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Abstract: This paper concerns the oscillation of solutions to the second order non-linear dynamic equation

(r(t)x∆ (t))∆ + p(t) f (xσ (t))g(x∆ (t)) = 0

on a time scaleT which is unbounded above. By using a generalized Riccati transformation and integral averaging technique, we
establish some new sufficient conditions which ensure that every solutionof this equation oscillates.
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1 Introduction

In this paper, we consider the second order nonlinear
dynamic equation

(r(t)x∆ (t))∆ + p(t) f (xσ (t))g(x∆ (t)) = 0, (1)

where p, r real-valued, non-negative, right-dense
continuous function on a time scaleT. It is the purpose of
this paper to give oscillation criteria for equation (1).
Throughout this paper, we will assume the following
hypotheses:
(A1) p, r ∈Crd([t0,∞),R+) such that

∫ ∞
t0

1
r(s)∆s= ∞,

(A2) g : T→ R
+ rd-continuous andg(u)≥ c> 0,

(A3) f : T → R is continuously differentiable and
satisfiesu f(u)> 0, f (u)

u ≥ k1 > 0, u 6= 0.

Much recent attention has been given to dynamic
equations on time scales, or measure chains, and we refer
the reader to the landmark paper of Hilger [12] for a
comprehensive treatment of the subject. Since then,
several authors have expounded on various aspects of this
new theory; see the survey paper by Agarwal et al. [1] and
the references cited therein. A book on the subject of time
scales by Bohner and Peterson [3] summarizes and
organizes much of the time scale calculus. In recent years
there has been much research activity concerning the
oscillation and nonoscillation of solutions of some

different equations on time scales. We refer the reader to
the papers [2, 4–6, 8, 11]. In [6], the authors consider the
second order dynamic equation

(p(t)x∆ (t))∆ +q(t)xσ (t) = 0 f or t ∈ [a,b]

and give necessary and sufficient conditions for
oscillation of all solutions on unbounded time scales.
Unfortunately, the oscillation criteria are restricted in
usage since additional assumptions have to be imposed on
the unknown solutions. In [10], the authors consider the
same equation and suppose that there exists somet0 ∈ T
such that p is bounded above on[t0,∞) ,
inf{µ(t) : t ∈ [t0,∞)} > 0 and use the Riccati equation to
prove that if

∫ ∞

t0
q(t)∆ t = ∞,

then every solution is oscillatory on[t0,∞).

In [5], the authors consider

(p(t)x∆ (t))∆ +q(t)( f oxσ ) = 0 f or t ∈ [a,b],

where p and q are positive, real-valued rd-continuous
functions.
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2 Preliminary results

Lemma 2.1.Let x(t) be a nonoscillatory solution of (1)
and (A1)-(A3) hold. Then there existT0 such that

x(t)> 0, x∆ (t)> 0, (r(t)x∆ (t))∆
< 0 f or t ≥ T0.

Proof. Suppose thatx(t) is nonoscillatory solution of (1)
and without loss of generality, assumex(t)> 0 for t ≥ T0.
Assume thatx∆ (t)< 0 for all larget. Then without loss of
generalityx∆ (t) < 0 for all t ≥ T1 ≥ T0. If x(t) > 0, then
f (xσ (t))> 0. From (1)

(r(t)x∆ (t))∆ =−p(t) f (xσ (t))g(x∆ (t))< 0,

(r(t)x∆ (t))∆
< 0. (2)

Definey(t) = r(t)x∆ (t). Soy(t) is decreasing. Assume that
there existT1 ≥ T0 with y(T1) = κ < 0. Then

r(t)x∆ (t) = y(t)≤ y(T1) = κ f or all t ≥ T1

and therefore

x∆ (t)≤
κ

r(t)
f or all t ≥ T1

Then an integration fort > T2 ≥ T1 gives

x(t)≤ x(T2)+κ
∫ t

T2

1
r(s)

∆s→−∞ as t→ ∞

which is a contradiction. Hencex∆ (t) is not negative for
all larget and thusx∆ (t)> 0 for all t ≥ T0.

3 Main results

Theorem 3.1Assume that (A1)-(A3) hold. Furthermore,
assume that there exist a positive real rd-functions
differentiable functionsz(t) such that

limsup
t→∞

∫ t

T

[

k1cz(s)p(s)−
1
4
(z∆ (t))2

z(s)

]

∆s= ∞, (3)

then every solution of (1) is oscillatory.

Proof. Suppose to the contrary thatx(t) is a
nonoscillatory solution of (1). Without loss of generality,
we may assume thatx(t) > 0 for t ≥ T1 > T0. We shall
consider only this case, the proof of the case when x(t) is
eventually negative is similar. From Lemma 2.1,
x∆ (t)> 0 for t ≥ T1 > T0. Define the functionw(t) by the
Riccati substitution

w(t) := z(t)
r(t)x∆ (t)

x(t)
, t ≥ T1. (4)

Thenw(t)> 0 satisfies

w∆ (t) =

[

z(t)
x(t)

]∆
(r(t)x∆ (t))σ +

z(t)
x(t)

(r(t)x∆ (t))∆

w∆ (t) =
z∆ (t)x(t)−z(t)x∆ (t)

x(t)xσ (t)
(r(t)x∆ (t))σ

+
z(t)
x(t)

(−p(t) f (xσ (t))g(x∆ (t))).

From Lemma 2.1,x(t)> 0, x∆ (t)> 0, (r(t)x∆ (t))∆ < 0
so

xσ (t)> x(t), (r(t)x∆ (t))σ
< r(t)x∆ (t).

We get

w∆ (t)≤ z∆ (t)
wσ (t)
zσ (t)

− z(t)
x∆ (t)(r(t)x∆ (t))σ

(xσ (t))2

−
z(t)

xσ (t)
p(t) f (xσ (t))c (5)

w∆ (t)≤ − k1cz(t)p(t)+z∆ (t)
wσ (t)
zσ (t)

− z(t)
x∆ (t)(wσ (t))2

(zσ (t))2(r(t)(x∆ (t)))σ )
(6)

≤−k1cz(t)p(t)+z∆ (t)
wσ (t)
zσ (t)

−z(t)
(wσ (t))2

(zσ (t))2rσ (t)
(7)

w∆ (t)≤−k1cz(t)p(t)+
1
4

rσ (t)(z∆ (t))2

z(t)
−

[
√

z(t)
rσ (t)

wσ (t)
zσ (t)

−
1
2

√

rσ (t)
z(t)

z∆ (t)

]2

,

then

w∆ (t)≤−k1cz(t)p(t)+
1
4

rσ (t)(z∆ (t))2

z(t)
. (8)

Integrating (8) fromT ≥ T1 to t

w(t)−w(T)≤−
∫ t

T

[

k1cz(t)p(t)−
1
4

rσ (t)(z∆ (t))2

z(t)

]

∆s,

∫ t
T

[

k1cz(t)p(t)− 1
4

rσ (t)(z∆ (t))2

z(t)

]

∆s≤ w(T)−w(t)< w(T).

Taking the limsup of both sides of above inequality as
t → ∞, we obtain a contradiction to condition (3). The
proof is complete.�

Corollary 3.2. Assume that (A1)-(A3) hold. If

limsup
t→∞

∫ t

T
k1cp(s)∆s= ∞, (9)

then every solution (1) is oscillatory.

Example 3.3.Consider the dynamic equation

(tx∆ (t))∆ + 1
µ(t)x

σ (t)(1+(xσ (t))2)(1+(x∆ (t))2) = 0, t ∈ T.

where
r(t) = t, p(t) = 1

µ(t) , f (xσ (t)) = xσ (t)(1+(xσ (t))2),

g(x∆ (t)) = 1+(x∆ (t))2.
If we take :
i)T= Z⇒ σ(t) = t ⇒ µ(t) = 1⇒ p(t) = 1,
ii) T = {2N : n ∈ Z} ∪ {0} ⇒ σ(t) = 2t ⇒ µ(t) = t ⇒
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p(t) = 1
t ,

all conditions of Corollary 3.2 are satisfied. Hence it is
oscillatory.

Corollary 3.4. Assume that (A1)-(A3) hold. If there is
λ ≥ 1 such that

limsup
t→∞

∫ t

T

[

k1csλ p(s)−
1
4

rσ (t)((sλ )∆ )2

sλ

]

∆s= ∞, (10)

then every solution (1) is oscillatory.

Now, let us introduce the class of functionsR which
will be extensively used in the sequel. Let
D0 ≡ {(t,s) ∈ T

2 : t > s ≥ t0} and
D≡ {(t,s) ∈ T

2 : t ≥ s≥ t0}. The functionH ∈Crd(D,R)
is said belong to the classR if

(i)H(t, t) = 0, t ≥ t0, H(t,s)> 0, onD0,

(ii) H has a continuous∆ -partial derivativeH∆
s (t,s) onD0

with respect to the second variable. (H is rd-continuous
function if H is rd-continuous function in t and s.)

Theorem 3.6.Assume that (A1)-(A3) hold. Let z(t) be a
positive differentiable function and letH : D → R be an
rd-continuous function such that H belongs to the classR

and satisfies

limsupt→∞
1

H(t,T)

∫ t
T

[

k1cH(t,s)z(s)p(s)− 1
4C(t,s)

]

∆s=∞,

(11)
where

C(t,s) = rσ (s)(zσ (s)B(t,s))2
,

B(t,s) = H∆
s (t,s)+H(t,s)

z∆ (s)
zσ (s)

.

Then every solution of (1) is oscillatory.

Proof. Suppose to the contrary thatx(t) is a
nonoscillatory solution of (1). Without loss of generality,
we may assume thatx(t) > 0 for t ≥ T1 > T0. We shall
consider only this case, the proof of the case whenx(t) is
eventually negative is similar. From Lemma 2.1 and (7),
x∆ (t)> 0 for t ≥ T1 > T0, it follows that

w∆ (t)≤−k1cz(t)p(t) + z∆ (t)
wσ (t)
zσ (t)

− z(t)
(wσ (t))2

(zσ (t))2rσ (t)
. (12)

We multiply both sides byH(t,s) to get

H(t,s)w∆ (t)≤ − k1cH(t,s)z(t)p(t)+H(t,s)z∆ (t)
wσ (t)
zσ (t)

− H(t,s)z(t)
(wσ (t))2

(zσ (t))2rσ (t)
. (13)

Using the integration by parts formula, we have

∫ t

T
k1cH(t,s)z(s)p(s)∆s≤−H(t, t)w(t)+ H(t,T)w(T)

+
∫ t

T
H∆

s (t,s)wσ (s)∆s

+
∫ t

T
H(t,s)z∆ (s)

wσ (s)
zσ (s)

∆s

−
∫ t

T
H(t,s)z(s)

((wσ (s))2

(zσ (s))2rσ (s)
∆s

from H(t, t) = 0, we obtain

∫ t

T
k1cH(t,s)z(s)p(s)∆s≤ H(t,T)w(T)

+
∫ t

T

[

H∆
s (t,s)+H(t,s)

z∆ (s)
zσ (s)

]

wσ (s)∆s

−
∫ t

T
H(t,s)z(s)

((wσ (s))2

(zσ (s))2rσ (s)
∆s,

∫ t

T
k1cH(t,s)z(s)p(s)∆s≤ H(t,T)w(T)+

∫ t

T
B(t,s)wσ (s)∆s

−
∫ t

T
H(t,s)z(s)

((wσ (s))2

(zσ (s))2rσ (s)
∆s.

Therefore, by completing the square as in Theorem 3.1, we
obtain
∫ t
T k1cH(t,s)z(s)p(s)∆s≤ H(t,T)w(T)+

∫ t
T

1
4rσ (s)(zσ (s))2B2(t,s)∆s

−
∫ t

T

[
√

H(t,s)z(s)
rσ (s)

wσ (s)
zσ (s)

−
1
2

√

rσ (s)
H(t,s)z(s)

B(t,s)zσ (s)

]2

∆s.

Hence, we obtain
∫ t

T
k1cH(t,s)z(s)p(s)∆s≤ H(t,T)w(T)+

∫ t

T

1
4

rσ (s)(zσ (s)B(t,s))2∆s

= H(t,T)w(T)+
∫ t

T

1
4

C(t,s)∆s

where

C(t,s) = rσ (s)(zσ (s)B(t,s))2
.

Then for allt ≥ T, we have
∫ t

T

[

k1cH(t,s)z(s)p(s)−
1
4

C(t,s)

]

∆s≤ H(t,T)w(T)

and this implies that

limsupt→∞
1

H(t,T)

∫ t
T

[

k1cH(t,s)z(s)p(s)− 1
4C(t,s)

]

∆s≤ w(T)

which contradicts (11). The proof is complete.�

As consequences of Theorem 3.6 we get the following.

Corollary 3.7. Suppose that the assumptions of Theorem
3.6 hold. If

limsup
t→∞

1
H(t,T)

∫ t

T

[

k1cH(t,s)p(s)−
1
4

rσ (s)(H∆
s (t,s))2

]

∆s= ∞,

then every solution of (1) is oscillatory.
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2192 M. T. Şenel: Oscillation Theorems for Second-Order Nonlinear...

Corollary 3.8. Let the assumption (11) in Theorem 3.6 be
replaced by

limsup
t→∞

1
H(t,T)

∫ t

T
k1cH(t,s)z(s)p(s) = ∞,

limsupt→∞
1

H(t,T)

∫ t
T

[

rσ (s)(zσ (s))2

4

(

H(t,s)z∆ (s)
zσ (s) +H∆

s (t,s)
)2

]

∆s< ∞.

Then every solution of (1) is oscillatory.

Lemma 3.9.Let H(t,s) = (t −s)n , (t,s) ∈ D with n> 1,
we see thatH belongs to the classR. Hence

((t −s)n)∆ ≤−n(t −σ(s))n−1
.

Proof. We consider the following two cases:
Case 1. Ifµ(t) = 0 then

((t −s)m)∆ =−m(t −s)m−1
.

Case 2. Ifµ(t) 6= 0, then we have

((t −s)m)∆ =
1

µ(s)
[(t −σ(s))m− (t −s)m]

= −
1

σ(s)−s
[(t −s)m− (t −σ(s))m]. (14)

Using the Hardy, Littlewood and Polya inequality
xm−ym ≥ γym−1(x−y) for all x≥ y> 0 andm≥ 1,
we have

[(t −s)m− (t −σ(s))m]≥ m(t −σ(s))m−1(σ(s)−s). (15)

Then, from (14) and (15), we have

((t −s)m)∆ ≤−m(t −σ(s))m−1
.

Corollary 3.10. Assume that (A1)-(A3) hold. Letz(t) = 1
, H :D→R be rd-continuous function such that H belongs
to the classR . If

limsupt→∞
1
tn

∫ t
T

[

k1c(t −s)np(s)− rσ (s)
4 (n(t −σ(s))n−1)2

]

∆s= ∞, f or n> 1,

then equation (1) is oscillatory on[t0,∞).

4 Assume that f is differentiable .

In this section, we assume thatf ′(u) ≥ k2 for u 6= 0 and
somek2 > 0.
Theorem 4.1.Assume that (A1)-(A3) hold. Furthermore,
assume that there exists a positive real rd-continuous
functionz(t) such that

limsup
t→∞

∫ t

T

[

cz(s)p(s)−
1
4

r(s)(z∆ (t))2

k2z(s)

]

∆s= ∞, (16)

then every solution of (1) is oscillatory.

Proof. Suppose to the contrary thatx(t) is a

nonoscillatory solution of (1). Without loss of generality,
we may assume thatx(t) > 0 for t ≥ T1 > T0. We shall
consider only this case, the proof of the case when x(t) is
eventually negative is similar. From Lemma 2.1,
x∆ (t)> 0 for t ≥ T1 > T0. Define the functionw(t) by

w(t) := z(t)
r(t)x∆ (t)
f (x(t))

, t ≥ T1. (17)

Thenw(t) satisfies

w∆ (t) = (r(t)(x∆ (t)))σ
[

z(t)
f (x(t))

]∆
+

z(t)
f (x(t))

(r(t)x∆ (t))∆
. (18)

In view of (1), f (xσ )≥ f (x) and Lemma 2.1 , we have

w∆ (t)≤ z∆ (t)
(r(t)x∆ (t))σ

f (xσ (t))
− z(t)

f ∆ (x(t))(r(t)x∆ (t))σ

f 2(xσ (t))

− cz(t)p(t)
f (xσ (t))
f (xσ (t))

w∆ (t)≤−cz(t)p(t)+z∆ (t)wσ (t)
zσ (t) −

z(t)
(zσ (t))2

f ∆ (x(t))(wσ (t))2

(r(t)x∆ (t))σ .

Using chain rule [4]

f ∆ (x(t)) = f ′(x(τ))x∆ (t)≥ k2x∆ (t), τ ∈ [t,σ(t)].

We have

w∆ (t) ≤ −cz(t)p(t)+z∆ (t)
wσ (t)
zσ (t)

−
z(t)

(zσ (t))2
k2x∆ (t)(wσ (t))2

r(t)x∆ (t)

≤−cz(t)p(t)+z∆ (t)
wσ (t)
zσ (t)

−
z(t)

(zσ (t))2
k2(wσ (t))2

r(t)
(19)

≤−cz(t)p(t)+ 1
4

r(t)(z∆ (t))2

k2z(t) −
[
√

k2z(t)
r(t)

wσ (t)
zσ (t) −

1
2

√

r(t)
k2z(t)z

∆ (t)
]2

,

then

w∆ (t)≤−cz(t)p(t)+
1
4

r(t)(z∆ (t))2

k2z(t)
.

We proceed as in the proof of Theorem 3.1 and we obtain
a contradiction.

Corollary 4.2. Assume that (A1)-(A3) hold. If

limsup
t→∞

∫ t

T

[

csλ p(s)−
r(t)((sλ )∆ )2

4k2r(s)

]

∆s= ∞, λ ≥ 1,

then every solution of (1) is oscillatory.
Different choices of z(t) lead to different corollaries of the
above theorem.

Theorem 4.3.Assume that (A1)-(A3) hold. Let z(t) be a
positive differentiable function and letH : D → R be an
rd-continuous function such that H belongs to the classR

and

limsupt→∞
1

H(t,T)

∫ t
T

[

cH(t,s)z(s)p(s)− r(s)
4k2z(s)H(t,s)E

2(t,s)
]

∆s= ∞,

where

E(t,s) = H(t,s)z∆ (t)+zσ (t)H∆
s (t,s).
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Then every solution of (1) is oscillatory.

Proof. The proof is similar to that of Theorem 3.6 and
hence is omitted.�

As an immediate consequence of Theorem 4.3 using
z(t) = 1, H(t,s) = (t − s)m and m= n− 1 , we get the
following two results.

Corollary 4.4. Assume that (A1)-(A3) hold. The
condition in Theorem 4.3 is replaced by

limsup
t→∞

1
H(t,T)

∫ t

T
cH(t,s)z(s)p(s)∆s= ∞

and

limsupt→∞
1

H(t,T)

∫ t
T

r(s)(H∆
s (t,s)zσ (s)+H(t,s)z∆ (s))2

k2H(t,s)z(s) ∆s< ∞,

then every solution of (1) is oscillatory on[t0,∞).

Corollary 4.5. Assume that (A1)-(A3) hold. If forn> 2

limsup
t→∞

1
tn−1

∫ t

T
c(t −s)n−1p(s)∆s= ∞

and

limsupt→∞
1

tn−1

∫ t
T

r(s)((n−1)(t−σ(s))n−2)2

4k2(t−s)n−1 ∆s< ∞, t ≥ s≥ T,

then every solution of (1) is oscillatory on[T,∞).
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