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This paper proposes a time-varying particle swarm optimizer based on our earlier
work which introduces a novel operator (leap operator). Two new parameters are
recommended in leap operator to prevent premature convergence. With these two
parameters, a new modification named LPSO is constructed. Since the values of the 2
parameters are not easy to determine, in this paper, they are modified as time-varying
ones. With the time-varying parameters, the modified particle swarm optimizer
(TVLPSO) has good potential in finding better solutions. Compared with standard
PSO and LPSO, benchmark tests are implemented.
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1 Introduction

Particle swarm optimization is a nature inspired optimization technique which was
originally introduced in [1]. It was initially found working well in the field of linear
function optimization. However, in later research, the standard PSO is shown to posses
no ability to perform a fine grain search to improve the quality of solutions as the number
of iterations is increased, although it may find the near optimal solution much faster than
other evolutionary algorithms [3]. This is considered to be caused by premature
convergence which only provides solutions of poor quality. So in our earlier work, a
modified particle swarm optimizer (LPSO) with a novel operator (leap operator) is
introduced to prevent premature convergence.

In LPSO, 2 new parameters p and & are introduced [2]. Although with empirically
recommended values for them, LPSO successfully prevents premature convergence and
improves the quality of solutions to some degree, however, further study on p and § are
still required. In this paper, a time-varying 6 is constructed alone with p. With this
modification, the quality of solutions is further improved when it comes to the
optimization of some benchmark test functions. The new modification is referred to as
TVLPSO (Time-Varying Leap-PSO).
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2 PSO and LPSO
In the standard PSO method [12], the information of each particle zin the swarm is

recorded by the following variables: (i) the current position X7 (ii) the current velocity
VZ (iii) the individual best position pes#;, and (iv) the swarm best position gdesz. In each
iteration, the positions and velocities are adjusted by the following equations:

vii [t + 1) = wwy () + crrand()[pi; (£) — z45(1)]
+ eaRand()[pg; (t) — =45 (t)]

(2.1)

ry(t 4+ 1) = ay; () + vy (E + 1) (2.2)

for jel,2,...d where d is the dimension number of the search space, for ic 1,2,...n where
72 is the number of particles, #is the iteration number, « is the inertia weight, 7@74{) and
Hand() are random numbers uniformly distributed in the range [0, 1], «1 and <2 are
accelerating factors.To control the flying step size of the particles, 2z/is constrained in
the range [Vemaz, vmaz] Where vmazis commonly set as 10%--20% of each search

dimension size [10].

Fast convergence of standard PSO sometimes only provides a poor solution. Such
inferior convergence is called premature convergence. To prevent premature
convergence, a modification referred to as LPSO with a novel operator is proposed in [2].
The novel operator (leap operator) is based on two hypotheses:

Hyp. 1. In the terminal iterations, if the global best position ges# is not updated for a
number of consecutive iterations, the near optimal area is always almost located and the
algorithm tends to be trapped in premature convergence.

Hyp. 2. The worst-fitting particle has the least probability to reach the global optimal
solution.

When this operator works, a particle leaps from one position to another, that’s why we
refer it as leap operator. The key mechanism of leap operator is presented by the
following formulas:

(t = p*maziter) A (C' = d) (2.3)

where o and ¢ are thresholds. The first half of (2.3) determines in which period of a run
process the leaps are performed and the second one determines the leap frequency. 7 is
the current iteration number and C’is a variable which records the number of consecutive
iterations during which gesz is not updated.
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X; = gbest (2.4)

-I}k =z + of fset (2.5)

In (2.4), .X7is the position of the particle selected to leap. In (2.5), a stochastic o//seZ is
added to one of the dimensions of _¥z The initial velocity is assigned with 0 which is
presented by

Vi=0 (2.6)

pand & are the only parameters which ﬁ'equire priori knowlege for initialization. In [2],
only empirically recommended values are given, [0.4, 0.6] for p and 5 for J respectively.

3 Modification with time-varying Parameters: TVLPSO

In LPSO, g and ¢ require priori knowledge to initialize. Firstly, such knowledge is not
easy to access. Secondly, even though we have the knowledge, it’s still difficult to
construct a universal model which deals with the relationship between the knowledge and
the 2 parameters. So we try not to give the values directly, but we can make them vary
during the algorithm’s run process. It provides more flexible parameter values, thus
reducing the possible impact a bad parameter value may have on a run process.

In [2], variation is added only in the terminal iterations to prevent premature
convergence. However, in the early iterations, no variation exists. So here we add some
variation in the early iterations to ensure a more widespread exploration. Such variation is
adaptive to time. Specifically, the more iterations are implemented, the more variation
should be added. This is based on hyp.1. So that a time-varying model is constructed:

: iter—t T ;
5(t) = (0; — 0p)(Bozel=t) + b if & < p* mariter 3.1)

Of otherwise
where é; is the initial value for § and 4 is the final one. maxiter is the maximum iteration
number and ¢ is the current iteration.
Besides, a time-varying inertia weight w proposed by Shi and Eberhart [9] is used. The
mathematical presentation is as follows:

maxiter —t

w(t) = (w; —wp)( ) +wy (3.2)

maxiter
Furthermore, similar time-varying acceleration coefficients introduced in [11] are also used.
The mathematical presentation is as follows:

maxiter —t

CL(t): (C“—le)( )—|—le (3.3)

maxiter

mazxiter —t
co(t) = (eg; — ¢ - & (3.4)
2(t) = (e2i — cay)( aviter ) + cay

With (3.1) to (3.4). more variation is added to LPSO. Since it’s time-varying and based
on LPSO, we refer it as TVLPSO (Time-Varying Leap-PSO).
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4 Experimental results and statistical analysis

In our experiments, four standard functions widely used in genetic and evolutionary
algorithms’ tests [4-8] etc. for benchmark tests are selected. For each function, the
dimension number is 30 and for each dimension I, xi € [-100,100]. Each function’s global
optimal solution is 0. They are Sphere(De Jong F1) function, Rosenbrock function,
Rastrigin function and Griewank function presented by (4.1), (4.2), (4.3) and (4.4)
respectively

)=z} 4.1)
i=1

n
= [100(zig1 — 27)* + (2 — 1)7] (4.2)
i=1
Z r? — 10cos(2mz;) + 10) (4.3)
i=1
14(®) = 3555 Z H cos( (4.4)

First, an experiment aiming to determine the values of d; and 0y is implemented. In
this experiment, df is assigned with 5 which is the recommended value of d in [2]. For
d;. several values are tested (see Table 4.1). ¢;, ¢f, w; and wy are all assigned with values
recommended in [9] and [11] (¢; = 2.5,¢,7 = 0.5,¢1; = 0.5,¢15 = 2.5, w; = 0.9, wy; =

N

0.4). Other parameters are all assigned with values recommended in [9] and [2] (0.4
w < 0.9 ¢1 =3 =2, Vnar = 4, p=0.4). The maziter is 5000.

For each test, 30 trial runs are implemented. To show the performance of TVLPSO,
LPSO and PSO are tested alone with it. All common parameters among them are assigned
with the same recommended values. The statistical analysis of the experimental result is
also in Table 4.1. For f; and fa, TVLPSO performs the best. For f3, the average value is
slightly worse than that of LPSO. For f4. PSO performs the best. Fig. ?7 and Fig. 4.1 are
the box plots of the statistical analysis. They give a visual and more detailed presentation.

5 Conclusion
Based on our earlier work [2], an enhanced modified particle swarm optimizer with time-

varying parameters is introduced in this paper. Since PSO is sensitive to its parameter
values, experiments are implemented to discuss the values for the new parameters. With
benchmark tests, comparison is made with PSO and LPSO. The experimental results
demonstrate that TVLPSO has good potential in finding better solutions. However, only

numeric tests are implemented. Maybe in future work, more tests can be implemented on
various problems.
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Table 4.1: Statistical analysis of the experimental results.

TVLPSO with different & ; valoes
Function Statistical Analysis PSO LPSO d;1 = 25 89 = 50 d;q = 100
dpp =5 P dpg =5
Average 1271177 1.56582-T7 1.8855«-T6 4.3050e-T7 R.0710e-78
Min 3.3278-81 3.7252:-81 4.32460-82
Max 3. 10dee-To 6.4849-75 1.7292e-76
f1 s5D 4907477 0.3501=-T6 2.5666e-77
cv 38608 4.93590 28a10 25423
Median 8851207 7.3145e-70 9.0422-79 1.2843=-78 3.4268-T8
Average 33.57 26,9554 33.4086 2008224 33.6082
Min 03036 0.0270 ) 0.8158 31889
Max 03.5084 037678 86,3541 %7.4806
fa SD 28.8191 21.3229 246676 245104
cv 0.8384 08003 00151 08306 0.8219
Median 33 3.9798 20,0846 21.7383 206541
Average 3 4.2584 46972 46166 45768
Min 13 0.9950 0.9950 0.9950 0.9950
Max 5 109445 14.9244 11.9305 9.9494
fa SD 3 305 3.107a 13074 13355
cv 0.252 TR Da6lt 0.1998 0.5103
Median 333311 3.9798 39798 319798 3.9798
Average 00086 0.0089 0.0126 0.0124 0.0096
Min 0 0 1} 0 o
Max 0.0270 0.0205 0.0303 0.04aT 0.0418
T4 SD 00068 0.0078 0.0102 0.0088 0.0109
cv 0.7935 0.8745 0.8099 07116 11416
Median 0.0074 0.007 4 0.0099 0.0123 0.0074
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Figure 4.1:

The box plots of experimental results on f1 (di3). f2 (di1) .f3 (di3) and fa (8ia).
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