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Abstract: In this paper, we establish Hermite-Hadamard type inetigslfor functions whoseth derivatives ares-logarithmically
convex functions. From our results, several results fossital trapezoidal and classical midpoint inequalities @stained in terms
second derivatives that asdogarithmically convex functions as special cases. lnapplications to special means of the obtained
results are given.
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1 Introduction Many mathematicians are trying to generalize the
. o _ classical convexity in a number of ways and one of them
The classical convexity is defined as follows. is so called logarithmically convexity defined as follows.

Definition 1.A function f: | C R — R is said to be convex _ , -
if Definition 2.[26] If a function f: 1 CR — (0, ) satisfies

FAX+Q-2)y) <Af)+(1-A)f(ly) (D)

forall x, ye |l and A € [0,1]. The inequality {) holds in
reverse direction if f is a concave function.

fAx+@A-D)y) <[FOM Ty, )

for all x, ye I, A €[0,1], the function f is called

The following double inequality holds logarithmically convex on I. If the inequalitg) reverses,
the function f is called logarithmically concave on I.

b
f (a+ b) <t / f(x)dx< f(@+1(b) ) The notion of logarithmically convex functions was
b—al/a 2 generalized by Xi el al. inJg].

for convex functionf : | C R — R and is know as the o N _
Hermite-Hadamard inequality. The inequalig) polds in  Definition 3.[26] For some sc (0, 1], a positive function
reverse direction if is a concave function. f:1 CR — (0,) is said to be s-logarithmically convex

The inequality ?) has been subject of extensive On!ifand only if
research and has been refined and generalized by a

number of mathematicians for over one hundred years see fAx+(1-A)y) <[f (x)]’\S [f (y)](l‘“S
for instance I]-[8], [11-[15], [18]-[22], [24]-[27] and the
references therein. holds for all x, ye | and A € [0,1].
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It is obvious that whers = 1 in Definition 3, the

s-logarithmically convex function becomes usual

logarithmically convex

Xi et al. [26 obtained the following
Hermite-Hadamard type inequalities f®togarithmically
convex functions.

Theorem 1[26] Let f : | C [0,0) — (0,0) be a
differentiable function on, a, be 1° with a< b and
f' e L([ab]). If |f(x)|? for > 1 is s-logarithmically
convex orja,b] for some given s (0,1], then

’f(a)—bfla/abf(x)dx

_(b-a) (1>1_1/q{3<q—1>/q Lo ()]

and
- f’(a) sq/2 - f'(a) a/(2s)
M= f’(b) y M2 = f'(b) )
;o |Su2 ;o 9/(29)
(@) @)
Hs = — o5 M4 = —— >
f (b)‘Q/( S) |f (b)|qs/

Theorem 2[26] Under the conditions of Theorehy we

have
f(b)— —1 bf
‘ (b) b a/a (x)dx

< (b;a) (%)1_1/q{[Lz(u,q,a)]”q

4 2
3@-D/arn, (ut, 1/a ’ 5
+ (Lo (wab) M}, @) + [La (1 t0)] (5)
h where Iy (1,q), L2 (4,q,u), FL(v), R (v) andy; fori =1,
where 2, 3, 4 are defined as in Theorein
1(K,9) Theorem 3[26] Under the conditions of Theorerty we
! ! q/2 h
f@f b Fm), o<[t@][fop)] <1, "
b
fla+f(b) 1 f (x)dx
a/( 23 2 b—a/a
F@f O ), 1<[f0 ,f<“><b>\, oy
b—a) /1\ 4
N /2 = 2 ) <§> {12 (kq.b)0
f'@f (b Fi(us), 0<‘f ‘<1<}f , »
+[La (et a.9)] 7%, (6)
f/(a)f/(b)’q/(zs) Fl(IJ4) 0< ‘f(n)(b)‘ <1< ‘f(n)
’ - "where Ly (14,9), Lo (K, q,u), F(v), R (v) andy; fori =1,
2, 3, 4 are defined as in Theorefn
2(U,g,u) Applications to special means of positive numbers of
) Sc,/z the above results are also given 26].
f(u| Fi(m), 0< ‘f )‘ : ‘ f<”)(b)} <1, Motivated by the above definitions and the results, the
main purpose of the present paper is to establish new
. 19/(2s) - - Hermite-Hadamard type inequalities for functions whose
f (U)‘ Fi(pz), 1< ‘f a)|,|f (b)‘, nth derivatives in absolute value amelogarithmically
< convex. These results not only generalize the results from
¢ 80/2 o< | <1<t [26] but many other interesting results can be obtained for
C) Fi(ps), 0< ‘ ‘ < ‘ ‘ ’ functions whose second derivatives in absolute value are
2 s-logarithmically convex which may be better than those
, )
fu" T R, 0< 1) <1<, fom (26
my (V—1-45) v#1, 2 Main Results
Fi(v) = ,
2 v=1, First we quote some useful lemmas to prove our mains
results.
my (V=) VAL . .
Fo(v) = Lemma 1]11] Suppose f | CR — R is a function such
: v=1, that (" exists on{ forne N, n> 1. If f(" is integrable
(© 2016 NSP
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onJa,b], for a,b € | with a < b, the equality holds Lemma 6[23] For a > 0andu > 0, we have
f(a)+
2 b a/ flx / e 1u‘dt—uz —(m“) <o,
n—1 k 1
f( K (a
22 k+1 @) where
(b—a) -
= T/o " (n—20) fV(ta+ (1-t)b)dt, (7) () =a(a+1)(a+2)..(a+k—1).
where the sum above tak@svhen n=1 and n= 2. Moreover, it holds

Lemma 2[16] Suppose f | C R — R is a function such
that (" exists ont forne N, n> 1. If (" is integrable ‘

onJa,b], for a,b € | with a < b, the equality holds K=1 (@)
[In | (Ilnu|e>m '

1 [ (—1)K —a)k < .
n 1{( 1) +1} (b—a) (o (atby 1 /bf(x)dx ay/2m(m-1) \ m-1
V= 2k+1(k+ 1! 2 b—alJa

b a) We are now ready to set off our first result.
/ K f™(tat (1-t)b)dt,  (8)

h Theorem 4Let | C [0,) be an open real interval and let

where {n tefo l] f 11 — (0,») be a function such that® exists on I, a,
Ka(t) =4 12l b € | with a < b and f" is integrable ona, b] for n € N,
- q
t—1)",te (3,1]. n> 2 If ’f(”)’ is s-logarithmically convex oif, b] for

g€ [1,0), se (0,1], we have the inequality

e a/f

The following useful result will also help us
establishing our results.

Lemma 3[16] If > 0andu # 1, then

1 n—-1 k 1 K
/ tutdt Zz k+1 f( '(a)
_ (- 1)”+1n| i Z (—1)k © _(b-a"(n-1 1-1/a
(Inp)™T (n— k (Inp)<+t” = 2n \n+1
5 0
Lemma 4[16] If u>0andu # 1, then X ’f(n) (a)‘ ’fm)(b)’ [Fy (,n)]M, (12)
% sq
n,,t
/0 thudt wherep = ‘ 10T
D™t (-1
=—"——+nly - (10)  F(u,n
(In“)n+1 I(ZO 2n_k (n_ k)' (lnIJ)k+1 1(“ ) ) )
D) i inp+2] 2 n'IJZ —1)*[Inpu+2] AN
Prooflt follows from Lemma3 by making use of the —_ (i)™t '”“ =1 (n—k)t(inp)<F
substitutiort = 3.
n-1 u=1
n+1’ ’
Lemma5[16] If u>0andu # 1, then
1 and
/1 (1—t)"u'dt
2 (0,), ifo<|fM(@)],|fM(b)| <1,
! 1 .
SLLL I nul/Zz = g (11) (1-s1),if1< [T, [fM(b)],
(Inp) 02 K)! (Inp) (5.0) = - . .
(0,1), ifo<|fM(a) <1< |fMW(b)|,
Er_o?f;ltlzollows from Lemma4 by making the substitution (1—ss), f0< |fV ()| <1< |t (a).
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ProofSupposen > 2. By s-logarithmically convexity of
q
’f(”) on[a,b], Lemmal and Holder inequality, we have

b
‘ f(a);f(b) - bia/a Flodx
s (k—l)(b—a)kﬂk)(a)‘

2(k+ 1)

1-1/q
n-1
- 2n' (/t (n—2t)d )
tS
x(/ tnfl(n_z)\fm)
0

Let0<&<1<n,0<A<land0<s<1.Then

k=2

1/q
f£(m

‘Q(l—t)s gt

(13)

E° < &% andn?® < nHtis, (14)

For 0< ’f(m a)‘ , ’ f<”>(b)’ <1, from (14) and Lemma8,
we have
1 t (1-1)°
/ "1 (n-21)|f"(a) ‘ f“‘)(b)‘q dt
t 1-t
/tnln 2|1 (a )™ [1® ) at

=[rb) Sq/ "1 (n— 2t) pldt
0

Lastly for 0 < ‘f(m(b)‘ <1< ’f
Lemmas3, we get that

/Olt”*l(n—Zt) \ f"(a)

1 1
a)‘q( s>‘f(”>(b)‘sq/ "1 (n—2t) utdt
0
1-s)

q(l-

‘ from (14) and

qts
f

< ‘f(”)

(18)

=[10)["| @[ R (n).

Combining (5), (16), (17) and (8), we get the required

result. This completes the proof of the theorem.

Corollary 1.Suppose the assumptions of Theorrare
satisfied and if g= 1, we have the inequality

L2

_nzi (k— 1k+b1 a >(a)‘

<O i@ (1w B, a9)
whereu = HE#EE; s, F1(u,n) and (9, 0) are defined as in
Theoremd.

Corollary 2.Under the assumptions of Theordnif n = 2,
we have the inequalities

sq f(a)+f(b 1 P
= |0 (). (15) LB L [
2 1-1/q
wherew — | 1™@ [* L (b-9 <}>
H= 110 - 4 3
o 1< 17 [0 tom G oy oot e
Lemmas3, we have
n Sq
1 S 1-1)S (@
[tn-zy|io@)" |10 ot Wherer = ¢ | -
0
1— 1 1+ | 41—
< a)]q( ¥ o b)’q/ "1 (n—2t) uldt FERE e i #1,
q1-s) q 0 1(“72)
:‘f“‘) ‘ f(“>(b)‘ Fi(u,n). (16) 3 p=1,
and
For 0< ‘f(”)(a)’ <1< ’fm) b)’, from (14) and by _ , ,
Lemmas3, we obtain 0.9, ifO<|f(a), (b)) <1,
1-s1),if1<|f"(@)],|f"(b)],
n-1 qts 0y iy [ 3D (2,6) = ( : . ,,( ) o
/t (n-20|f @) [fp)" " d 0,1, ifo<|f"@|<1<|t'm),
_ . " < <
S‘fn /tn—l(n_Zt)IJtdt (1-ss),if0< |f'(b)| <1< |f'(a)].
0
q Remarlki-ors= 1, one can get very interesting inequalities
= ‘f(n) b)‘ F(p,n). (A7) from (12), (19 and @) for log-convex functions.
(@© 2016 NSP
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Theorem 5Let | C [0,) be an open real interval and let
f 11 — (0,») be a function such that® exists on 1, a,
b e I with a < b and f" is integrable orfa, b] for n € N,

n>2 If ’f“‘) Yis s-logarithmically convex ofe, b] for
g€ (1,0), se (0,1], we have the inequality
fa+f() 1 b
L2
n1(k—1)(b—a)
_ (k)
Z 2 @
1-1/q
(b—a)" [n(2qfl>/<qfl) —(n— 2)(2qfl>/(qfl>}
= 22-1/an|
1-1/q
q-1 ™ | L) o |© 1/q
(a=1) @l o) Femre
(21)
_ |10 [
whereu = ‘ o) |
IJEK 1 |)'1q g.:f; <oo, U 7& 17
Fz([.l,n) =
nq—lq+1’ u=1
(ng—g+1), = (nq—a+1)(nq—q+2)---(Nq—q+k)

and(9, 0) are defined as in Theore

q
ProofSince|f("| " is s-logarithmically convex offa, b] for

g€ (1,0),se (0,1], hence from Lemma and the Holder
inequality, we have

R ETAL
nzi (k— 1k+1 fk)(a)‘
< (b;f) ( /O (n—zt)q/(”dt)l_l/q

1 q \a
X (/ tq(”‘l>‘f(“>(ta+(1—t)b’ dt)
0

(b—a)" 1 24 1)/(q 1 (2g-1)/(q-1)] "2/
B e

q—l 1-1/q
E=)
1t \Ya
(/ (- |0 (@) * | (0 (b)’q( )dt> . (22)

From (14), Lemma6 and by using similar arguments as
in proving Theorend, we have the inequality2(l). This
completes the proof of the theorem.

th

Corollary 3.Suppose the assumptions of Theotgmare
satisfied and = 2. Then

b
f(a);—f(b)_bia/a f (x)dx

(b-a)® (q-1\"""
2 29—1

<

" 6 " 0 l/q
<|@[ "o Fm2t, @)
sq
(@)
whereu = 7o)|
HyE, >q+('1”>“> <o, p#1,
Fa(U,2) =
qul’ U:]-a

(q+1), = (q+1)(g+2)---(q+k) and (5,0) is as

defined in Corollan?2.

Corollary 4.Suppose the assumptions of Theotgmre
satisfied and i= 2, s= 1. Then

b
‘f(a);f(b)—bia/a Pl dx

(b—a)® (-1 )"
2 20—1

"

< (b)|[F2 (1,27, (24)
" q
wherep = ;,,EZ; ,
IJEK 1 q_l,-(;_)“) <o, U 7& 17
Fo(u,2) =
qul’ U = 17
and(q+1),=(q+1)(q+2)---(q+k).

Now we give some results related to left-side of
Hermite-Hadamard’s inequality far-times differentiable
s-logarithmically convex functions.

Theorem 6Let | C [0,) be an open real interval and let
f:1 — (0,0) be a function such that® exists on 1, a,
b e | with a < b and f" is integrable orfa, b] for n € N,

q
n>1 If ’f(”)’ is s-logarithmically convex oife, b] for
g€ [1,0), se (0,1], we have the inequality

n1|(—1*+1] (b—a)
e LB (Y
—lea/abf(x)dx

b= a)" mf(”) ‘9

- n|2(n+1) q— l/q(n_|_ 1)1 1/q

% { [Fa ()] [Fa ()9 (25)

(@© 2016 NSP
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sq

£ (a)
£ (b)

whereu = ‘

Fs(u,n)
(=™
(Inp)™

1
27 I(nT1)’

F4(u,n)

(Inp

1
2 I(n+1)’

and (9, 0) are defined as in Theoref

ProofSuppose n > 1. By using Lemma 2, the
and the Holder

s-logarithmically convexity of’f“‘)
inequality, we have

n—1 (—1)k—|—1 (b—a)k b
S (222)
—lea/:f(x)dx

—f+n' UZELOWﬁ,H#l

|
o~ Y2 S o e A D

f(a

wherep = ’ and Fs (U, n), Fa(u,n) are defined as
in Theorens, and(5, ) are defined as in Theoreh

Corollary 6.Suppose the assumptions of Theomare
fulfilled and if s= 1, we have

p=1, vt (-1 +1] b-a) <a+b>
21 (k4 1)! 2
b
_b%a/a f (x)dx
— (b—a)"|f™ (b)\

~ ni2+(a-1)/a (n 4 1)1/

AR () R, (@8)

whereu = ‘fzn)%

in Theoremn®.

and R (u,n), R4 (u,n) are defined as

Corollary 7.Suppose the assumptions of Theomare
fulfilled and if n= 1, we have

a+b 1 /P
HT)‘m/a Flodx

(b-a) f'(a)‘é f (b)’e

\ /\

23(1-1/q)

2 (1—
AR+ Fa 1]V, 9)

1 ts -5 \ /d
x (/1 (1—t)" [ @ [f® (b)‘Q( : dt)
2 ’ sq
. 1-1/q wherep f,g :
+ < / 2t”dt)
0
2+u1/2(lnu 2)
; q qa-ve \ ¢ Buy={ 2w Hrt
X (/ t" @) | (b)‘ dt) . (26) ’ L
0 8 IJ - 17
From (14), Lemma 4, Lemma 5 and the same 2u—p2(Inpu—2) 241
reasoning as in proving Theorefnwe have the required E 1) — 2(np)  H ’
inequality £5). This completes the proof of the theorem. 4 (K1) = L
g = 17
Corollary 5.Suppose the assumptions of Theo@mare 8 H
fulfilled and if g= 1, we have and
n—-1 [(—1)k+ 1:| (b— a.)k (k) a+ b (O,S), If 0 < f,(a) ’ /(b) S 17
kZO KL (k+ 1) f ( 2 ) 2.6 (1-s1),if1< |f'(@)],|f (b)],
1 b ) 01), ifo<|f'(a))<1<|f(b),
—5=5 L Tooax oo /
b—ala (1-ss),if0<|f(b)| <1< |f(a)
B 6
(b—a)" |t a)‘ ]fm) ‘ .
< Theorem 7Let | C [0,) be an open real interval and let

n!
x {Fs(H,n) +Fa(p,n)},

f 11 — (0,») be a function such that® exists on I, a,

(27)  pelwitha<band f" is integrable onfa,b] for n € N,

(@© 2016 NSP
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’ sq
n>1If ’fm)’q is s-logarithmically convex ofe,b] for ~ whereu = ;,EZ; ,
g€ (1,0), se (0,1], we have the inequality
pl/2_q - /2
_ — k — k | s H # 17 | , M 7£ 17
nzl{( 1) +1} o2 f(k><a+b> F(w)={ Fo(w) =4
k=0 2k+l(k+1)| 2 %7 “:17 %7 u:17
1P - : 1,1 _
_m/a f (x)dx (3,6) are defined as in Corollary and 5 + £ = 1.
d 0 Corollary 9.Under the assumptions of Theor&nif s=1,
n
- (b—a)" | f" (a)‘ ‘f(m (b)‘ we have the inequality
e (1 +1] -2
n—1|(=1)"+1 —a b
% R 1/q+ = 1/q ’ 30 (K) a+
{IFs ()9 + [Fe ()]} (30) P A
_ |10 [ b
- a
1/2_ 12
R () M ML, Fu(a) s H# L (b—a) f(n)(b)‘
5(U) = 6 (M) = <
3 M=l L k=1 2v/P(np+1)YPnl
1/q 1/q
(9, 0) are defined as in Theorefand % +% =1 X {[FS (R Fe (1) }’ (33)
ProofFrom Lemma2, the Holder integral inequality and Where
s-logarithmically convexity 01‘ #m| on [a,b], we have ul2_1 /2
= (u) Inp #17 E (u Inu > 7&17
5(H) = 6 (M) =
k k
n71|:(_1) +1:| (b_a) f(k) a+b %7 IJ:la %7 IJ:17
kZO 2kt (k+ 1)! 2
B @)Y gl —q
1 bf ] “_‘f(n)(b) an ﬁ—Fa— .
_b—a/a (x)dx
(b—a)" < 3 - )% 3 Applications to Special Means
< / t"Pdt
nt For positive numbera > 0,b > 0, define
1
1 3 1
3 qts q(1-t)° q 1 P a+b 2ab
x (/O ‘f‘m(a) £ (b)‘ dt) + </% (1—t)”pdt> Aab)=—-, G(a,b) = vab H(ab) = b
s 1 1/(b—a)
1 qts q(1-t) q 1(p°
(m (n 2 ;a#b,
x(/% f0@)| " |10 (o) dt) ] (31) | (ab) = L(%)
a a=bh,
Using (14) and similar arguments as in proving Theorem
4, we get 80). This completes the proof of the theorem. and
Corollary 8.Under the assumptions of Theor&nif n =1, ppri_gpr1]Y/P B
we have the inequality [(PH)(b*a)} » P7#0,~1andazb,
b b—a _
(%5 bl 1o Lp(ab) = Mo p=—tandazb
- a
NI I (a,b), p=0anda# b,
_ -3t @[ | o)
1/q 1/q It is well known thatA, G, H, L=L_;, | = Lo andL, are
: {[Fs(ll)] +[Fe (1)) }’ (32) called the arithmetic, geometric, harmonic, logarithmic,

(@© 2016 NSP
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exponential and generalized logarithmic means ofSubstituting the above quantities in Coroll&yve get the

positive numbera andb.

In what follows we will use the above means and the
established results of the previous section to obtain som

interesting inequalities involving means.

Theorem 8LetO<a<b<1,r<0,r#-1,-2,s¢€(0,1]
and gq> 1.

1.Ifr # —3, then
’A(a’*z, br+2) “[Lrz(a, b)]r+2‘

_a)? 1-1/q
<O (5) a0y

2G (arq(l—s)7 brq(l—s)) 2/4

rgs(Inb—Ina)

x [A(arqs7 brqS) L (arqs7 brqS)]l/q'

2.Ifr = -3, then
’; _ L‘
H(a,b) L(ab)
- 2 3 3gs(lna—Inb)

% [A (a—3qs7 b—3q5) L (a—3qs’ b_?’qs)} 1/q.

X2

ProoflLet f (x) = 0D

for 0<x< 1. Then| " (x)| =
X' and

in|f" (Ax+@-A)y)|

< 2%t o[+ (1-2)n | " )|

forx,ye (0,1], A €[0,1], s€ (0,1] andqg > 1. This shows
that‘ £ (x)‘ = x4 is s-logarithmically convex function on

(0,1]. Since*f" (a)‘ > ’f” (b)’ =b' > 1, hence

" gs
B f (a) _/a rqs
H=17b) _(b)
and
" " 1—
)| @™ Ry (u.2) = 2at-9pa0s

" [rqs(a’qs+ b'¥) (Ina—Inb) 4 2 (b — arqs)]
r3g3s3 (Ina— Inb)3

[ 4ar9(1-9)pra(i-s)

_r2q252(lna—lnb)2

[2G (arqu—s), brq(l—s))

- as prasy _ rgqs |rgs
rgs(Inb—Ina) [A(@, %) — L (@™, b™)].

ards 4 pas p'as _ gras
{ 2 a rqs(lnb—lna)}

required inequality.

gemarkThe other results given above may also give very
Interesting inequalities containing means and the details
are left to the interested reader.

4 Conclusion

In the manuscript, we have provided more general
Hermite-Hadamard type inequalities by using the notion
of s-logarthimic convexity of the nth derivative of
|1((n))|9, whereq > 1. In order to prove our results, we

also have evaluated the integrals of the form
1

1 2 1

Sthutdt, [t"ptdt and [(1  —  t)"utdt for

0 0 1

2
U >0, # 1and n> 1. Such integrals have not been
evaluated in previous works. The results presented in the
manuscript not only contain results proved in & al.
[24] for n =1 but also provide refinements of those
results concerning Hermite-Hadamard type inequality for
the class of s-logarthimically convex functions. We have
also given some applications of our results to special
means of positive real numbers.
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