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Abstract: We give an operator solution to an advanced-retarded differential equation. The application of the operators involved

produces a solution in terms of Bessel functions.
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1 Introduction

Recently it has been shown how photonic circuits may be
constructed such  that their dynamics obeys
advanced-retarded (AR) differential equations [1].
Alvarez-Rodrl’guez et al. [1] showed the similarities
between the AR differential equations and discrete
differential equations that arise in the propagation of
classical or quantum light through waveguide arrays [2,3,
4,5].

AR differential equations, also known as mixed
functional differential equations, are equations for which
the derivative of the function explicitly depends on the
same function evaluated at different values of the variable
[6,7,8,9,10]. They are helpful to describe phenomena
that involve feedback/feedforward interactions in their
evolution [11,12,13].

2 Operator solution

We consider an AR differential equation of the following
form

that has the simple solution
L Bsinh(tDy) —iat
(1) = P I 1(0), ©)

with x(0) the initial condition, N a normalization constant

and we have defined = %. It is not difficult to show that
this is a solution because
dx(t ] . 2

);(t ) _ _%aeﬁ Smh(TDt)te_laTX(O), “4)

that, by inserting a unit operator, ¢~ Bsinh(zDr) B sinh(zD;)

after the linear term gives

dx(t . .
);(t ) _ —%Oﬂeﬁ smh(rD,)te—ﬁ 51nh(1rD,)x(t)7 5)
and finally a1pply1ng the relation

e*Be™* = B+ [A,B] + 5[A,[A,B]] + ..., with A and B
two arbitrary operators, equatlon (2) is recovered

dx(t) i
e _ﬁa[t + Brtcosh(tD,)]x(t). (6)

Writing ¢'®$inh(720) in terms of Bessel functions

dx(t
i# = oux(t) + Ax(t+ 1) +x(t — 7)) (1) Z To(B)e"™ e—ia% 7)
Nn——o0
and, by defining the operator D, = di, with commutator .
[Dy,1] = 1, we can rewrite (1) as follovtvs we end up with the final form
> 2
dx(t )C(_O o %)
i’;_(t) — [0+ A (™ + e~ )x(r) o) =N L T (8)
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Fig. 1: a = 1.25, 7= /7w and (a) B = 1.25, (b) B = 1.5 and (c)
=2

so that the normalization constant takes the value

N—ZJ

n=—oo

(C))

We plot in Figures 1-3 the absolute value squared of
the amplitude x(¢), |x(¢)|? for different values of o and 3.
In the figures it may be seen the periodic behaviour of the
solutions, but also strong variations in the square
amplitude, |x(#)|?, although the parameters used are
slightly modified. This is clear in Fig. 1. On the other
hand, Fig. 3 (a) shows the solution given in Subsection
3.1.

3 Some special cases

For some sets of parameters the solution (8) may take some
closed forms. In this Section we look at those cases:

3.l at?=2n

In this case we may write the solution as

_X(O) > 2+2nt‘t) i
= z e~ (10)
N L ’
.9 . .
and, because e T = ¢ we rewrite the

above-mentioned equation as follows

x([) _ X(O) i Jn (B)efia%efin(taffﬂ), (11)
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Fig.2: a =15, 7=+/7wand (a) B = 1.25, (b) B = 1.5 and (c)
=2

that may be added using the generating function of Bessel
functions [14,15,16,17]

c 2
x(t) — )%eﬂaTezﬁ sm(tom')- (12)

32at’=nx

The solution in this case takes the form

w0y =0y e

n=—oo

(2+2mit) .o
i

T (13)

. ; 2 N2
We see that the relevant term is ¢ 2" = (—i)" . For n odd
gives —i while for even gives 1, such that we can split (13)
into even and odd series

2
x(0)e %7 & iaon
x(t) = x(0)e )N Y u(B)e (14)
0)e > )
—ialy e
. lx( )j‘v Z Jonit (B)efwc(ZrH»l)

) =TT Y e i)y
x(O)e”O‘% i
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Fig. 3: a =2, B =2 and (a) T = /7, (b) T = /7/3 and (c)
T=/n/4

that, using the generating functions of Bessel functions
[14,15,16,17] gives

2
x(0)e "7

x(t) — v ([] _ i]efiﬁ sin(rat)

+ 1+ e Si“<’°”>) . (16)

4 Conclusion

In the present paper was shown that we can use operator
techniques to solve equation of the form given in equation
(1). The solution produces infinite series of Bessel
functions that for particular values of parameters may
give a closed form. The series solution we have provided
may be a hint to find solutions to other types of AR

differential equations (different time dependent
parameters).
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A

In this appendix we show, by using properties of the
Bessel functions, that indeed, equation (8) is a solution to
equation (1). Given the equation

0 > . (t+n7)?
x(t)=¥ Y LBe e an)
Nn——oo
its derivative gives
dx(t —iox(0) & _ig )
1) - 00 ¥ (e I, as)

n=—oo

that by applying the identity zx—”J,, (x) = T 1(x) + 1 (%)
may be rewritten as

dx(t) .
ar —iox(t) )
_ %nzw[‘l}ﬁ% (ﬁ) +Ju1 (ﬁ)]eﬂ'a%-

Changing the indices of the sums gives

dx(t)
dt

N

n=—oo

— —ianx(r) - i) [ Y Jn(B)e @t

n=—oo

SN (B ] : (20)

that gives equation (1).
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