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Abstract: This paper concerns the oscillation of solutions to the second order rear-tiynamic equation
(r()x* ()% + p(t) F (1) gx* (t) = 0

on a time scalél' which is unbounded above. By using a generalized Riccati transformatid integral averaging technique, we
establish some new sufficient conditions which ensure that every sobfttbis equation oscillates.
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1 Introduction different equations on time scales. We refer the reader to
the papersZ, 46,8, 11]. In [6], the authors consider the

In this paper, we consider the second order nonlineasecond order dynamic equation

dynamic equation

(rx* () +pt) f (x° (1))g(x () = 0, (1)

where p, r real-valued, non-negative, right-dense and give necessary and sufficient conditions for
continuous function on a time scale It is the purpose of  oscillation of all solutions on unbounded time scales.

(p()X2(1))2 +q(t)x°(t) =0 fort € [a,b|

this paper to give oscillation criteria for equation (1).  unfortunately, the oscillation criteria are restricted in
Throughout this paper, we will assume the following ysage since additional assumptions have to be imposed on
hypotheses: o 1 the unknown solutions. In1p], the authors consider the
(A1) p,r € Cy([to, ), R™) such that; " 77545 = oo, same equation and suppose that there exists $9ma

(A2) g: T — R* rd-continuous and(u) > ¢ > 0, such that p is bounded above orto,»)

(A3) f : T — R is continuously differentiable and inf{u(t):t € [to,)} > 0 and use the Riccati equation to
satisfieuf(u) > 0, 12 >k, >0, u#0. prove that if

Much recent attention has been given to dynamic /to q(t)At = o,

equations on time scales, or measure chains, and we refer

the reader to the landmark paper of I_—|i|gaj2][_for & then every solution is oscillatory dtp, ).
comprehensive treatment of the subject. Since then,
several authors have expounded on various aspects of this
new theory; see the survey paper by Agarwal etidlaphd

the references cited therein. A book on the subject of time 2
scales by Bohner and Petersof] [summarizes and (PH)X*(1)* +4q(t)(fox”) =0 for t € [a,b,
organizes much of the time scale calculus. In recent years

there has been much research activity concerning thevhere p and q are positive, real-valued rd-continuous
oscillation and nonoscillation of solutions of some functions.

In [5], the authors consider
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2 Preliminary results wWA(t) = XX 1) (r(t)x4(t)°
Lemma 2.1.Let x(t) be a nonoscillatory solution of (1) Z(t) o
and (A1)-(A3) holt(d.)Then there exidp such that + @(—p(t)f(x ()90 (1)))-
X(t) >0, x2(t) >0, (rt)x*(t)) <0fort>To. From Lemma 2.1x(t) > 0, x2(t) >0, (r(t)x2(t))2 <0
Proof. Suppose thax(t) is nonoscillatory solution of (1) S0 X (t) > X(t), (r(t)xA(t))a < r(t)XA(t).

and without loss of generality, assum@) > 0 fort > To.
Assume thax? (t) < 0 for all larget. Then without loss of ~ We get

lityx? (t) < O for allt > Ty > To. If x(t) > 0, th o
o) Lo pram@ T g Wy RO
(r®X* () = —p®) F(x° ()g(x* (t)) <O, zt) o
T p(t) f(x°(t))c ®)
(re*(t))* <o. 2 W
Definey(t) =r(t)x2(t). Soy(t) is decreasing. Assume that w2 (t) < — kicz(t)p(t) + 2 (t) 5 ®
there exisfl; > To with y(T1) = k < 0. Then (1)
- XA (1) (W (1)) 6
ri)x2(t) =y(t) <y(Ty) =« forall t>T; Z( )(zo(t))z(r(t)(xﬂ(t)))o’) (6)
and therefore
w(t) (WA (1))
XA (1) < % forall t>T < ~kaeZ)p®) + 20 565 ~ 1) opyzra )
Then an integration far> T, > T; gives wA(t) < —klcz(t>p(t)+211r <t)z((ztd>(t)>z { %%_% r:ét)) )T
X(t) <x(Tz) + kK /T‘t %AS% —0 as t— o then
72 o 2
which is a contradiction. Henoé (t) is not negative for W"(t) < —kiczt)p(t) + %r (t)Z((ztA) ) (8)
all larget and thus<® (t) > O for allt > To.
Integrating (8) froml > Ty tot
3 Main results wit) () <~ [ aczpt - 37O s

Theorem 3.1Assume that (A1)-(A3) hold. Furthermore,

1roM) )2 _
assume that there exist a positive real rd- functlonsT kacZt)p(t) — 2 }ASSW(T) wW(t) < w(T).

Z(t)

differentiable functions(t) such that Taking the limsup of both sides of above inequality as
t 1(A(t))2 t — o, we obtain a contradiction to condition (3). The
limsup [ [kicz(s)p(s)— = As=o, (3)  proofis completel]
tow JT 4 Z(s)

then every solution of (1) is oscillatory. Corollary 3.2. Assume that (A1)-(A3) hold. If

Proof. Suppose to the contrary thak(t) is a limsup klcp( S)As= o, 9)
nonoscillatory solution of (1). Without loss of generality e

we may assume thadt) > 0 fort > Ty > To. We shall  inen every solution (1) is oscillatory.

consider only this case, the proof of the case when x(t) is

eventually negative is similar. From Lemma 2.1, Example 3.3.Consider the dynamic equation
XA(t) > 0 fort > T; > To. Define the functiom(t) by the

Riccati substitution (A ()2 + G (O (L+(x7 (1)) (1+ (A (1)) =0, t € T.
wit) = 20O o @)  where
X(t) () =t, pl) = iy, F0C0) =X OL+6C D)),
Thenw(t) > O satisfies g(xA(t)) = 1+ (X4(1))
4 (t) ")f%vetgke () =t=n(t)=1=p(t) =1
t o . Zt NT=Z=o0t)=t= =1= =1,
0=|2] coor eocwr  NrERT T J‘{O} B SN
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pt) = %, Using the integration by parts formula, we have

all conditions of Corollary 3.2 are satisfied. Hence it is 1

oscillatory. / kiCH(t,9)z(s)p(s)As < —H (t, t)w(t)+ H(t, T)w(T)
T

Corollary 3.4. Assume that (A1)-(A3) hold. If there is
A > 1 such that

limsup

t—o0

OO o 10

' [klcsl\ p(s) — )

T

then every solution (1) is oscillatory.

Now, let us introduce the class of functioRswhich

will be extensively used in the sequel. Let
Do = {(t,s) € T> : t > s > t,} and
D= {(t,s) € T?:t > s>to}. The functionH € Cq (D, R)

is said belong to the clas$s if

(H(t,1)

(i) H has a continuoud -partial derivativeH2 (t,s) onDg
with respect to the second variable. (H is rd-continuou
function if H is rd-continuous function in t and s.)

=0, t>tg, H(t,s) > 0, onDy,

Theorem 3.6.Assume that (A1)-(A3) hold. Let z(t) be a
positive differentiable function and lé1 : D — R be an
rd-continuous function such that H belongs to the cfdss
and satisfies

iMSUR e T )f [kicH(t,s)z(s)p(s) — 3C(t,s)] As= oo,
(11)
where
C(t,s) =r(9)(Z°(9B(t,9))?,
2(9)
Y.
B(t,s) = H (t,s)+H(t,s)Za(S).
Then every solution of (1) is oscillatory.
Proof. Suppose to the contrary thak(t) is a

nonoscillatory solution of (1). Without loss of generality
we may assume thadt) > 0 fort > T; > Tp. We shall
consider only this case, the proof of the case wkighis

eventually negative is similar. From Lemma 2.1 and (7),

X2(t) > 0fort > Ty > To, it follows that

WA < —kaczt)p(t) + 2% Y

(1)
(W (t))?
- Z(UW. (12)
We multiply both sides by (t,s) to get
H(t, 9w (t) < — kicH(t,9)z(t) p(t) +H(t,s)zA(t)VZV§(tt))
(WO (1))?
— H(t,9)z(t) @020 (13)

t
+ / HA (t, 9w (s)As

[Heored

0]
- /T H(t,s)z(s)mAs

+ As

(W(s))?

fromH(t,t) =

/kchts

0, we obtain
s)As<

+ / [Hﬂ(t S) +H(t,8) ==

/Hts

/T kaCH(t,92(9)p(9)As < H(t, T)w(T)+

(( (9)?

/H(ts 5)7( ())Zra(s)As

STherefore, by completing the square asin Theorem 3.1, we

obtain

JrkacH(t,92(9)p(9)As < H(t, T)W(T) + f1 3r7(8)(2°(9))*B(t, s)As

t H(t,s)z(s) wo(s) 1 ro(s)
_/T { o9 (9 2\ At ezxg S YT (O] 4s
Hence, we obtain
/kchts S)As<  H(t,T)wi +/7r )B(t,s))?As

H(t, T)w(T +/T ZlC(t,s s
where
C(t,s) =r°(s)(Z(9B(t,9))*.
Then for allt > T, we have
t
/ {kch(t,s)z(s)p(s) - AllC(t,s)} As < H(t, T)w(T)
-
and this implies that
J1 [kacH(t,9)z(s)p(s) —

which contradicts (11). The proof is complétke.
As consequences of Theorem 3.6 we get the following.

limsupg_,e 2C(t,s)] As<w(T)

1
H(t,T)

Corollary 3.7. Suppose that the assumptions of Theorem
3.6 hold. If

IimsupH(tlT)/ [kch(t s)p(s )—%r”(s)(HSA(t,s))z As=w,

t—o0

then every solution of (1) is oscillatory.
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Corollary 3.8. Let the assumption (11) in Theorem 3.6 be nonoscillatory solution of (1). Without loss of generality

replaced by

lim SUpH(tlT) /Tt kicH(t,s)z(s)p(s) = oo,

t—o0

2
tz?( )<S) +HA(, s)) }As< o,

iMSUR o priry 7 [rg<s)(f( o (H

Then every solution of (1) is oscillatory.

Lemma 3.9.LetH(t,s) = (t—9)", (t,s) € D with n > 1,
we see thaH belongs to the clasB. Hence

(t=9"* < —n(t—o(s)" "

Proof. We consider the following two cases:

Case 1. Ifu(t) = 0 then
(t—9™M? = —m(t—g)™ L,
Case 2. Ifu(t) # 0, then we have

(t—9m> = %[(tfcr(s))mf (t—s

S L

59 s o). (14)

Using the Hardy, Littlewood and Polya inequality
—y" >y L(x—y)forallx>y>0andm>1,
we have

[(t=9)"—(t—0(s)™ = m(t— ()™ *(o(s) -
Then, from (14) and (15), we have
(t=9™? < —m(t—o(s)™ "

Corollary 3.10. Assume that (A1)-(A3) hold. Let(t) =

s). (15)

, H:ID — R be rd-continuous function such that H belongs WA (t) < —czt)p(t) +

to the classi . If

limsup_., & ft [klc(tfs)”p(s)f C19) (n(t— a(s)™ )2} As=w, forn>1,

then equation (1) is oscillatory dty, ).

4 Assumethatf is differentiable.

In this section, we assume th&f(u) > k, for u# 0 and
someky > 0.

Theorem 4.1.Assume that (A1)-(A3) hold. Furthermore,

we may assume thaqt) > 0 fort > T > To. We shall
consider only this case, the proof of the case when x(t) is
eventually negative is similar. From Lemma 2.1,
x4(t) > 0 fort > T; > To. Define the functionv(t) by

A
w(t) :=z(t) rit())zt)(;)

Thenw(t) satisfies

A>T

17)

o 2t) At)
o= ] o
f(x) and Lemma 2.1 , we have
fA(X()(rt)xA (1))
. <x<f>2>(<xr§ ); (t)

007 |4 (rOAW)°. (19)
>

In view of (1), f(x9)
(

(r(t)XA )

wWA(t) < —ct) ()+2“()
Using chain rule 4]
fA(x(t)) = ' (x(1)¥4 (1) > kX2 (1), T € [t, 0(1)].

We have

W)z k@ Ome)

WA < PO 205 R e

W) ) k(D)2
< P +2 0 50 ~ Zor - 10 (19)
< —cap() + §YGLE - [ [BITLG 4 [T,
then

1r()(2(1)?

4 koz(t) '

We proceed as in the proof of Theorem 3.1 and we obtain
a contradiction.

Corollary 4.2. Assume that (A1)-(A3) hold. If

{cs’\p() r(sH?? As=o, A >1,

limsup Hor(9)

t—oo

then every solution of (1) is oscillatory.
Different choices of z(t) lead to different corollaries bét
above theorem.

assume that there exists a positive real rd-continuou§heorem 4.3.Assume that (A1)-(A3) hold. Let z(t) be a

functionz(t) such that

limsup ! |:CZ(s)p(5) _ %w

t—o JT

koz(s) |25

then every solution of (1) is oscillatory.

(16)

Proof. Suppose to the contrary thak(t) is a

positive differentiable function and Iét1 : D — R be an
rd-continuous function such that H belongs to the cfass
and

iMSUR o ity i [CHL92SP(S) ~ gzomeg EALS) | As=e

where

E(t,s) = H(t,9Z (1) + Z (t)HE(t,9).
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Then every solution of (1) is oscillatory.

Proof. The proof is similar to that of Theorem 3.6 and
hence is omitted.]

As an immediate consequence of Theorem 4.3 usin

Z(t) =1, H(t,s) = (t—s)™
following two results.

andm=n-—1, we get the

Corollary 4.4. Assume that (Al)-(A3) hold. The
condition in Theorem 4.3 is replaced by

/Tt cH(t,9)z(s)p(s)As = oo

limsup
t—o0

1
H(t,T)

and

t r(s)(H&(t,92% (s)+H(t,9)2(9))?

koH (€525 As < o,

limsup e 7 tT) It

then every solution of (1) is oscillatory dty, ).

Corollary 4.5. Assume that (A1)-(A3) hold. If fon > 2

limsup——

t
/ c(t—9)"p(s)As=
t—oo T
and

Lo As< oo, t >8> T,

limsup_,. t” i 4k2

then every solution of (1) is oscillatory di, «).
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