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Abstract: The Epsilon Skew Exponential Power Distribution (ESEP) that was introduced by Elsalloukh [1] is an asymmetric
distribution used for modeling asymmetric data. The ESEP includes Normal, Laplace, Epsilon Skew Normal (ESN), and Epsilon
Skew Laplace (ESL) as particular cases, [1]. In the present study, since the ESEP distribution encompasses members with skewed and
symmetric distributions, we perform and investigate the Bayesian analysis of this distribution using the methods of latent variables and
uniform scale mixture for implementing the most common MCMC algorithm known as Gibbs sampling. Furthermore, we develop the
posterior distributions and the full conditional distributions of each parameter of the ESEP using Jeffrey’s non-informative and
informative priors for each parameter. Finally, we provide examples to show the fitting accuracy and strength of the ESEP distribution
compared to other distributions used in literature.
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1 Introduction

The most commonly used continuous probability distribution is the normal (or Gaussian) distribution. This distribution
was discovered by De Moivre who was an 18" century statistician and consultant, but he could not find the mathematical
expression of the normal distribution. However, Adrain(1808) and Gauss(1809) independently developed the
mathematical formula for the normal distribution for fitting errors due to measurements. It is also believed that this same
distribution had been discovered by Laplace in 1778. According to Lane [2], Laplace also derived the famous central
limit theorem. Laplace also introduced a distribution known as Laplace and used in many applications including data
with heavier tails than normal tails. For example, Easterling [3] and Hsu [4] used Laplace distribution for modeling
errors due to measurements and position, respectively.

The Exponential Power family (EP) incorporated both the normal distribution and Laplace distribution as special cases.
However, the EP distribution is symmetrical and therefore can not be used for modeling skewed data. In real world, data
do not always follow a normal distribution. As a result many researchers have been developing a parametric family of
distributions that possesses skewness and kurtosis. Azzalini [5] developed a distribution, the Skew-Normal Distribution,
by combining a standard normal distribution and its density function and studied some of its properties. Mudholkar and
Hutson [6] introduced an asymmetric density, the Epsilon Skew Normal distribution(ESN). This probability density
function is defined by
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Researchers have further dug into devising a family of asymmetric distributions which can be solvable analytically.
These asymmetric distributions are useful in financial and econometric sectors for modeling data that do not follow a
normal distribution. Boris Choy and Chan [7] developed a technique for conducting statistical modeling using the two
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scale mixture representation that is normal and uniform scale mixtures and provided a uniform scale mixture
representation for the Generalized T-student density that can be implemented easily in Gibbs sampling. Besag and Green
[8] reviewed how the introduction of auxiliary variables simplify the complexity of the model and the problem of
multimodelity in the application of Gibbs sampler method in statistical physics and discussed an early development of
MCMC. Damlen [9] presented the use of an auxiliary (or latent) variables for sampling non-standard densities as an
alternative approach of sampling for rejection-based methods, metropolis-hasting algorithm in Bayesian analysis of
non-conjugate and hierarchical methods. This method is helpful for developing a full conditional distribution very easily
and makes the calculation of posterior distribution much easier. Naranjo [10] studied Bayesian analysis of Skewed
Exponential Power (SEP) and Asymmetric Exponential Power (AEP) families [11] and computed the full conditional
distribution of each parameter for implementing Gibbs sampling using the idea of mixture of uniform distribution [7] and
latent variables for sampling non-standard densities [9]. Meleki and Nematollahi [12] studied the Bayesian approach
under the informative and non-informative priors by exploiting the latent variables and stochastic representation of
Epsilon skew normal (ESN) distribution in constructing the augmented likelihood function. Smith [13] created an R
package called Bayesian Output Analysis (BOA). It helps us in assessing convergence and posterior inference for
MCMC output and also discussed the main difference between the frequentist and Bayesian modeling. Elsalloukh [1]
introduced a new class of asymmetric distribution called the Epsilon-Skewed-Exponential Power distribution (ESEP).
This distribution includes ESN, EP family, Normal, and Laplace distributions as special cases. So, in this study we
explore the Bayesian analysis for ESEP distribution using the idea of scale mixture uniform and the latent variables
adopted by [10]. The probability density function of ESEP is depicted as follows:
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The epsilon-skew-exponential power distribution denoted by X ~ ESEP(0,0, ¢, @) is a unimodal distribution at 8 with
the probability n = (14+¢€)/2, 1 —n = (1 — €)/2 below and above the mode respectively.

The remaining of this paper is outlined as follows. In Section 2, we present the scale mixture of ESEP distribution and
some of its main properties. The Bayesian analysis approaches with informative and non informative priors, the derivation
of posterior distribution of the model based on the Likelihood of ESEP distribution and the full conditional distribution of
each parameters are provided in Sections 3. In Section 4, a simulation study and real data set is presented to illustrate the
performance of proposed ESEP distribution and its parameter estimates. In Section 5, conclusion is given.

2 ESEP distribution

In this paper, we consider the ESEP distribution proposed by [1] and defined as, a random variable X has an ESEP
distribution if there exist a shape parameter o > 0, a location parameter 8 € R, a scale parameter ¢ > 0, and a skewness
parameter —1 < € < 1 and its probability density function given by equation (2). Note that

a)When «a = 1, equation (2) reduces to Epsilon-Skew-Laplace density function (ESL), which was defined, by [14] with
a pdf

exp( —(=0) ) :x>0
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b)When o = 2, equation (2) reduces to Epsilon-Skew-Normal density function (ESN), which was defined by [6] wih a
pdf give by (1).
¢)When o =2, and € = 0, equation (2) reduces to Normal density function
d)When o = 1, and € = 0, equation (2) reduces to Laplace density function.

The graphs below are the graph of the ESEP for € = 0 and € = —0.7 respectively, keeping other variables fixed:
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Many researchers used the scale mixtures of normal and uniform distributions for representing several distributions
and statistical models mainly for Bayesian analysis such as, Boris Choy and Chan [7] used a uniform scale mixture
representation of Generalized T-distribution (GT) density, and Naranjo [11] used scale mixture uniform of Skew
Exponential Power (SEP) and Asymmetric Exponential Power (AEP) distributions for performing Bayesian analysis.
Qin [15] stated that if a random variable X has a uni-modal and skewed distribution with location 6, then it may be
represented as a scale mixture uniform ( SMU). Here, we exploit the mixture uniform representation of EP distribution
defined by [15] for ESEP distribution.

2.1 Proposition 1

Let X be a random variable and U/ and U2 be auxiliary variables.
L
If X|U; = u; ~U(6,0 ++/2(1 —e Jou?), uy ~ Ga(l +a,1)
X|Uy = up ~U(6 — \/_( +8)Gu2 , 0), and uy ~ Ga(l + ,1), then X has an ESEP(0, 0, a,€).

This proposition represents the uniform scale mixture of ESEP distribution and its proof is as follows :
We first start with
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When substituting U; in(3), we get
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Substituting U; in (5), we get
[e-x
f(xluz) f(uz) = ! e [ﬁ“m"] I[x < 6]. (6)
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Combining (4) and (6), we get f(x) = &1 [ f(x| uy) f(uy) + 5L [ (x| up) f(u2), which is the Pdf of the distribution of
ESEP(u,o,a,¢€).

3 Bayesian Analysis of ESEP

In this section, we use Proposition 1 for Bayesian approach in implementing the MCMC technique for ESEP distribution
and develop the posterior distribution of a model where the ESEP distribution is considered for the likelihood. Let X be
an ESEP random variable then the likelihood of a variable X and the latent vector of the mixing parameters of U;;,U»; is
given by

exp(—Uy)I[0 < X; < 0+V2(1—¢€)oul /a]
L o for:x>9
L(6,0,e,0|X,U;,Uy) o< —_— -
( X U1, t2) II:—[, 2V26T (L) | exp(=U2)1[6 —V2(1 +€)ouy /o0 < X; < 6]
for:x<0.
Then the joint posterior distribution of the unobserved parameters 6, o, €, «, U;, and U, is the combination of the

likelihood function and the prior distribution of each parameter and is given by

K(0,0,e,alU;,U;) < n(0)n(c)n(e)n(o)L(6,0,€,a|X,U;,U,), 8)

(M

where (0),7n(0),m(€), and 7(or) are the prior distributions of 6, o, €, and « respectively.

3.1 Prior distribution

A prior probability distribution of an uncertain quantity P is the probability distribution that would state one’s uncertainty
about P before some evidence is taken into account. Even though there are different types of prior distributions, in this
study we use only the non-informative and informative priors.

I) The non-informative Jeffrey’s prior

In situations where there is no strong prior belief, it is advisable to use the non-informative prior along with the data for
making inference. Sir Harold Jeffrey(1946,1961) defined an invariant non-informative prior distribution with respect to
transformation of the parameters, as proportional to the square root of the determinant Fishers’ Information matrix of the

parameters. That is 7(0) o< 1/|1(0)], where 1(0) is the Fisher information for 6 [16].

The Fisher information matrix derived by Elsalloukh [17] for each parameters of ESEP distribution is presented as follows:

(=1 (1-5) 0 —ae —1
262(I"(143)) V2o (I (1+4)) V2o(I'(1+a)
0 & 0 E_y(1+1
I(G,G,S,(X) = —OE (62 1+ 2 E) Ot) s
V2e(C(1+1)) e2-1
= I APt y(ltg)+Qat )y (I4+5)+K
V26(I(14a) %_W(l +E) 0 ad

where K = y(1+ é)z +2a? and y(x) is a digamma function given by y/(x) = ?/((;)).

From the Fisher information matrix, the corresponding non-informative prior distribution of the parameters is given by

7(0) o 1, 7(0) o = w(e) o< () ”/2(1 )2, m(er) < ©)

II) The informative priors

In situations where we know the prior distribution of the parameter of our interest, it is good to use the informative prior
distribution for making inference. Here, we choose the informative prior distribution for each parameter in such a way
that the posterior distribution is conjugate to the prior distribution. Thus, the informative priors that we use for Bayesian
analysis of ESEP distribution are given as follows:

(0) < N(a,b),n(c) < G(a,B), m(€) o< Beta(a, B), m(a) < G(a, B), (10)

where G denotes a gamma distribution. There are different methods of choosing the value of the hyper-parameter. We
choose the value of the hyper-parameter that assures the behavior of the posteriors.
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3.2 The Full Conditional Distribution of the Parameters and Unobserved Variables

Generally from (8), we develop the full distribution of each parameter by eliminating all the terms that are independent of
individual parameters as follows:

oThe full conditional distribution of 8 given the other variables, can be obtained from (8) by eliminating all the terms
that are independent of 0, that is

k() o< 7(6)I[6,6], (1)
where § = Max{ maxy,,~0 {Xi —V2(1— E)Gui/a},maxu]po {X,} }

and 6 = Min{ miny,,~o {Xi +V2(1+ E)Gué/a},minuzpo {Xi} }

oThe full conditional distribution of € given the other variables, can be obtained from (8) by eliminating all the terms
that are independent of &, that is
k(e) < m(e)I[g, €], (12)

where € = Max{ — 1,max,,~o { \g’(;)](i;a _ 1}}
i

— . X,'*G
and € = Mzn{ max,, >0 {1 - éau}i;a, 1}}

oThe full conditional distribution of ¢ given the other variables, can be obtained from (8) by eliminating all the terms
that are independent of sigma

o> {M} and o > {M }, then we take the maximum of these two as o thatis o = Max (o >
V2ul (1-¢) V2ul (1+¢)

{("179’ } c> {M }) , then the full distribution of sigma is
V2ul (1—¢) V2uf (1+€)

k(o) o< n(o)%l{o >0}, (13)

oThe full conditional distribution of o given the other variables, can be obtained from (8) by eliminating all the terms
that are independent of «, that is

m(a)
7(F(1+é))”l[a<g]’ (14)

1

(Xi—0) < “251' 1,

cv2(1—¢)

(0-X)

1
o
S Ui 53 (4e)

where o ={ a :

eFinally the joint full conditional distribution of Uj; and Us; can be obtained from (8) by eliminating all the terms that
are independent of Uy; and Uy;, that is

kUi, Uz) &< Exp(=Uni)l {U” ” [%]a]

+Exp(~Uy)l [sz > {%} “} '

When the priors of the posterior distribution of ESEP parameters are replaced by (9), non-informative prior
distributions, (11), (12), and (13) become a standard uniform distribution and similarly when the priors of the posterior
distribution of ESEP parameters are replaced by (10), informative prior distributions, (11), (12), and (13) become a
truncated normal, truncated beta, and truncated gamma. Since the full conditional distributions of (11), (12), and (13)
are standard known distributions, we can generate data from them. However, the full conditional distribution of (14) is
not standard, so we generate data from it using the Metropolis-Hasting algorithm.

5)
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4 Numerical Studies

In this section, we present a simulation study in order to show the performance of ESEP distribution and its Bayesian
analysis. We perform all our code and program on R version 3.4.3 and we use different R packages for carrying out our
tasks. In Bayesian analysis, using uniform scale mixture, we generate data sets from ESEP with the parameter values
0=1,0=2,e6=0.7,,xa =1, and sample size n = 400. Then using the Gibbs sampler and MH algorithm (MCMC
technique), a total of 100,000 iterations were generated from the posterior distribution of the parameters and a burn-in of
20,000 is considered for the two types of prior distributions.

Non-informative priors are given by 71(8) < 1, 7(0) < 1, 7(€) < (M) ~'2(1=n)"12 n(a) o L and informative priors
are given by 7(0) o< N(1,15),(0) o< G(170,150),m(g) o< Beta(7,3),and w(at) < G(2,3).

4.1 Convergence

After we simulated observations from ESEP distribution, we checked for the convergence of the MCMC chain using
different initial values and chains converged to the stationary distribution. Before that we performed all the necessary
procedures for getting the summary statistics and the convergence test. We used the coda and BOA packages in R for
analysis and convergence diagnosis.

The summary statistics and the convergence diagnostics for both informative and non-informative priors are depicted
below:

SUMMARY STATISTICS:

The summary statistics that we obtain from the posterior sample of the parameters for both informative and
non-informative prior are depicted in Tables 1 and 2. The estimates are close to true values and their posterior standard
deviations are small. As the batch ACF is small for all parameters, the autocorrelation between them is small. There are
many ways to asses convergence visually and numerically. Here we are going to discuss some of the diagnostics for
convergence.

Table 1: The True Value and the Estimate Posterior Mean of the Parameters for Informative Prior.

Informative Prior
Parameters|True| Mean | SD | Naive SE | MC Error | Batch SE |Batch ACF

0 1 | 1.0146 [0.0119| 3.779e-05 | 1.046e-04 | 9.779e-04 | 0.0291
2 11.99618 | 0.0061 | 1.9498e-05 | 3.701e-05 |3.778%-05| 0.02993
0.7 | 0.6972 |0.0229 | 7.267e-05 | 8.6838e-04 | 4.5636e-04 | 0.6172
1 1.2011 |0.2936 | 9.2864e-04 | 8.576e-04 | 9.449e-04 | 0.0352

ISERCERS)

Table 2: The True Value and the Estimate Posterior Mean of the Parameters for Non-Informative Prior.

Non-Informative Prior
Parameters|True| Mean | SD |Naive SE | MC Error | Batch SE | Batch ACF

0 1 0.9846 |0.01475 | 4.666e-057 | 1.264e-04 | 1.1861e-04 | 0.0553
2 12.2356 8| 0.0068 |2.1396e-05| 5.263e-05 | 4.234e-05 | 0.00273

0.7 | 0.7092 | 0.0253 |8.0229¢-05 | 9.0733e-04 | 4.876e-04 0.5507
1 1.1986 | 0.2918 [9.2277e-04 | 8.248e-04 | 9.049e-04 | 0.03922

RI™|Q

TRACE PLOT
Another way of checking for convergence is using a trace plot. As we can see in Figure 3 and Figure 4, the chain is
exploring the distribution by traversing to areas where its density is very low and the distribution of points is not
changing as the chain progresses. This indicates that our chain mixes good for each parameter in both informative and
non-informative priors. However, performing trace plot only does not guarantee that the chain is converged to the
stationary. So, we provide another method of assessing convergence that is Gelman and Rubin diagnostic below.
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Fig. 3: Trace Plot of Each of the Parameters for Informative Prior.
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Fig. 4: Trace Plot of Each of the Parameters for Non-Informative Prior.

The most commonly used for assessing convergence is the Gelman and Rubin diagnostic. According to Gelman [18], if
the potential reduction factor (R) for the estimands are near one (especially R <1.1 or <1.2 ), there is potential
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convergence of the MCMC chain. For informative prior, the R for 0, o, €, and o is 1.0003, 0.9999923 ,1.00022, and
0.999999 respectively and for non-informative prior, the R for 8, o, €, and o is 1.0000102 1.0100390 1.0006988

0.9999916 respectively. In both case R is less than 1.1. Moreover we can see visually how the R changes through the
iteration for both informative and non-informative in Figure 5 and Figure 6, respectively. These plots show us the chain
reduction is stable over time.

Gelman & Rubin Shrink Factors
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Fig. 5: Gelman and Rubin of Each of the Parameters for Informative Prior.

Brooks and Gelman [19] show graphically how the convergence of the chains are attained. They plot the Potential scale
reduction factor R.(k) against the number of iterations (K) and also they introduce another important diagnostic by

plotting the two scale factor V2 (K) and w2 (K) as a function of the number of iterations K together on the same plot.
Approximate convergence is not obtained until both lines are stabilized. Once the lines are stabilized at the same value,
we say that the Markov chains are converged. For informative prior distribution, as we can see in Figure 5, the plot of the
shrink factor against of the number of iterations for each parameter of our interest. This indicates that the convergence of
the chains are attained after 10,000 iterations for the &, ¢, 8 and for € after 20,000. Similarly, for non-informative prior
distribution, as we can see in Figure 6 the approximate convergence of the Markov chains are obtained after around
5,000 iterations for &, 6, and o respectively. Whereas for ¢ after 40,000 iterations.
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Fig. 6: Gelman and Rubin of Each of the Parameters for Non-Informative Prior.

4.2 Model Comparison

Here, we show the flexibility and the model strength of ESEP distribution for fitting data sets. The comparison technique
used for comparing the ESEP distribution with other skewed distributions in literature is the Deviance Information
Criterion (DIC).

The real data is taken from a data set collected at the Australian Institute of Sport [20]. From the several variables
recorded on the 202 athletes, we use the height of 100 females for comparison purposes as other researchers used.
Naranjo [10] used these data sets for comparing the skew exponential power distribution (SEP) with others. Table 3
presents the DICs, the posterior mean of Deviance D and the effective number of parameters pD of some distributions
fitted to the data. From the table we observe that the DIC for ESEP distribution is small comparing to the other
distribution. So, the model with small DIC value is a best model fit. As a result the ESEP distribution performs better
than the other distributions. The reason can be, ESEP can be adjusted very easily to symmetric and asymmetric
distribution by varying the value of skewness and shape parameters. Figure 2.5 shows the histograms and the predictive
density of the estimated distribution of ESEP.

Table 3: Estimated DICs for Different Models.
The DIC of Skewed distribution

| Model | DIC D | pD ||
Skew Normal | 706.894 | 703.740 | 3.154
Skew t (vr.v) | 704.673 | 701.568 | 3.105
Skew Laplace | 705.698 | 701.735 | 3.962

SEP 704.340 | 700.152 | 4.187
|| ESEP | 703.890 | 699.970 | 3.92 |||
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Fig. 7: Histograms and Predictive Density of ESEP

5 Conclusion

The Epsilon Skew Exponential Power distribution has been analyzed from Bayesian perspective view. The ESEP
distribution encompasses the normal, skew normal, Laplace, and skew Laplace distributions as a particular case. By the
technique of scale mixture of uniform, Gibbs sampling and Metropolis-Hasting algorithm, Bayesian analysis and
inference are performed. The ESEP distribution can provide a flexible fit to both symmetric and asymmetric data because
the skewness parameter and the shape parameter can be adjusted to fit to both symmetric and asymmetric data by varying
their values simultaneously. Therefore, we can use ESEP distribution for fitting symmetric and asymmetric data.

Acknowledgement

The authors are grateful to the anonymous referee for a careful checking of the details and for helpful comments that
improved this paper.

Contflicts of Interest

The authors declare that there is no conflict of interest regarding the publication of this article

References

[1] Elsalloukh, H., Guardiola, J. H., & Young, M. (2005). The epsilon-skew exponential power distribution family. Far East Journal of
Theoretical Statistics, 17(1), 97.

[2] Lane, D. (2003). Online statistics education: A multimedia course of study (pp. 1317-1320). Association for the Advancement of
Computing in Education (AACE).

© 2020 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

M. Weldensea, H. Elsalloukh: Bayesian analysis of the Epsilon skew exponential...

[3] Easterling, R. G. (1978). Exponential responses with double exponential measurement error-A model for steam generator inspection.
In Proceedings of the DOE Statistical Symposium, US Department of Energy (pp. 90-110).

[4] Hsu, D. A. (1979). Long-tailed distributions for position errors in navigation. Journal of the Royal Statistical Society: Series C
(Applied Statistics), 28(1), 62-72.

[5] Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian journal of statistics, 171-178.

[6] Mudholkar, G. S., & Hutson, A. D. (2000). The epsilon—skew—normal distribution for analyzing near-normal data. Journal of
Statistical Planning and Inference, 83(2), 291-309.

[7] Boris Choy, S. T., & Chan, J. S. (2008). Scale mixtures distributions in statistical modelling. Australian & New Zealand Journal of
Statistics, 50(2), 135-146.

[8] Besag, J., & Green, P. J. (1993). Spatial statistics and Bayesian computation. Journal of the Royal Statistical Society: Series B
(Methodological), 55(1), 25-37.

[9] Damlen, P., Wakefield, J., & Walker, S. (1999). Gibbs sampling for Bayesian non-conjugate and hierarchical models by using
auxiliary variables. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61(2), 331-344.

[10] Naranjo, L., Pérez, C. J., & Martin, J. (2012). Bayesian analysis of a skewed exponential power distribution. In Proceedings of
COMPSTAT (pp. 641-652).

[11] Naranjo, L., Pérez, C. J., & Martin, J. (2015). Bayesian analysis of some models that use the asymmetric exponential power
distribution. Statistics and Computing, 25(3), 497-514.

[12] Maleki, M., & Nematollahi, A. R. (2017). Bayesian approach to epsilon-skew-normal family. Communications in Statistics-Theory
and Methods, 46(15), 7546-7561.

[13] Smith, B. J. (2007). boa: an R package for MCMC output convergence assessment and posterior inference. Journal of Statistical
Software, 21(11), 1-37.

[14] Elsalloukh, H. (2008, August). The epsilon-skew Laplace distribution. In Proceedings of the JSM American Statistical Association
Conference, Denver, CO, USA (pp. 3-7).

[15] Zhaohui S Qin, Paul Damien, and Stephen Walker. Scale mixture models with applications to Bayesian inference. In AIP
Conference Proceedings (Vol. 690, No. 1, pp. 394-395). AIP.

[16] George EP Box and George C Tiao, Bayesian inference in statistical analysis, 40, John Wiley & Sons, (2011).

[17] Elsalloukh, H. (2004). The epsilon-skew-exponential power distribution (Doctoral dissertation, Baylor University).

[18] Gelman, A., Carlin, J. B., Stren, H. S., & Dunson, D. B. (2013). Vehtari A., and DB Rubin. Bayesian Data Analysis.

[19] Brooks, S. P., & Gelman, A. (1998). General methods for monitoring convergence of iterative simulations. Journal of computational
and graphical statistics, 7(4), 434-455.

[20] Telford, Richard D., and Ross B. Cunningham. ”Sex, sport, and body-size dependency of hematology in highly trained athletes.”
Medicine and science in sports and exercise 23.7 (1991): 788-79

Michael Weldensea is a Senior Statistician, Arkansas Department of Health, 4815 W.
Markham, Little Rock, AR 72205

Hassan Elsalloukh is a Professor of Statistics, Department of Mathematics and Statistics,
University of Arkansas at Little Rock, 2801 South University Avenue, ETAS 479, Little Rock,
Arkansas, 72204

© 2020 NSP
Natural Sciences Publishing Cor.



	Introduction
	ESEP distribution
	Bayesian Analysis of ESEP
	 Numerical Studies
	Conclusion

