (modn).

The equationz2 = α (mod p1q1) has four roots
β ,γ ,n − β ,n − γ, where β /∈ {γ ,n − γ}. Hence,
Pr{e′1 /∈ {e1,n−e1} } = Pr{e′2 /∈ {e2,n−e2} } = 1/2 .

If e′1 /∈ {e1,n− e1}, e2
1 = (e′1)

2 (mod n) implies
e2

1 − (e′1)
2 = (e1 − e′1)(e1 + e′1) = 0 (mod n). So

gcd(e1− e′1,n) = p1 or q1. The probability thatD can
factor n from either e2

1 = (e′1)
2 (mod n) or e2

2 = (e′2)
2

(modn) is about 1/2.
Therefore, the probability thatD can obtain the

solutions to the discrete logarithmloggy and the factoring
of the composite n simultaneously is
ε ′′ = (ε−1/n−qS(qH +qS)/p)/(2qH).

We use the ”splitting lemma” [19] to compute the
probability thatD works as hoped. LetX be the set of
possible sequences of random bits and random function
values that take the forgerA up to the point whereA asks
for H(m, r); let Y be the set of possible sequences of
random bits and random function values after that. By
assumption, for anyx∈ X,y∈Y, the probability thatA is
supplied the sequences of random bits and random values
(x||y), D obtains the solutions of the two hard problems is
ε ′′. By ”splitting lemma”, there exists a ”good” subset
Ω ∈ X such that

1.Pr{x∈Ω} ≥ ε ′′/2.
2.Wheneverd ∈ Ω ,y ∈ Y, the probability thatA is

supplied the sequences of random bits and random
values(d||y), D obtains the solutions is at leastε ′′/2.

Suppose that the sequences of random bits and random
function values supplied up to the point in the first
simulation ared. Hence for anyy∈Y, the probability that
A is supplied(d||y), D obtains the solutions in the two
simulations is(ε ′′/2)3.

Additionally, the probability ofa satisfying Jacobi
symbol(a

n) =−1 is 1/2.
Hence, algorithmD solves the discrete logarithm

problem and the factoring problem simultaneously with
probability (approximately) at least

((ε−1/n−qS(qH +qS)/p)/(4qH))
3/2.

The computation steps in one simulation is
t +2qSCexp(Gg,p). Hence

t ≈ 2(t +2qSCexp(Gg,p)),
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ε ′ ≥ ((ε−1/n−qS(qH +qS)/p)/(4qH))
3,

hereCexp(Gg,p) denotes the computation step of a long
exponentiation in the groupGg,p. Q.E.D.

4 Conclusions

We have proposed a signature scheme based on factoring
and discrete logarithms. We have showed that if there is a
forgery algorithm against this scheme, we can construct
an attack algorithm to solve the two hard mathematics
problems simultaneously. Because, it is very unlikely that
multiple cryptographic problems would simultaneously
become easy to be solved, this signature scheme would
give more confidence to the users in digital signatures.

Finally, we compare the performance of the proposed
with the related scheme as the following table:

Schnorr PSS-Rabin trivial proposed
scheme signature scheme scheme

sign 1E+1H 1E+1H 2E+2H 2E+1H
verify 2E+1H 1H 2E+2H 2E+1H

Signature
size 2|q| |n|+0.5|q| |n|+2.5|q| |n|+ |q|

where E denotes exponentiation, H denotes Hash
function and|n| denotes the bit size ofn.

Compared with the Schnorr signature scheme, the
proposed scheme needs only one more multiplication to
verify a signature and one more exponentiation to
generate a signature.

Compared with the PSS-Rabin signature scheme, the
proposed scheme needs only one more exponentiation to
generate a signature and to verify a signature respectively.
Moreover, the storage requirement of the proposed scheme
is the same as that of the PSS-Rabin signature scheme.

Compared with the trivial scheme (one Schnorr
signature + one PSS-Rabin signature), the proposed
scheme needs one hash function less to generate, as well
as verify, a signature. Moreover, the signature size
reduces by 1.5|q|. Hence the proposed signature scheme
is efficient.

Because the settings of the Schnorr signature and the
PSS-Rabin signature are widely in the existing PKI, the
new signature scheme is of more practical interest.
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