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Abstract: Building on a contribution by Dalgaard and Strulik [C.L. Dalgaard and H. Strulik, Resource and Energy Economics33, 782
(2011)], this paper deals with the mathematical modelling for an economy viewed as a transport network for energy in which the law of
motion of capital occurs with a time delay. By choosing time delay as a bifurcation parameter, it is proved that the system loses stability
and a Hopf bifurcation occurs when time delay passes through critical values. An important scenario arising from the analysis is the
existence of limit cycles generated by supercritical Hopf bifurcations. The results are of great interest for the analysis of the asymptotic
economic growth.
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1 Introduction

The research of basic principles for the modelling of the
economic growth are nowadays a new and hot challenge
which has been object of several investigations. Since
1982 Spencer has advocated that the economic growth of
societies depends on their capability to exploit the
increasing amounts of energy [1]. Accordingly, the
quantity of energy that a society consumes becomes an
economic tool to measure its progress and thus the capital
accumulation represents an important strategy for the
growth process, see [2] and [3]. In particular the Solow
model [3], which involves the aggregate production
function, has given an important contribution to the
economic growth theory especially because it has been
proven to be able to explain the cross-country differences
in GDP per worker. However, as discussed in [4], the
derivation of a law of motion for capital without recurring
to the existence of an aggregate production function could
be more appropriated.

Recently, some principles of the physics and biology
have been proposed for the modelling of the law of
motion for capital per worker, see, among others, [5,7,8,
9]. Similarly to paper [10] where a growth model for
living tissue has been derived by assuming that energy is
required to cells for their survival and reproduction

(thermodynamics conservation principle), it is assumed
that the capital stock increases if total energy expenditure
exceeds the energy costs. Another principle is referred to
Kleiber’s law [11], which states the correlation between
the energy consumption of biological organisms (basal
metabolism) and their energy requirements (body mass).
Specifically the biological systems are viewed as energy
transporting networks and the Kleiber’s law models the
diffusion and absorbtion of energy. The previous
principles refer to biological networks that have been
developed through natural selection, which has produced
more efficient networks. Similarly, these principles can be
also applied to man-made networks, see [12], where the
authors have applied these principles to artificial networks
with the aim to discover universal laws with applications
to human societies. Moreover mathematical models have
been developed in [5] and [6] for an economy viewed as a
transport network for energy. In these models the energy
consumption per worker is seen as the counterpart to
metabolism, and capital per worker as the counterpart to
body size.

Recently, Dalgaard and Strulik [6] have developed a
mathematical model of an economy viewed as a
transportation network for electricity that is
mathematically isomorphic to the Solow-Swan model
proposed in papers [3,13]. The model is based on the
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main assumption that there exists a supply relation, which
is a concave and log-linear Kleiber’s law relation,
between the electricity consumption per capita (viewed as
the economic counterpart to metabolism) and capital per
capita (viewed as the counterpart to body size). This
paper is concerned with a generalization of the Dalgaard
and Strulik model analyzed in [6]. Specifically, the energy
conservation equation contains a time delay which take
cares of the previous occurring dynamics. Generally,
delay in dynamical systems is exhibited whenever the
system’s behavior is dependent at least in part on its
history. The introduction of time delay is a common
approach used in biology for instance in the modelling of
gene expression, cell division, as well as cell
differentiation and cell maturation, with the aim to be
more consistent with the cell growth kinetics, see the
review paper [14], papers [15,16,17] and the references
therein. This work is motivated by economical
applications to plan the asymptotic economic growth [22].

The present paper is organized as follows. After this
introduction Section 2 reviews the original model by
Dalgaard and Strulik and deals with the generalization
which includes the delay. In Section 3 by choosing time
delay as a bifurcation parameter, and applying the local
Hopf bifurcation theory (see e.g. [18]), we investigate the
existence of stable periodic oscillations for equation.
More specifically, we prove that, as the delayT increases,
the positive equilibrium loses its stability and a sequence
of Hopf bifurcations occur. Furthermore in Section 4 by
using the Lindstedt’s perturbation method [19], we prove
that the Hopf bifurcation is supercritical and the
bifurcating solutions are stable. Finally Section 5 is
devoted to research perspective.

2 The delayed Dalgaard and Strulik model

As already mentioned in the introduction the
mathematical model of Dalgaard and Strulik [6] is
concerned with the modelling of an economy viewed as a
transportation network for electricity. Electricity is used
to run, maintain, and create capital.

Assuming that time is continuous, and letµ be the
energy requirement to operate and maintain the generic
capital good whileν is the energy costs to create a new
capital good, energy conservation implies

e(t) = µk(t)+ν
dk(t)

dt
, (1)

where k(t) denotes capital stock. Equation (1), which
provides a metric for aggregation of capital, captures the
electricity at any given instant in time; the right-hand side
of (1) summarizes the instantaneous electricity
requirements (the size of population has been normalized
to one).

It is worth stressing that if we were to shut off energy
supply entirely, namelye(t) = 0, the capital stock would

shrink over time, due to lack of maintenance and
replacement. The rate at which the stock shrink is−µ/ν ,
which therefore can be viewed as the mirror image of the
depreciation rate, commonly introduced in models of
growth and capital accumulation.

Bearing all above in mind the Dalgaard and Strulik
mathematical model [6] is derived by modelling the
energy ase(t) = ε [k(t)]a where 0< a < 1 is a real
constant proportional to the dimension and efficiency of
the network, andε > 0 is a real constant in the sense that
it is independent of capital per worker. The model thus
reads:

dk(t)
dt

=
ε
v
[k(t)]a −

µ
v

k(t). (2)

The Dalgaard and Strulik model shares the technical
properties with the Solow model. In particular, there
exists a unique globally stable steady-state to which the
economy adjusts.

In what follows we consider a generalization of the
Dalgaard and Strulik model [6]. Specifically, it is
assumed that the energy conservation equation contains a
time delayT which is introduced in the equation (1) as
follows:

e(t −T ) = µk(t −T )+ v
dk(t)

dt
, (3)

Consequently, the law of motion for capital is described by
the following non-linear delay differential equation:

dk(t)
dt

=
ε
v
[k(t −T )]a −

µ
v

k(t −T ), (4)

for some initial functionk(t) = φ(t), t ∈ [−T,0].
According to the mathematical model (4), at any given

instant in timet, the capital stockk(t) is determined by the
electricity at the instant in timet −T .

3 Existence and analysis of Hopf bifurcations

Equilibria (or steady states in the language of the
economical sciences) of equation (4), of course, coincide
with the corresponding points for zero delay,T = 0.
Hence, there exists a unique positive steady statek∗
satisfying the relationεka−1

∗ = µ . After setting the
following translation x(t) = k(t) − k∗, equation (4) is
rewritten as follows:

dx(t)
dt

=
ε
v
[x(t −T )+ k∗]

a −
µ
v
[x(t −T )+ k∗] . (5)

The following theorem characterizes the nature of the
equilibrium pointk∗.

Theorem 3.1. Let k∗ be the unique positive equilibrium for
the mathematical model (4). Then there exists a positive
numberT0 such that the equilibriumk∗ is asymptotically
stable forT ∈ [0,T0) and unstable forT > T0. Moreover
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equation (4) undergoes a Hopf bifurcation atk∗ whenT =
Tj where

Tj =
1

ω0

(π
2
+2 jπ

)

, j ∈ {0,1,2, . . .},

and

ω0 =
(1−a)µ

v
.

Proof. As is well known, the stability of the positive steady
state and local Hopf bifurcations can be determined by the
distribution of the roots associated with the characteristic
equation of its linearization [20]. The linearization of (5)
at zero is

dx(t)
dt

=
(a−1)µ

v
x(t −T ). (6)

By substituting candidate solutions of the forme−λT into
equation (6), we get that the corresponding characteristic
equation of (6) is given by

λ =
(a−1)µ

v
e−λT . (7)

Equation (7) is a quasi-polynomial, which exhibits an
infinite number of (complex) roots. Notice that, when
T = 0, x∗ = 0 is asymptotically stable because
λ = (a−1)µ/v < 0.
Let iω (ω > 0) be a root of equation (7). Then we have

iω =
(a−1)µ

v
e−iωT .

Separation in the real and imaginary parts implies that

(a−1)µ
v

cosωT = 0, ω =−
(a−1)µ

v
sinωT. (8)

Squaring and adding the both equations in (8), we get
ω2 = (a−1)2µ2/v2. Consequently, we can conclude that
equation (7) has a unique pair of purely imaginary roots
±iω0, where

ω0 =
(1−a)µ

v
. (9)

From the equations in (8), we can define

Tj =
1

ω0

(π
2
+2 jπ

)

, j ∈ {0,1,2, . . .}.

Let λ j(T ) = α j(T )+ iω j(T ) denote a root of equation (7)
near T = Tj satisfying α j(Tj) = 0 and ω j(Tj) = ω0.
Differentiating the characteristic equation (7) with respect
to T , we obtain

dλ
dT

=
(1−a)µ

v
e−λT

(

T
dλ
dT

+λ
)

.

Hence, we have
(

dλ
dT

)−1

=−
1

λ 2 −
T
λ
.

This implies that

sign

[

dνk(T )
dT

∣

∣

∣

∣

T=Tj

]

= sign



Re

(

dλ
dT

)−1
∣

∣

∣

∣

∣

Tj





= sign

[

Re

(

−
1

λ 2 −
T
λ

)∣

∣

∣

∣

Tj

]

= sign

(

1

ω2
0

)

. (10)

Thus, from(10) we have thatα ′
j(Tj) > 0, implying that

all the roots crossing the imaginary axis atiω0 cross from
left to right asT increases and thus this results in the loss
of stability. We have found that ifT ∈ [0,T0), then all
roots of equation (7) have negative real parts. IfT = T0,
then all roots of equation (7), except± iω0, have negative
real parts. Finally, ifT ∈ (Tj,Tj+1) for j ∈ {0,1,2, . . .},
then equation (7) has 2( j + 1) roots with positive real
parts. Recalling that spectral properties of equation (7)
lead immediately to the properties of the positive
equilibriumk∗ for equation (4), the conclusion holds.�.

4 On the direction and stability of Hopf
bifurcation

In this section, we investigate the direction and stability
of bifurcating periodic solutions of equation (4) at T0
given by Theorem 3.1, using the method based on the
perturbation theory introduced by Lindstedt [19].

Theorem 4.1. The mathematical model (4) admits a stable
limit cycle. Moreover the Hopf bifurcation is supercritical.

Proof. We start by considering the Taylor expansion of
equation (5) up to the third order at the zero equilibrium:

dx(t)
dt

=
(a−1)µ

v
x(t −T )

+
a(a−1)µk−1

∗

2v
[x(t −T )]2

+
a(a−1)(a−2)µk−2

∗

6v
[x(t −T )]3+ · · · (11)

Next, we stretch time by replacing the independent
variablet by s = ω (η) t, whereω is a parameter close to
ω0 and η is a small positive number. In this way,
solutions which are 2π/ω periodic in t become periodic
with period 2π. With this change of variable equation
(11) becomes

ω
dx(s)

ds
=

(a−1)µ
v

x(s−ωT )

+
a(a−1)µk−1

∗

2v
[x(s−ωT )]2

+
a(a−1)(a−2)µk−2

∗

6v
[x(s−ωT )]3+ · · · . (12)
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As a final step in the perturbation method, we expandx(s),
ω andT in power series ofη as follows:















x(s) = ηx0(s)+η2x1(s)+η3x2(s)+ · · · ,

ω = ω0+ηω1+η2ω2+ · · · ,

T = T0+ηT1+η2T2+ · · · ,

(13)

with the obvious definition ofx0,x1, . . . .
According to (13), x(s−ωτ) can be expanded as

follows:

x(s−ωT ) = ηx0(s−ωT )+η2x1(s−ωT )

+ η3x2(s−ωT )+ · · · ,

where

x j(s−ωT ) = x j(s−ω0T0)

−x′j(s−ω0T0)[η(ω1T0+ω0T1)

+η2(ω2T0+ω1T1+ω0T2)+ · · · ]

+
1
2

x′′j (s−ω0T0) [η(ω1T0+ω0T1)+ · · · ]2−·· · .

Recalling (9) and the fact that ω0T0 = π/2, by
substituting the above series expansions in (12), and
regrouping into contributions at each order inη , we
obtain a system of differential equations, omitted here for
brevity. After tedious and long calculations, we can derive
(see Rand and Verdugo [21] for details) thatω1 = 0,
T1 = 0 as well as the amplitudeA of the limit cycle that
was born in the Hopf bifurcation. Therefore we have

A2 =
P
Q

η2T2, (14)

whereP = 20ω7
0 > 0 and

Q =

[

5πa(a−2)
4

−
11πa2

4
−a2

]

k−2
∗ ω6

0 < 0.

In (14), A is real so thatA2 > 0, which means from (14)
that T2 must have the same sign asP/Q. Therefore the
proof of the theorem is concluded.�

5 Perspective

This section lays out some research perspective of the
Dalgaard and Strulik model with time-delay introduced in
the present paper. The model is based on the
thermodynamic assumption according which the capital is
generated and maintained by human and non-human
energy.

The first issue to be developed is the comparison of
the delayed model introduced in the present paper with
the experimentally measurable quantities. Indeed the
mathematical models should reproduce both qualitatively

and quantitatively empirical data. The economic growth is
a complex phenomenon from which emerges a collective
behaviour that cannot be explained by the analysis of the
single elements. Therefore the model should reproduce, at
least at a qualitative level, the relative emerging collective
behaviours. Accordingly our model should be able to
match the data on electricity consumption per capita,
which is an observable variable.

The mathematical model proposed in this paper could
be also adapted for the analysis of the asymptotic
economic growth. This is an interesting research
perspective since, if it is reached, allows the possibilityto
perform predictions of future economical disasters.

The energy-based method used to derive the
mathematical model of this paper can be further
specialized by taking into account the possibility to
include the conservation of global resources. The
conservation of global quantities in the system can be
performed by using the framework of the thermostatted
kinetic theory for active particles [23,24]. This new
framework has been developed for the modelling of
complex systems where the kinetic energy (in general a
moment of the distribution function) must be preserved.
The framework has been adopted to model large systems
of physical and living systems, e.g. to semiconductor
devices, nanosciences, biological phenomena, vehicular
traffic, social and economics systems, crowds and swarms
dynamics, see the review paper [25]. Therefore
perspective include also the possibility of generalizing the
Dalgaard and Strulik model within this new framework.
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