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Abstract: To make users put much confidence in digital signatures, this papeoges the first provably secure signature scheme
based on both factoring and discrete logarithms. The new schemednatap both the Schnorr signature scheme and the PSS-Rabin
signature scheme. Unless both the two cryptographic assumptions @blkecbme solved simultaneously, anyone would not forge
any signature. The proposed scheme is efficient since the computdioinement and the storage requirement are slightly larger than
those for the Schnorr signature scheme and the PSS-Rabin signédttemeesc
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1 Introduction But several literatures have shown these schemes to be
flawed P,10,11,12,13,14]. Only the Laih-Kuos signature

Since Diffie and Hellman invented the concept of public scheme 15 and the Ismail et al.s signature scheré][

key cryptography 1], two families of public key have not been broken so far though they have not

cryptosystems have been proposed. Diffie-Hellman, angrovided formal security proofs.

!ater_ ElGamal, DSA, and EIIipti_c Curve, Pairings are QII Recently, Zhang et al.1ff] proposed an improved

in Discrete Logarithm (DL) family, whereas RSA, Rabin scheme of §] and claimed that the scheme is provably
and related systems make up Factoring (FAC) family. Itgecyre in the radon oracle model. But their proof has not
means that the security of these public key cryptographichowed that a forgery can be used to solve any given FAC
cryptosystems is based the assumption of one mathemattgromem and any given DL problem simultaneously. In
hard problem, DL or FAC. If the hard problem becomes fact the Pollard-Schnorr algorithnig] can easily forge

easy to be solved, the corresponding cryptosystem will ngpe signature for any message if the DL problem is
longer be secure. DL and FAC are seemingly hard but notgyed.

NP-complete, it is possible that the two problems could Hence it is attractive to desian provably secure and
be become solved some days later. Some signatures musﬁ. ient sianat h bg g Y tinle hard
be kept in the archives for dozens of years. However, it i |C|Ien signature sc.emles as? on muitiple har
very unlikely that multiple hard problems would problem assz.umptlons simultaneously. o )
simultaneously become easy to be solved. Although shor The trivial way to enhance security is to sign
[2] showed that both factoring and discrete logarithm canmessages twice; one adopts a FAC-based signature
be solved by quantum algorithms in polynomial time, but Scheme and one uses a DL-based signature scheme.
it will take a long time to put quantum computers into However, more computation and more storage are
practice. required. Furthermore, the two signatures would be
Thus several signature schemes tried to base theipeparated. In contrast with the trivial way, the Laih-Kuos
security on the two well-known assumptions so as toSignature scheme is less efficient in terms of computation,
enhance security3[4,5,6,7,8]. Unless both the two Storage and key pairs.
cryptographic assumptions could be become solved By far, the Schnorr signature scheme and the RSA
simultaneously, anyone would not forge any signature.signature scheme are most commonly used in the real
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world. They are provably secure under FAC assumption  The authority chooses the public parameters:
and DL assumption respectively in the random oracle pis alarge prime number.
model. gis a prime divisor ofp— 1.

In this paper, we will propose the first provably secure  gis an element of ordegin the groupZy,.
signature scheme based on factoring and discrete Each signer chooses an elemeanin Z;, two larger
logarithms simultaneously by combining the Schnorrprime numbers,p; and g;, and computesn = pi1qs,
signature scheme and the PSS-Rabin signature schemg= g* (mod p), wherep; = q; = 3 (mod 4). And then he
We will show that the new scheme is strong existentially chooses a randomsatisfying Jacobi symbdl2) = —1.
unforgeabable under adaptive chosen-message attacks in H: {0,1}* x Z; — Z} is a one-way hash function.
the random oracle model, making better security - : . -
confidence than those offered by existing signatures basezgl'he.pnvate key of the signer i p1, dr), and the public
on either discrete-lo i i ioneY 18(P,0,G,y;n,a,H).

g assumption or factoring assumption

In our security proof, the challenger can solve both FAC The subgroup of the grouf; generated byg can be
and DL simultaneously with one simulation. replayed by othoer groups, such as those built on elliptic

The rest of this paper is organized as follows. In curvesGgp={g’.g*,---,g%*}.
section 2, we review briefly a precise definition of generic (2) The signing algorithm:
signature schemesl9], and present the new signature For a messagen € {0,1}* to be signed, the signer
scheme. Then, we provide a formal security proof inchooses a new random intedgerl < k < g, computes
section 3. Finally, in section 4, we discuss ther =g (modp), s=k—H(mr)x (modg), and computes
performance of the scheme. c1 andcy, respectively.
0, if Jacobi symbolé'*(nm’r); =1,

. . . H .,
2 The proposed signature scheme 1, if Jacobi symbol( #@ ) = —1.
[ =a“H(m,r).
In this section, we first review a precise definition of . IR AR
generic signature schemek9], and then present the new Cr — 0, if Legendra symbol Pr/ o\ L
signature scheme under the setting as the Schnorr 1, if Legendra symbol ﬁ = é =-1
signature scheme2()] and the Rabin signature scheme computese such thate? — (—1)%a%H(m,r) (modn) by
[21]. using his private keyx; pz1,d1).
The signature of the messages (s, e ¢y, Cy).
. Notice that the length of the signature is lgnt len(n
2.1 Definition + 2Dit. J g ant len()
o ) (3)The verification algorithm:
Definition 1 (Signature Scheme) Any verifier can verify the signature by checking
A signature scheme (Gen, sign, Verify) is a triple of
algorithms:

2
ﬁ( mOdn) —H (m’ gsy( (—1)%2a°T (mOCh))(mOd:])(modp)) )
-The key generation algorithm Gen that when given a(-1)=a%
security parameter<las input, outputs a paiisk pk)

of matching private key and public key. It is clear that
Gen must be a probabilistic algorithm.

-The signing algorithm Sign that when given the pair
(sk pk) of the matching private key and public key
and a messagm as input, produces a signatuce ) )
The signing algorithm might be probabilistic, and in 3 Security model and security proof

some schemes it might receive other input as well.

-The verification algorithm Verify that on input In this section, we first review the security model of
(pk,m,0), obtains eitherinvalid or valid, with signature schemes. Then we show that the proposed
property that if (skpk) <« Gen1¢) and signature scheme is strong existentially unforgeable
0 « (sk pkm), then Verify(pk,m o) = valid. In against chosen message attacks in the random oracle

general, the verification algorithm need not be model assuming that any of the factoring or discrete log

The verification equation can be regarded as the variants
of either the Schnorr signaturg(] or the Rabin signature
[21].

probabilistic. problems is hard.
2.2 The proposed signature scheme 3.1 Security model of signature scheme
(1)The key generation algorithm: Definition 2 (Security of a signature scheme)
@© 2014 NSP
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A probabilistic algorithmF is said to(t,qq,qs, €)-breaks ~ The probability is over the random bits used by the
a signature scheme if after running for at mostteps, challenger and the adversary.
making at mostyy adaptive queries to the hash function Notice that the adversary is allowed to ask for
oracles, and requesting signature oracles on at m@st signatures of the same messagemany times, even of
adaptively chosen messagés, outputs a new forged the messaghl.
signature paifm, ) on some message with probability
at leaste, where the probability is taken over the coins of
F, the Gen algorithm and the Sign algorithm and the hashy 2 Fgrmal security proof
function oracle.

We say that a signature schemétisiy, gs, €)-security

if no forger can(t, gn, gs, €)-break it. Theorem: Let the hash functiorH be random oracle.

o ! Then the proposed signature scheme is Strong
Definition 3 (DL assumption) Existentially UnForgeable against adaptive Chosen
A probabilistic algorithmD is said to(t,e)-break a DL~ Message Attacks (SEUF-CMA) under both the FAC
problem in a grouf5g p, if D runs in at most steps and assumption and the DL assumption. Concretely, suppose
computes the discrete logarithBiy p(g?) = a on input  that there is an adversa#ythat has advantage against
(9,p,0,9%) with probability at leasts, where the the scheme and runs in step at modt Suppose tha#
probability is taken over the coins dd and a chosen  Makes at mosiy queries to the hash functiokt at most

uniformly fromzé, gs queries to the signature oracle. Then there is an
We say that the DL problem i, £)-security if no algorithmD that has advantagg with running stept to
algorithm car(t, £)-break it. solve the FAC problem and the DL problem

. , simultaneously, where
Definition 4 (FAC assumption)

A probabilistic algorithmF is said to(t, £)-break a FAC t ~t'/2— 205Cexp(Gg,p).
problem, if F runs in at most steps and computes two
primesp andq on inputn, (n = pq), with probability at £ < (4an)(2¢")Y3 +1/n+qs(qn +as)/p.

fr?ds :)eérv]\:the (r:ig;?ar? Lonk?%br:l:]tly)/lls taken over the coinsFof Here Cexp(Gg,p) denotes the computation step of a long
We say that the FAC problem ig,e)-security if no ~ €XPonentiation in the grougqp.
algorithm can(t, €)-break it. Proof. Suppose that we are given a DL problem

. (p,9,9,y = g*) and a FAC problemn(= p;1q;). We also
Goldwasser et al 2] proposed the standard definition of hoosea at random. The probability af satisfying Jacobi

the security of signature schemes, as well as the firs ymbol(%‘) — 1is1/2.

conatruchon tht?]t satlsgesl It ianat f We use the random oracle model to show the security
Owever, he uncerlying signaturés of our New ¢ .o proposed signature scheme. Assume that we are

scheme, the Schnorr signature and the PSS-Rabify e, 4 SEUF-CMA forgeA that (t,qy, Js, £)-breaks the
signature, are not deterministic. The signer may generat ignature scheme. That i.is a probabilistic polynomial

S((ajvertal S|gntatures corresp;)ndlngdtola gtlven messatgeil | e computer program which is supplied with a long
a ]?p ab_?tronger hsecutrrl]y (rjno €, s ror|1|g eg'f en 'I‘;"public sequence of random bits, and is allowed to ask a
unforgeability P3|, where the adversary is allowed to as olynomial number of questions to the random oratles

for slljg]netl)ttures of fthle. sfame Tes?age mar;}y times, and & \ve \yant to construct a simulator algoriti®) which
would obtain useful information from each new answer. v ac (1 'q o v n a) as input. AlgorithmD tries to useA

The adversary is required to forge a new signature on g fin4'the discrete logarithrfoggy and the factoring of
previously signed message or a new message. This mod?:ﬂe composite simultaneously.

gives the_ a}[crj]vefrsl?ry_mor?t polilvers a.nd more chances for Algorithm D uses oracle replay technique of
success in the foflowing attack game: Pointcheval and Sterrl®] and simulates two runs of the
Gen: The challenger takes a security paramétanti runs ~ Slgnature scheme to the forgar Algorithm D answers

a key-generation algorithm. It gives the adversary theA'S hash function querie, signature querieS, and tries
resulting system parameters and a random public key© translateA’s possible forgeries into the solutions to the

of the signer. discrete_ Iogar_ithm loggy and the _factoring of the
Queries: The adversanA issues queriesds,...,Gm composite n smultgmeously. AlgorithmD starts the

adaptively: simulations by providing the sani@, q, gy, n,a) and the

- Sign query< M; >. same long sequence of _ random bits fér Then
Response: Finally, the adversary outputs a new signatur@!gorithm D answersAs queries as follows:

o for a messag#¥!. Answering H-oracle queriedf A issues a random oracle

The adversaryA wins the game if the outputted query(m,r;) where 1<i < gy, D looks up theH-list (a
signature(M, o) is nontrivial, i.e. it is not an answer query-answer list, where entry consists  of
of any sign query for the messalye ((my,ri),hi,e,c1,Cz) ) to get the corresponding answer.
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If there is a tuple((m,r;),hi,e,c,Cy) in the H-list, D
answers withh;. Otherwise D generatese from Z;
uniformly at random andcy;, czi) from {0,1} uniformly
at random, computesy = €/((—1)%a%) (mod n),
answers withh;, and adds((m,r;),hi,&,ci,Cz) to the
H-list.

Answering S-oracle querief A issues a signature query
(my) where 1<i < gs, D first picks s uniformly at
random froquj‘, g from Z; uniformly at random and
(C1i,C2i) from {0,1} uniformly at random, computes
hi = €/((—1)%a%) (mod n). Then D computes
ri = g8y (Mod) (mod p) and answers withs , &, 1, C2i),
and addg(m;,ri), hi,&,cy,Cy) to theH-list. If there is a
tuple ((m,ri),h, &, c);,cy) in the H-list with by # hi, D

andH(m,r) € H-list.
Hencer = gstyhi(mod) — gs2yh2(mody) (mod p)

impliesx = (s1 —s)/(h2 — h1) (modq).
Meanwhile,H(m,r) = /((—1)%ta®1) (modn)

= (&))2/((~1)*nechn) (modr)

implies (e1/€,)2 = ((—1)%~%1a%1 1) (modn).

Notice that (e;/€;)? is a quadratic residue oZ;.
However, neithe(—1) nor (a) is a quadratic residue of
Z:. Thus (e1/€])? = 1,—a or (—a)~* (mod n). But the
probability of (e;/€;)? = 1 is about ¥2. So is that of
& = (&)? (modn).

The equationZZ = a (mod p;q1) has four roots

aborts and restarts simulation. The probability of thisB,y,n — B,n —y, where B ¢ {y,n — y}. Hence,

unfortunate coincidence occurring is at m¢s +qs)/p.

Obviously, the outputs of the simulated oracles are
computationally indistinguishable from those in the real e% - (ell)2 =

attacks.
By assumption, with the probabilitg, the forgerA

Pr{€, ¢ {er,n—ei} } =Pr{& ¢ {en—e} } = 1/2.

If € ¢ {e1,n— e}, &€ = (€)% (mod n) implies
(1 — €)(e1 +€) =0 (mod n). So
gcd(er — €,n) = p1 or gi. The probability thatD can
factor n from eithere? = (€;)? (mod n) or € = (&,)?

returns a new valid message and signature paifmodn) is about ¥2.

(m,s,e,c1,Cy).
probability

Pr{ﬁ—r(fl)ez2a1 (modn)

If A has not queriedH(mr), the

=H(m, gsy<—1>e2°2 LT <mOdn)(mOdq)(mod p))} <1/n.
sinceH (m,r) is generated randomly.
Hence, with the probabilitg — 1/n— gs(qy +as)/p, the
forgerA returns a new signatuien, s, e, ¢y, ¢z) such that

&
ﬁ%zz—aq(mod n) = H(m, g%y V%t ( (modp))

modn)(modq)

andH (m,r) € H-list.
BecauseA has queriedH (m,r), D guesses a fixed
index 1< ky < gy and the queryH(m,r) is the kyth

Therefore, the probability thaD can obtain the
solutions to the discrete logarithioggy and the factoring
of the composite n simultaneously is
"= (e—1/n—as(an +ds)/p)/(20n).

We use the "splitting lemma”1[9] to compute the
probability thatD works as hoped. LeX be the set of
possible sequences of random bits and random function
values that take the forgérup to the point wheré\ asks
for H(m,r); let Y be the set of possible sequences of
random bits and random function values after that. By
assumption, for any € X,y €Y, the probability thai is
supplied the sequences of random bits and random values
(X/ly), D obtains the solutions of the two hard problems is
g”. By "splitting lemma”, there exists a "good” subset

H-oracle queriesSuppose thaD makes good guesses by ¢ < x such that
chance, denoted by the event GoodGuess. The probability

of the event GoodGuess is
Pr[GoodGuess=1/q4.

Algorithm D uses two copies of the signature forgerD
gives two copies of the forgeA the same system

1.P{xe Q} >¢€"/2.

2.Wheneverd € Q,y € Y, the probability thatA is
supplied the sequences of random bits and random
values(d|]y), D obtains the solutions is at least/2.

Suppose that the sequences of random bits and random

parametergp,d,g,y,n,a) and same sequence of random function values supplied up to the point in the first
bits, and the same random answers to their oracle queriegmulation ared. Hence for any € Y, the probability that

until at the same time they ask fét(m,r). This is the
forking point. At this point,D gives two independent
random answersy = (€)2/((—1)%ta%1) (mod n), and
hy = (€,)?/((—1)%2a%2) (mod n) to the hash queries
H(m,r) in the two runs. ThusD obtains two signatures
(m, sy, €1,C11,C21) @and(m, s, €2, C12,C2) such that

&
iyeeigens (o) = H(m, gy (mocp))
andH (m,r) € H-list.

&

(_Dcm(modq) =H(m, gsyhz(moch)(modp))

A is supplied(d||y), D obtains the solutions in the two
simulations igg” /2)3.

Additionally, the probability ofa satisfying Jacobi
symbol(8) = —1is 1/2.

Hence, algorithmD solves the discrete logarithm
problem and the factoring problem simultaneously with
probability (approximately) at least

((e—1/n—as(an +0s)/p)/(4an))%/2.

The computation steps in one simulation is
t +20sCexp(Gg,p). Hence
t ~ 2(t + 209sCexp(Gg,p))
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g > ((e—1/n—as(gn +9s)/p)/(4am))3, [3] L. Harn, Public-Key cryptosystem design based on factoring

. and discrete logarithmdEE Proc. Comput. Digit. Tech.
here Cexp(Gg,p) denotes the computation step of a long 141, 193-195 (1994).

exponentiation in the grou@g p. Q.E.D. [4]J. He, T. Kiesler, Enhancing the security of original
ElGamals signature schemBEE Proc. Comput. Digit. Tech
141, 249-252 (1994).

; [5] N. Y. Lee, T. Hwang, Modified Harn signature scheme based
4 Conclusions on factoring and discrete logarithmiEE Proc. Comput.
, , Digit. Tech, 143 193-195 (1994).
We have proposed a signature scheme based on factoringg) zyhua Shao, Signature Schemes Based on Factoring and
and discrete logarithms. We have showed that if there is @~ piscrete Logarithms|EE Proc. Comput. Digit. Tech145,

forgery algorithm against this scheme, we can construct  33-36 (1998).

an attack algorithm to solve the two hard mathematics [7] Wei-Hua He, Digital signature schemes based on factoring
problems simultaneously. Because, it is very unlikely that  and discrete logarithmslectronics Letters37, 220-222
multiple cryptographic problems would simultaneously (2001).

become easy to be solved, this signature scheme would8]L.-H. Li, S.-F. Tzeng, M.-S. Hwang, Improvement

give more confidence to the users in digital signatures. of signature scheme based on factoring and discrete
Finally, we compare the performance of the proposed  ogarithms, Applied Mathematics and Computatioh61,
with the related scheme as the following table: 49-54 (2005).

[9] K. Tu, Comment "Public-Key cryptosystem design based on
factoring and discrete logarithmsEE Proc. Comput. Digit.

. : — Tech, 143 96 (1996).
ggﬁ Q%ré legsn ;3? én ; :X:;In e p;gﬁgrsnid [LO] N. Y. Lee, The security of Shaos signature schemes based on
. factoring and discrete logarithmi&E Proc. Comput. Digit.
sign 1E+1H 1E+1H 2E+2H 2E+1H Tech, 146, 119-121 (1999)
_venfy 2E+1H 1H 2E+2H 2E+1H [11] J. Li, G. Xiao, Remarks on a new signature scheme based
Slgr_lature on two hard problemglectronics Letters34, 2401 (1998).
size 2|q| [n|+0.5|q | |n|+2.5]g] | |n|+]q] [12] Zuhua Shao, Comment on signature schemes based on

factoring and discrete logarithmElectronics Letters38,
1518-1519 (2002).
I 13]H. Qian, Z. Cao, H. Bao. Cryptanalysis of Li-Tzeng-
where E denotes exponentiation, H denotes Hasﬂ Hwangs of improved signature scheme based on factoring

function andn| dgnotes the bit size “’f and discrete logarithms,Applied Mathematics and

Compared with the Schnorr signature scheme, the  computation166 501-505 (2005).
proposed scheme needs only one more multiplication tq14] zuhua Shao, Security of a new digital signature scheme
verify a signature and one more exponentiation t0  based on factoring and discrete logarithn@omputer
generate a signature. Mathematics82, 1215-1219 (2005).

Compared with the PSS-Rabin signature scheme, th§l5] C.-S. Laih and W.-C. Kuo, New signature scheme based
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Moreover, the storage requirement of the proposed scheme E80-A 1, 46-53 (1997).
is the same as that of the PSS-Rabin signature scheme. [16]1E. S. Ismail, N. M. F. Tahat and R. R. Ahmad. A new
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reduces by B|q|. Hence the proposed signature scheme logarithms,Journal of computational information systems
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