Global exponential stability for a class of impulsive BAM neural networks with distributed delays

I. M. Stamova1, G. Tr. Stamov2 and J. O. Alzabut3,*

1Department of Mathematics, Bourgas Free University, 8000 Bourgas, Bulgaria
2Department of Mathematics, Technical University, 8800 Sliven, Bulgaria
3Department of Mathematics and Physical Sciences, Prince Sultan University, P. O. Box 66833, 11586 Riyadh, Saudi Arabia

Received: 18 Dec. 2012, Revised: 17 Jan. 2013, Accepted: 6 Feb. 2013
Published online: 1 Jul. 2013

Abstract: In this paper, the exponential stability is investigated for a class of BAM neural networks with distributed delays and nonlinear impulsive operators. By using Lyapunov functions and applying the Razumikhin technique, delay–independent sufficient conditions ensuring the global exponential stability of equilibrium points are derived. These results can easily be utilized to design and verify globally stable networks. An illustrative example is given to demonstrate the effectiveness of the obtained results.

Keywords: Impulsive BAM neural networks, Global exponential stability, Distributed delays, Lyapunov method, Razumikhin technique.

1 Introduction

Due to their wide range of applications in pattern recognition, associative memory and combinatorial optimization, bidirectional associative memory (abbreviated by BAM) neural networks and their various generalizations have attracted the attention of many mathematicians, physicists and computer scientists in the last two decades. A series of neural networks concerning BAM models have been first proposed by Kosko in [1,2,3]. These models are very general classes of neural network models. Indeed, some famous ecological systems and neural networks such as the Lotka–Volterra ecological system and the Hopfield neural networks have been under consideration.

In the design and applications of networks, it is of prime importance to ensure that the designed neural networks are stable. It should be noted that in both biological and man–made neural networks the delays occur due to the finite switching speed of the amplifiers and communication time [4]. However, time delays may lead to non–oscillation, divergence or instability which may be harmful to the system [4,5,6]. Therefore, the study of neural dynamics with the consideration of time delays has become extremely important to manufacture high quality neural networks. In the papers [7,8,9,10,11] some various stabilities have been studied for BAM neural networks with delays. The circuits diagram and the connection pattern implementation for the delayed BAM neural networks can be found in [10,11]. In reality, nevertheless, it is desirable that the neural network not only converges to an equilibrium point but also has a convergence rate which is as fast as possible. It is to be noted that the exponential stability gives a fast convergence rate to the equilibrium point. Therefore, it is crucial to determine the exponential stability and to estimate the exponential convergence rate.

On the other hand, impulsive effect likewise exists in a wide variety of evolutionary processes in which states are changed abruptly at certain moments of time. Such processes often appear in fields as medicine and biology, economics, mechanics, electronics and telecommunications, etc. As artificial electronic systems, neural networks such as Hopfield neural networks, bidirectional neural networks and recurrent neural networks are best described under impulsive perturbations which can affect dynamical behaviors of the systems just as time delays. Therefore, it would be more appropriate to consider both impulsive and delay effects on the stability of neural networks. Yet, few results have been developed in this direction for neural networks [12,13,14,18,19,20,21,22,24]. Although the use of constant fixed delays in...
models of delayed feedback provides a good approximation in simple circuits consisting of only a small number of cells, neural networks usually have a spatial extent due to the presence of a multitude of parallel pathways with a variety of axon sizes and lengths. Thus, it is common to have a distribution of propagation delays. Recently, some authors have investigated the stability of BAM neural networks with distributed delays but without impulses, see for instance the papers [11,15,25,26] and the references quoted therein.

In this paper, inspired by Song and Cao in [25], we formulate a BAM neural network model with distributed delays and nonlinear impulsive operators. By means of piecewise continuous Lyapunov functions [17] and the Razumikhin technique [13,16,22,23] we establish criteria for global exponential stability of the equilibrium point. The conditions are independent of the form of specific delays and have important significance in both theory and applications. Thus, the results improve the ones established in the earlier literature. An example is given to demonstrate the effectiveness of the results.

2 The system, notations and definitions

Let \(\mathbb{R}_+ = [0, \infty) \), \(\mathbb{R}^n \) denote the \(n \)-dimensional Euclidean space and \(\|y\| = \left(\sum_{j=1}^{n} y_j^2 \right)^{1/2} \) define the norm of \(y \in \mathbb{R}^n \).

Consider the following BAM impulsive system with distributed delays

\[
\begin{align*}
\dot{x}_i(t) &= -c_i x_i(t) + \sum_{j=1}^{n} a_{ij} f_j(y_j(t)) + \sum_{j=1}^{n} w_{ji} \int_{t-j}^{t} K_{ji}(t-s) f_j(y_j(s)) \, ds + I_i, \quad t \neq t_k, \\
\Delta x_i(t_k) &= T_{ik}(x_i(t_k)), \quad k = 1, 2, \ldots, \\
y_j(t) &= -d_j y_j(t) + \sum_{i=1}^{m} b_{ij} g_i(x_i(t)) + \sum_{i=1}^{m} h_{ij} \int_{t-j}^{t} N_{ij}(t-s) g_i(x_i(s)) \, ds + J_j, \quad t \neq t_k, \\
\Delta y_j(t_k) &= U_{jk}(y_j(t_k)), \quad k = 1, 2, \ldots,
\end{align*}
\] (2.1)

for \(i = 0, 1, 2, \ldots, m, j = 1, 2, \ldots, n \) where \(x_i(t) \) and \(y_j(t) \) correspond to the states of the \(i \)-th unit and \(j \)-th unit, respectively, at time \(t \); \(c_i \) and \(d_j \) are positive constants; \(K_{ji} \) and \(N_{ij} \) are the delay kernels; \(w_{ji} \) and \(h_{ij} \) are the connection weights; \(f_j \) and \(g_i \) are the activation functions; \(I_i \) and \(J_j \) denote the external inputs; \(T_{ik} \) and \(U_{jk} \) are the abrupt changes of the states at the impulsive moments \(t_k \); by \(\Delta x_i(t_k) \) and \(\Delta y_j(t_k) \) we mean the differences \(x_i(t_k^+ - x_i(t_k) \) and \(y_j(t_k^+ - y_j(t_k) \), respectively, and the sequence \(0 < t_1 < t_2 < \ldots \) is strictly increasing such that \(\lim_{k \to \infty} t_k = \infty \). The numbers \(x_i(t_k) = x_i(t_k - 0) \) and \(x_i(t_k + 0) \) are, respectively, the states of the \(i \)-th unit before and after the impulse perturbation at the moment \(t_k \); the numbers \(y_j(t_k) = y_j(t_k - 0) \) and \(y_j(t_k + 0) \) are, respectively, the states of the \(j \)-th unit before and after the impulse perturbation at the moment \(t_k \).

Let \(\varphi \in PCB([- \infty, 0], \mathbb{R}^m) \), \(\varphi = (\varphi_1, \varphi_2, \ldots, \varphi_m)^T \) and \(\phi \in PCB([- \infty, 0], \mathbb{R}^n) \), \(\phi = (\phi_1, \phi_2, \ldots, \phi_n)^T \) where \(PCB([- \infty, 0], \mathbb{R}^m) \) is the class of all piecewise continuous and bounded on \((-\infty, 0]\) functions with points of discontinuity of the first kind at \(t = t_k, k = 1, 2, \ldots \), which are continuous from the left. Denote by

\[
col(x(t), y(t)) = \col(x(t; 0, \varphi), y(t; 0, \phi)) \in \mathbb{R}^{m+n},
\]

where

\[
col(x(t; 0, \varphi), y(t; 0, \phi)) = \left(x_1(t; 0, \varphi), \ldots, x_m(t; 0, \varphi), y_1(t; 0, \phi), \ldots, y_n(t; 0, \phi)\right)^T
\]

the solution of system (2.1), satisfying the initial conditions

\[
\begin{align*}
{x_i(t_0 + 0) &= x_i(t_0) + T_{ik}(x_i(t_k)), i = 1, 2, \ldots, m,} \\
y_j(t_0 + 0) &= y_j(t_0) + U_{jk}(y_j(t_k)), j = 1, 2, \ldots, n.
\end{align*}
\] (2.3)

Throughout the paper, we make the following assumptions:

H2.1 The signal functions \(f_j \) and \(g_i \) (\(i = 1, 2, \ldots, m; j = 1, 2, \ldots, n \)) are Lipschitz continuous, that is, there exist constants \(L_j > 0 \) and \(M_i > 0 \) such that

\[
|f_j(u) - f_j(v)| \leq L_j |u - v|, \quad |g_i(u) - g_i(v)| \leq M_i |u - v|
\]

for all \(u, v \in \mathbb{R}, i = 1, 2, \ldots, m, j = 1, 2, \ldots, n \).

H2.2 The delay kernels \(K_{ji}, N_{ij} : \mathbb{R}_+ \to \mathbb{R} \) are real valued piecewise continuous nonnegative functions and there exist positive numbers \(r_{ji} \) and \(s_{ij} \) such that

\[
\int_{t-s}^{t} K_{ji}(t-s) \, ds \leq r_{ji} < \infty, \quad \int_{t-s}^{t} N_{ij}(t-s) \, ds \leq s_{ij} < \infty
\]

for all \(t \geq 0, i = 1, 2, \ldots, m, j = 1, 2, \ldots, n \).

H2.3 The functions \(T_{ik} \) and \(U_{jk} \) are continuous on \(\mathbb{R}_+, i = 1, 2, \ldots, m, j = 1, 2, \ldots, n, k = 1, 2, \ldots \).

H2.4 \(0 = t_0 < t_1 < t_2 < \ldots < t_k < t_{k+1} < \ldots \) and \(t_k \to \infty \) as \(k \to \infty \).
H2.5 There exists a unique equilibrium
\[\text{col}(x^*, y^*) = \text{col}(x_1^*, x_2^*, \ldots, x_n^*, y_1^*, y_2^*, \ldots, y_n^*) \]
of the system (2.1) such that
\[
\begin{align*}
cx_i^* &= n \sum_{j=1}^n a_{ij} f_j(y_j^*) + \sum_{j=1}^n w_{ij} \int_{-\infty}^t K_{ij}(t-s) f_j(y_j^*) \, ds + I_i, \\
dy_j^* &= m \sum_{i=1}^m b_{ij} g_i(x_i^*) + m \sum_{i=1}^m h_{ij} \int_{-\infty}^t N_{ij}(t-s) g_i(x_i^*) \, ds + J_j, \\
T_k(x_i^*) &= 0, \quad U_k(y_j^*) = 0,
\end{align*}
\]
where \(i = 1, 2, \ldots, m, j = 1, 2, \ldots, n, k = 1, 2, \ldots\).

The problem of existence and uniqueness of equilibrium states of BAM neural networks with distributed delays without impulses have been investigated in [25]. Efficient sufficient conditions for the existence and uniqueness of an equilibrium of impulsive BAM neural networks with constant delays are given in [18, 24].

Definition 2.1. The equilibrium
\[\text{col}(x^*, y^*) = \text{col}(x_1^*, x_2^*, \ldots, x_n^*, y_1^*, y_2^*, \ldots, y_n^*) \]
of system (2.1) is said to be *globally exponentially stable*, if there exist constants \(\eta > 0\) and \(\Lambda \geq 1\) such that
\[
|x(t) - x^*| + |y(t) - y^*| \leq \Lambda e^{-\eta t} \left(|\phi - x^*| + |\phi - y^*| \right)
\]
for \(t \geq 0\), where
\[
|\phi - x^*| = \sup_{x \in (-\infty, 0]} \|\phi(s) - x^*\|, \quad \phi \in PCB([-\infty, 0], \mathbb{R}^m),
\]
and
\[
|\phi - y^*| = \sup_{x \in (-\infty, 0]} \|\phi(s) - y^*\|, \quad \phi \in PCB([-\infty, 0], \mathbb{R}^n).
\]

Let \(G_k = (t_{k-1}, t_k) \times \mathbb{R}^m \times \mathbb{R}^n, k = 1, 2, \ldots; \ G = \bigcup_{k=1}^\infty G_k\). In the further considerations, we shall use piecewise continuous auxiliary functions [17], which belong to the class \(V_0 = \{V : [0, \infty) \times \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}_+ : \ V \in C[G, \mathbb{R}_+], \ t \in [0, \infty), \ V \text{ is locally Lipschitz in} \ (x, y) \in \mathbb{R}^m \times \mathbb{R}^n\text{ on each of the sets} \ G_k, \ V(t_k - 0, x, y) = V(t_k, x, y) \text{ and} \ V(t_k + 0, x, y) = \lim_{t \to t_k^+} V(t, x, y) \text{ exists} \} \).

For \(V \in V_0\) and for any \((t, x, y) \in [t_{k-1}, t_k) \times \mathbb{R}^m \times \mathbb{R}^n, k = 1, 2, \ldots\), the upper right-hand derivative \(D_{+}^{t_{k}} V(t, x(t), y(t))\) of the function \(V\) with respect to system (2.1) is defined by
\[
D_{+}^{t_{k}} V(t, x(t), y(t)) = \limsup_{h \to 0^+} \frac{1}{h} \left[V(t + h, x(t + h), y(t + h)) - V(t, x(t), y(t)) \right].
\]

For the sake of convenience, we shall also use the following notations in the sequel
\[
\begin{align*}
x(t) &= (x_1(t), x_2(t), \ldots, x_m(t))^T, \\
y(t) &= (y_1(t), y_2(t), \ldots, y_n(t))^T, \\
f(y(s)) &= (f_1(y_1(s)), f_2(y_2(s)), \ldots, f_n(y_n(s)))^T, \\
g(x(s)) &= (g_1(x_1(s)), g_2(x_2(s)), \ldots, g_m(x_m(s)))^T, \\
C &= \text{diag}(c_1, c_2, \ldots, c_m), \\
D &= \text{diag}(d_1, d_2, \ldots, d_n), \\
A &= (a_{ij})_{n \times m}, \ B = (b_{ij})_{m \times n}, \ R = (r_{ij})_{n \times m}, \ S = (s_{ij})_{m \times n}, \\
M &= \text{diag}(M_1, M_2, \ldots, M_m), \ L = \text{diag}(L_1, L_2, \ldots, L_n), \\
W &= (w_{ij})_{m \times n}, \ H = (h_{ij})_{m \times n}, \\
I &= (I_1, I_2, \ldots, I_m)^T, \ J = (J_1, J_2, \ldots, J_n)^T, \\
\lambda_{\text{min}}(P) &= \text{the smallest eigenvalue of matrix} \ P, \\
\lambda_{\text{max}}(P) &= \text{the greatest eigenvalue of matrix} \ P,
\end{align*}
\]
and
\[
\|P\| = \left[\lambda_{\text{max}}(P^T P) \right]^{1/2} \text{ is the norm of} \ P.
\]

3 The main result

Theorem 3.1. Assume that

1. Conditions H2.1–H2.5 hold.
2. There exist symmetric positively definite matrices \(P_{m \times n}\) and \(Q_{n \times n}\) such that
\[
\begin{align*}
|A| \|L\| \|P\| + |B| \|M\| \|Q\| \\
+ \|W\| \|R\| \|L\| \|P\| \left(\frac{\lambda_{\text{max}}(P) + \lambda_{\text{min}}(Q)}{\lambda_{\text{min}}(Q)} \right) \\
+ \|H\| \|S\| \|M\| \|Q\| \left(\frac{\lambda_{\text{max}}(P) + \lambda_{\text{min}}(Q)}{\lambda_{\text{max}}(P)} \right) \\
+ \|W\| \|R\| \|L\| \|P\| \left(\frac{\lambda_{\text{max}}(Q)}{\lambda_{\text{min}}(Q)} \right) < \mu,
\end{align*}
\]
and
\[
\begin{align*}
|A| \|L\| \|P\| + |B| \|M\| \|Q\| \\
+ \|H\| \|S\| \|M\| \|Q\| \left(\frac{\lambda_{\text{max}}(P) + \lambda_{\text{min}}(Q)}{\lambda_{\text{min}}(Q)} \right) \\
+ \|W\| \|R\| \|L\| \|P\| \left(\frac{\lambda_{\text{max}}(Q)}{\lambda_{\text{min}}(Q)} \right) < \nu,
\end{align*}
\]
where \(\mu, \nu = \text{const} > 0\).
3. The functions \(T_k\) and \(U_{jk}\) are such that
\[
T_k(x(t_k)) = -\gamma_k(x(t_k) - x^*), \quad 0 < \gamma_k < 2,
\]
and
\[
U_{jk}(y(t_k)) = -\delta_{jk}(y_j(t_k) - y_j^*), \quad 0 < \delta_{jk} < 2,
\]
for \(i = 1, 2, \ldots, m, j = 1, 2, \ldots, n, k = 1, 2, \ldots\).
Then the equilibrium $\text{col}(x^*, y^*)$ of (2.1) is globally exponentially stable.

Proof. Set $u(t) = x(t) - x^*$ and $v(t) = y(t) - y^*$ and consider the following system

$$
\begin{align*}
\dot{u}_i(t) &= -c_i u_i(t) + \sum_{j=1}^{n} a_{ij} \left(f_j(y_j^* + v_j(t)) - f_j(y_j^*) \right) \\
+ \sum_{j=1}^{n} w_{ji} \int_{t_0}^{t} K_{ji}(t - s) \left[f_j(y_j^* + v_j(s)) - f_j(y_j^*) \right] ds, \quad t \neq t_k, \\
\dot{v}_j(t) &= -d_j v_j(t) + \sum_{i=1}^{m} b_{ij} \left[g_i(x_i^* + u_i(t)) - g_i(x_i^*) \right] \\
+ \sum_{i=1}^{m} h_{ij} \int_{t_0}^{t} N_{ij}(t - s) \left[g_i(x_i^* + u_i(s)) - g_i(x_i^*) \right] ds, \quad t \neq t_k, \\
\Delta u_i(t_k) &= I_{ik}(u_i(t_k)), \quad \Delta v_j(t_k) = J_{jk}(v_j(t_k)), \quad k = 1, 2, \ldots,
\end{align*}
$$

(3.1)

where

$$
I_{ik}(u_i(t_k)) = T_{ik}(u_i(t_k) + x_i^*),
$$

and

$$
J_{jk}(v_j(t_k)) = U_{jk}(v_j(t_k) + y_j^*),
$$

for $i = 1, 2, \ldots, m$, $j = 1, 2, \ldots, n$, $k = 1, 2, \ldots$.

We define a Lyapunov function

$$
V(t, u(t), v(t)) = u^T(t) Pu(t) + v^T(t) Qv(t).
$$

By virtue of condition 3 of Theorem 3.1, we obtain for $t = t_k$

$$
V(t_k, u(t_k + 0), v(t_k + 0)) = u^T(t_k + 0) Pu(t_k + 0) + v^T(t_k + 0) Qv(t_k + 0)
= (1 - \gamma_k) u^T(t_k) P u(t_k) + (1 - \gamma_k) v^T(t_k) Q v(t_k)
= \left(1 - \gamma_k \right) U_{ik}(u_i(t_k) + x_i^*)
\times P \left(1 - \gamma_k \right) u_i(t_k) + \left(1 - \gamma_k \right) v_i(t_k) + \left(1 - \gamma_k \right) \sup_{-\infty < s \leq t} v_i(s)
\leq \left(1 - \gamma_k \right) u^T(t_k) + v^T(t_k) Q v(t_k)
= V(t_k, u(t_k), v(t_k)), \quad k = 1, 2, \ldots
$$

(3.2)

Let $t \geq 0$ and $t \neq t_k$, $k = 1, 2, \ldots$ Then from H2.1 and H2.2, for the upper right–hand derivative of the function $V D^+_{(3.1)} V(t, u(t), v(t))$ with respect to system (3.1) we get

$$
\begin{align*}
D^+_{(3.1)} V(t, u(t), v(t)) &= u^T(t) Pu(t) + v^T(t) Qv(t)
\leq \left(-Cu(t) + ALv(t) + WRL \sup_{-\infty < s \leq t} v(s) \right)^T Pu(t)
+ u^T(t) P \left(-Cu(t) + ALv(t) + WRL \sup_{-\infty < s \leq t} v(s) \right)
+ \left(-Dv(t) + BMu(t) + HSM \sup_{-\infty < s \leq t} u(s) \right)^T Qv(t)
+ v^T(t) Q \left(-Dv(t) + BMu(t) + HSM \sup_{-\infty < s \leq t} u(s) \right).
\end{align*}
$$

Since the matrices $CP + PC$ and $DQ + QD$ are positively definite, then there exist $\mu > 0$ and $\nu > 0$ such that

$$
\begin{align*}
D^+_{(3.1)} V(t, u(t), v(t)) &\leq -\mu \|u(t)\|^2 - \nu \|v(t)\|^2 \\
&+ 2 \|A\| \|L\| \|P\| \|v(t)\| \|u(t)\| \\
&+ 2 \|B\| \|M\| \|Q\| \|v(t)\| \|u(t)\| \\
&+ 2 \|P\| \|W\| \|R\| \|L\| \sup_{-\infty < s \leq t} \|v(s)\| \|u(t)\| \\
&+ 2 \|H\| \|S\| \|M\| \|Q\| \sup_{-\infty < s \leq t} \|u(s)\| \|v(t)\|.
\end{align*}
$$

Using the inequality $2 \|a\| \|b\| \leq \|a\|^2 + \|b\|^2$, we get for $t \neq t_k$, $k = 1, 2, \ldots$

$$
\begin{align*}
D^+_{(3.1)} V(t, u(t), v(t)) &\leq -\mu \|u(t)\|^2 - \nu \|v(t)\|^2 \\
&+ \left(\|A\| \|L\| \|P\| + \|B\| \|M\| \|Q\| \right) \left(\|v(t)\|^2 + \|u(t)\|^2 \right) \\
&+ \|P\| \|W\| \|R\| \|L\| \sup_{-\infty < s \leq t} \|v(s)\|^2 + \|u(t)\|^2 \\
&+ \|H\| \|S\| \|M\| \|Q\| \sup_{-\infty < s \leq t} \|u(s)\|^2 + \|v(t)\|^2.
\end{align*}
$$

(3.3)

Since for the function $V(t, u(t), v(t))$, we have

$$
\begin{align*}
\lambda_{\min}(P) \|u(s)\|^2 + \lambda_{\min}(Q) \|v(s)\|^2
&\leq u^T(s) Pu(s) + v^T(s) Qv(s) \\
&\leq \lambda_{\max}(P) \|u(s)\|^2 + \lambda_{\max}(Q) \|v(s)\|^2, \quad t \geq 0,
\end{align*}
$$

(3.4)

then for $u(t)$ and $v(t)$ that satisfy the Razumikhin condition

$$
V(s, u(s), v(s)) \leq V(t, u(t), v(t)), \quad -\infty < s \leq t,
$$

we obtain

$$
\begin{align*}
\lambda_{\min}(P) \|u(s)\|^2 + \lambda_{\min}(Q) \|v(s)\|^2
&\leq u^T(s) Pu(s) + v^T(s) Qv(s) \\
&\leq u^T(t) Pu(t) + v^T(t) Qv(t) \\
&\leq \lambda_{\max}(P) \|u(t)\|^2 + \lambda_{\max}(Q) \|v(t)\|^2,
\end{align*}
$$

(3.5)

and hence

$$
\begin{align*}
\|u(s)\|^2 &\leq \frac{\lambda_{\max}(P) \|u(t)\|^2 + \lambda_{\max}(Q) \|v(t)\|^2}{\lambda_{\min}(P)}, \\
\|v(s)\|^2 &\leq \frac{\lambda_{\max}(P) \|u(t)\|^2 + \lambda_{\max}(Q) \|v(t)\|^2}{\lambda_{\min}(Q)}.
\end{align*}
$$

(3.6)

for $-\infty < s \leq t, t \geq 0$.

© 2013 NSP
Natural Sciences Publishing Co.
From (3.3) and (3.5), we obtain
\[D^+_{(3.1),V}(t,u(t),v(t)) \leq -\mu \|u(t)\|^2 - v(t)^2 \]
\[+ \left[|A||L||P| + |B||M||Q| \right] (\|v(t)\|^2 + \|u(t)\|^2) \]
\[+ |P||W||R||L| \left(\frac{\lambda_{\text{max}}(P) + \lambda_{\text{min}}(Q)}{\lambda_{\text{min}}(Q)} \right) \]
\[\times \left(\frac{\lambda_{\text{max}}(P)\|u(t)\|^2 + \lambda_{\text{max}}(Q)\|v(t)\|^2}{\lambda_{\text{min}}(Q)} \right) \]
\[+ |H||S||M||Q| \left(\frac{\lambda_{\text{max}}(P) + \lambda_{\text{min}}(Q)}{\lambda_{\text{min}}(P)} \right) \]
\[\times \left(\frac{\lambda_{\text{max}}(P)\|u(t)\|^2 + \lambda_{\text{max}}(Q)\|v(t)\|^2}{\lambda_{\text{min}}(P)} \right) \]
\[\times \left(\frac{\lambda_{\text{max}}(P)\|u(t)\|^2 + \lambda_{\text{max}}(Q)\|v(t)\|^2}{\lambda_{\text{min}}(P)} \right) \]
\[\|u(t)\|^2 + \|v(t)\|^2 \leq e^{-\frac{k_1^2 \beta}{\alpha}} (\|u(0)\|^2 + \|v(0)\|^2), \ t \geq 0. \]

Using the inequalities
\[(a^2 + b^2)^{1/2} \leq a + b \leq \sqrt{2}(a^2 + b^2)^{1/2}, \]
we get
\[\|u(t)\|^2 + \|v(t)\|^2 \leq \left(\sum_{j=1}^m u_j^2(t) \right)^{1/2} + \left(\sum_{j=1}^n v_j^2(t) \right)^{1/2} \]
\[\leq \sqrt{2} \left(\sum_{j=1}^m u_j^2(t) + \sum_{j=1}^n v_j^2(t) \right)^{1/2} \]
\[\leq \sqrt{2} \left(\frac{\|u(0)\|^2 + \|v(0)\|^2}{\alpha} \right)^{1/2} \]
\[\leq \sqrt{2} \frac{\|u(0)\| + \|v(0)\|}{\alpha}, \ t \geq 0. \]

or
\[\|x(t) - x^*\| + \|y(t) - y^*\| \leq A \alpha^{-\eta} (\|\phi - x^*\|_{\infty} + \|\phi - y^*\|_{\infty}), \]
for \(t \geq 0 \), where \(A = \sqrt{2} \frac{\|u(0)\| + \|v(0)\|}{\alpha} \).

4 An example

Let \(t \geq 0 \). Consider the impulse BAM neural network
\[
\begin{align*}
x_i(t) &= -c_i x_i(t) + \sum_{j=1}^2 a_{ij} f_j(y_j(t)) \\
&\quad + \sum_{j=1}^2 w_{ij} \int_{t-I}^{t} K_{ij}(t-s) f_j(y_j(s)) ds + I_i, \ i = 1, 2, \ t \neq t_k, \\
y_j(t) &= -d_j y_j(t) + \sum_{i=1}^2 b_{ij} g_i(x_i(t)) \\
&\quad + \sum_{j=1}^2 h_{ij} \int_{t-J}^{t} N_{ij}(t-s) g_i(x_i(s)) ds + J_j, \ j = 1, 2, \ t \neq t_k,
\end{align*}
\]
with impulsive perturbations of the form
\[
\begin{align*}
x_1(t_k + 0) &= 0.125 + x_1(t_k), \ k = 1, 2, \ldots, \\
x_2(t_k + 0) &= 0.25 + x_2(t_k), \ k = 1, 2, \ldots, \\
y_1(t_k + 0) &= 0.25 + y_1(t_k), \ k = 1, 2, \ldots, \\
y_2(t_k + 0) &= 0.75 + y_2(t_k), \ k = 1, 2, \ldots,
\end{align*}
\]
where the impulsive moments are such that \(0 < t_1 < t_2 < \cdots, \lim_{k \to \infty} t_k = \infty, \) and
Moreover, one can easily deduce that \(\gamma_k = \frac{1}{2}, \gamma_{2k} = \frac{2}{7}, \delta_{1k} = \frac{1}{4} \) and \(\delta_{2k} = \frac{3}{7} \). Thus, all conditions of Theorem 3.1 are satisfied. This implies that the equilibrium \(x_1^* = x_2^* = 0.125, y_1^* = y_2^* = 0.25 \) of (4.1) is globally exponentially stable.

On the other hand, if we consider again system (4.1) but with impulsive perturbations of the form

\[
\begin{align*}
x_1(t_k + 0) &= 0.125 + x_1(t_k) + \frac{1}{2} x_2(t_k), k = 1, 2, \ldots, \\
x_2(t_k + 0) &= 4x_2(t_k) - 0.75, k = 1, 2, \ldots, \\
y_1(t_k + 0) &= 0.25 + 2 y_1(t_k), k = 1, 2, \ldots, \\
y_2(t_k + 0) &= \frac{3}{5} y_2(t_k), k = 1, 2, \ldots,
\end{align*}
\]

(4.3)

then the point \(x_1^* = 0.125, y_1^* = y_2^* = 0.25 \) will be again an equilibrium of (4.1), (4.3) but there is nothing we can say about its exponential stability because \(\gamma_{2k} = -3 < 0 \).

This example shows that by means of appropriate impulsive perturbations, we can control the stability behavior of the neural networks.

Conclusions

In this paper, we have obtained a matrix format sufficient conditions for the global exponential stability of the equilibrium point of a general class of BAM neural network model with distributed delays and nonlinear impulsive operators. Although, the matrix format sufficient conditions are easy to be resolved, a few authors have studied the stability of the delayed BAM neural networks with impulses using matrix theory. The main result is established by using a suitable piecewise continuous Lyapunov function and by applying the Razumikhin technique. We show that by means of appropriate impulsive perturbations we can control the stability behavior of the neural networks. The technique can be extended to study other types of impulsive delayed systems.

References

Ivanka M. Stamova received the M.Sc. degree in mathematics from Plovdiv University, Bulgaria, in 1987 and the Ph.D. degree in stability analysis for impulsive delay differential equations from the Higher Accreditation Commission of Bulgaria, in 1996. In 2009 she received the Dr.Sci. degree (post PhD degree) in applied mathematics from the Higher Accreditation Commission of Bulgaria. From 2000 she is an Associate Professor of Mathematics at the Bourgas Free University, Bulgaria. Since 2002 she held visiting appointments at the Department of Mathematics, University of Texas at San Antonio, USA. She is the author of “Stability Analysis of Impulsive Functional Differential Equations” (Walter de Gruyter, Berlin, New York, 2009). She is a Member of the Editorial Boards of “International Journal of Mathematics and Computation”, “Conference Papers in Mathematics”, “Advances in Networks” and a scientific advisor for the “Review of the Air Force Academy of Romania”. Her current research interests include qualitative analysis of nonlinear dynamical systems, nonlinear observer design, impulsive control and applications.

Gani Tr. Stamov received his M.Sc. degree in mathematics from Plovdiv University, Bulgaria, in 1984 and his Ph.D. degree from the Higher Accreditation Commission of Bulgaria, in 1999. In 2011 he received the Dr.Sci. degree (post PhD degree) in applied mathematics from the University of Chemical Technology and Metallurgy, Sofia, Bulgaria. Currently, he works as a Professor of mathematics at the Technical University of Sofia, Bulgaria. His current research interests include qualitative analysis of nonlinear dynamical systems, integral manifolds, almost periodic solutions and applications. He is the author of “Almost Periodic Solutions of Impulsive Differential Equations” published in the Lecture Notes in Mathematics, Springer-Verlag Berlin Heidelberg, 2012, and he received numerous research grants. He is referee and Editor of several international journals in the frame of pure and applied mathematics.
Jehad Alzabut received his Ph.D. degree in 2004 from Middle East Technical University in Ankara, Turkey. He served as an assistant professor of applied mathematics in Çankaya University during the period 2002–2007. Currently, he is an associate professor of applied mathematics at Prince Sultan University in Riyadh, Saudi Arabia. Dr. Jehad’s research interests are focused on qualitative properties of solutions of differential equations, difference equations, impulsive delay differential equations, fractional differential equations and dynamic equations. Population models governed by the above mentioned equations are also among his interest. He has been invited to give a talk in many international conferences organized in different disciplines in applied mathematics. Serving as an editor for some international journals and refereeing/reviewing of papers have also kept him aware of recent developments.