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Abstract: In this article three-dimensional flow of Williamson (pseudoplastic) fluid over linearly stretching surface with magnetic
field effects are investigated. Transformation method has been utilized for reduction of partial differential equations in to dimensionless
coupled system of non-linear ordinary differential equations and solved by numerical scheme named as shooting technique. The
dimensionless velocities and shear stresses are obtained in both lateral directions. Pertinent results are presentedgraphically and
discussed quantitatively to analyze the variation of different parameters of interest on velocity in both directions.The effects of
governing parameters on skin friction are also illustratedin tabular way. The results for the parameters involved in problem are in
total covenant with literature survey presented by kudenatti et. al [22].
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1 Introduction

Researchers have shown enormous interest in
three-dimensional flow of non-Newtonian fluid due to its
extensive practical importance in industry and
engineering. Such interest in fact is enlarged because of
diverse applications in various disciplines, for instancein
biological sciences, geophysics, chemical and petroleum
industries. Such flows broadly appear in plastic
manufacture, food processing, performance of lubricants,
movement of biological fluids, polymer processing, ice
and magma flows. The fluid flow over a stretching surface
is significant in solicitations such as extrusion, cord
depiction, copper spiraling, warm progressing, and melts
of high molecular weight polymers. Non-Newtonian fluid
is not described modestly by Navier strokes equations.
Due to versatile nature of these fluids constitutive
equations consists of many rheological factors in this way
it will become more complex than the equations which
are describing viscous fluid flow. Hence various
non-Newtonian fluid models have been introduced in the
literature. In general these fluids have been presented
under three classes namely, the differential, the integral
and the rate type fluids. In resulting differential equations
of these equations contain extra rheological parameters

and terms which make it complex from viscous fluid flow
models.

There is extensive literature available on the
two-dimensional flows over a stretching surface since the
seminal works of Sakadais and crane [1,2]. Most recently
three-dimensional flow over stretching surface has gained
considerable interest. Wang [3] found exact solution for
Navier strokes equation for three-dimensional flow. He
discussed that three-dimensional flow are reduced to
two-dimensional flow by taking stretching ratio equals to
zero. Also asymmetric flow is reduced from
three-dimensional flow when stretching ratio equalizes to
unity. Magneto hydrodynamic three-dimensional flow and
heat transfer over a stretching surface in a viscoelastic
fluid was discussed by Ahmed et al. [4]. Nadeem et al. [5]
investigated the peristaltic motion of an incompressible
Williamson fluid with constant and radially varying
magneto hydrodynamics (MHD)in an endoscope.
Rajeswari et al. [6] investigated unsteady laminar
incompressible boundary layer flow over stretching
surface. They assumed that velocity of stretching surface
varies arbitrarily with time. In their analysis they
considered nodal and saddle point regions of flow. They
utilized quasilinearization method with an implicit finite-
difference scheme for nodal points(0 � C � 1) and this
technique failed during saddle points(−1 � C � 0).
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Williamson et al. [7] presented theory of pseudo plastic
fluids. He described practical significance of plastic flows.
He recognized that plastic flows are very different from
viscous flows. He found that there are certain of
dispersions which does not follows ideal plastic and
viscous fluids and these type of materials are called
pseudo plastic flows. Ariel [8] obtained approximate
analytical solution of steady laminar flow of three
dimensional flow over surface. He applied homotopy
perturbation method to first order expansion to compute
results and compared his results from previous results.
Ariel et. al [9] investigated on extended homotopy
solution for laminar boundary layer flow over radially
stretching sheet. The coefficients of the stretching
parameter were determined by ensuring that the resulting
solution is free of the secular terms. Very freshly in
another article, Nadeem et al. [10] examined the magneto
hydrodynamic (MHD) boundary layer flow of a Casson
fluid over an exponentially penetrable shrinking sheet.
They computed the analytical solutions for arising
differential system by Adomian decomposition method
(ADM). Nadeem et al. [11] investigated peristaltic flow of
a Williamson model in an asymmetric channel. The
governing equations of Williamson model in two
dimensional peristaltic flow phenomena are constructed
under long wave length and low Reynolds number
approximations. A regular perturbation expansion method
was used to obtain the analytical solution of the
non-linear problem. Pop et al. [12] probed unsteady
boundary layer flow of an incompressible micro polar
fluid over a stretching sheet. Ariel [13] found the
homotopy perturbation and exact solutions for the
three-dimensional flow of a viscous fluid over a stretched
surface. Tsou et al. [14] probed the solution for unsteady
flow of fluid over continuous moving surfaces along with
heat transfer. They analyzed heat transfer in two cases for
prescribed heat flux and prescribed surface temperature.
They concluded that by increasing stretching parameter
fluid velocity increases. Initial work for the boundary
layer flow on continuous surfaces was discussed by Crane
[15] in which he examined the boundary layer flow on
continuous surface. He represented new class of boundary
layer problem with solution substantially different from
these of boundary layer flow on surface of finite length.
Nadeem et al. [16] analyzed the peristaltic transport of
MHD Newtonian fluid in a symmetric two dimensional
channel with variable viscosity along with the heat
transfer analysis. Ellahi et al. [17] explored solution for
non-Newtonian nano fluid with coaxial cylinders for
constant and space-dependent viscosity. Nadeem et al.
[18] examined the flow of Williamson fluid caused due to
linear stretching, in this article they described the
behavior of pseudo plastic model of flow varies with
different parameters and specially the non-newtonian
parameter (Weissenberg) parameter. It was found from
the investigation that it shows declination in velocity
distribution. Nadeem et al. [19] reconnoitered the effect
of heat transfer on the Williamson fluid flow over a

porous exponentially stretching surface . Heat transfer in
two cases was deliberated prescribed exponential surface
temperature (PEST) and prescribed exponential heat flux
(PEHF). Also the velocity distribution in case of suction
and injection was discussed. Nadeem et al. investigated
self-similar solutions for MHD Casson fluid flow in two
lateral directions and analyzed that magnetic field, Casson
fluid parameter and porosity parameter reduce velocity
profile in both directions. While opposite trends of
velocity along x- and y- directions were found with an
increase of stretching ratio parameter. Nadeem et al. [21]
examined the effects of partial slip on the peristaltic flow
of a MHD Newtonian fluid in an asymmetric channel and
solved by Adomian decomposition method. Kartini et al.
[22] probed the solution for heat transfer over a stretching
surface in a viscoelastic fluid by using finite difference
scheme known as the Keller box Method and it is found
after describing effects of material parameter and
magnetic parameter both show opposite behavior on
velocity profile. Rao et al. [23] investigated combined
effects of Hall and ion slip current in a magneto
hydrodynamic boundary layer flow. They included these
terms from generalized Ohm’s law. They found that skin
friction decreases and displacement thickness increases
due to Hall currents. Rahman et al. [24] explored about
the effects of mixed convection boundary layer flow past
vertical flat plate with convective boundary conditions.
They introduced specific forms of outer flow and surface
heat transfer parameter. They probed the solution for
different values of Prandtl number and concluded that Pr
= 1/5 is transitional case. They also made findings that
this phenomenon reduces to uniform flow for Pr = 0.
Malik et al. [25] elaborated analytical treatment of steady
flow of Eyring Powel fluid due to stretching cylinder with
temperature dependent viscosity. Heat transfer analysis
was taken in to account along with variable viscosity of
Vogels and Reynolds model was considered. During their
analysis they probed that thermal boundary layer
increases by increasing Reynold number and Prandtl
number. Cortell [26] examined flow of viscous fluid over
non-linear stretching. They included thermal radiation
effects in their heat transfer equation and studied the
physical effects of Prandtl number, Power law index,
Radiation parameter on both momentum and temperature
profile along with pertinent coefficients related to heat
and momentum transfer. Ishak et al. [27] numerically
probed solution for heat transfer in case of uniform and
variable heat flux. They discussed the effects of material
parameter, velocity and heat flux exponent parameters
resp. They concluded from their investigation that
Coefficient of convective heat transfer is more for
non-newtonian model (Micro polar fluid ) than for
viscous fluid flow. Sedeek et al. [28] computed exact and
numerical solution for velocity and temperature profile.
They considered thermal diffusivity effect on profiles and
assumed it to be linear. Zeeshan et al. [29] addressed
MHD fluid flow in pipe surrounded by porous space
accompanied by partial slip. They probed analytical
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solution for two different viscosity models named as
constant model and variable model. Ellahi accounted the
effects of unsteady and incompressible flow of micro
polar fluid through composite stenosis. Analytic solutions
of velocity and volumetric flow flux were developed in
terms of modified Bessel functions Ellahi et al. [31]
discussed the peristaltic flow of Jeffery fluid between two
eccentric tubes. Low Reynolds approximation is
employed to obtained analytical solution. Ellahi et al. [32]
deliberated their investigation for unsteady three
dimensional Williamson fluid flow in rectangular duct.
The flow is caused due to peristaltic pumping of
propagating sinusoidal waves. They expressed pressure
rise numerically. Nadeem et al. [33] examined peristaltic
flow of viscous fluid flow in rectangular duct with
complaint walls. They found the solution of problem by
eigenfunction expansion method. They also discussed
trapping phenomenon. Akbar et al. [34] theoretical
studied unsteady blood flow of a Williamson fluid
through composite stenosed arteries with permeable
walls. Perturbation solutions are computed for velocity,
flow impedance, wall shear stress and shearing stress at
the stenosis throat.

The aim of this investigation is to venture further in
regime of three dimensional Williamson (pseudo-plastic)
flow over linearly stretching surface with magnetic field.
It is obvious that three-dimensional flows are more
suitable in giving physical insight of real world when
compared with two-dimensional flows. It is important to
mention that numerical solution of such type of
three-dimensional problems and physical interpretation
are big challenge. To the best of our knowledge the results
of this paper are originally new, very interesting and they
have not been published before.

2 Mathematical formulation

We consider three-dimensional (3D) unsteady
incompressible three dimensional Williamson fluid flow
over linear stretching surface. It is considered that surface
is stretched along xy-plane, the fluid occupies the space z
> 0 and the motion of fluid is caused due to stretching
surface. Furthermore magnetic field is applied normal to
fluid flow and induced magnetic field is presumed to be
negligible. The constitutive equations in Williamson fluid
flow for continuity and momentum after using boundary
layer approximation is given by

divV = 0 (1)

ρ
dV
dt

= divS+ρb (2)

whereρ is the density,V is the velocity vector,S is the
Cauchy stress tensor,b represents the specific body force
vector andd/dt represents the material time derivative.

The constitutive equations of the Williamson fluid model
are given as:

S = pI+ τ (3)

τ = [
(µ0− µ∞)

1−Γ γ
]A1 (4)

τ is the extra stress tensor,µ0 and µ∞ are the limiting
viscosities at zero and at infinite shear rate,Γ ≻ 0 is the
time constant, A1 is the first Rivlin-Erickson tensor andγ
is defined as follows

The continuity equation and equation of motion under
the assumptions associated with the boundary layer flow
yield

∂u
∂x

+
∂v
∂y

+
∂w
∂ z

= 0 (5)

u
∂u
∂x

+ v
∂u
∂y

+w
∂u
∂ z

= ν
∂ 2u
∂ z2

+
√

2νΓ
∂u
∂ z

∂ 2u
∂ z2 −

σB2
o

ρ
u (6)

u
∂v
∂x

+ v
∂v
∂y

+w
∂v
∂ z

= ν
∂ 2v
∂ z2

+
√

2νΓ
∂v
∂ z

∂ 2v
∂ z2 +

σB2
o

ρ
v (7)

u =Uw= ax, v =Vw = by at z = 0 (8)

u = 1 , v = 0 , z → ∞

In the above expressions, u, v and w denote the
respective velocities in the x- , y- and z -directions,
respectivelyΓ is the Williamson fluid parameter, Bo is
the magnetic induction,ν is the kinematic viscosity,ρ is
the density where as a and b are positive constants, and
Uw and Vw are stretching velocities in x- and y
-directions, respectively. Introducing the following
similarity transformations.

u = ax f ′(η), v = byg′(η),

w =−
√

av( f (η)+ g(η)), η =

√

a
υ

z (1)

where c = b /a is the ratio of the velocities in y- and x-
directions, and prime denote differentiation with respect
to η . Making use of Eq. (9), equation of continuity is
identically satisfied. After using transformation the
equations become eq 6 to 7 becomes

fηηη − f 2
η + f fηη +We fηη

fηηη + g fηη −M2 fη = 0 (10)
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gηηη − g2
η + ggηη +We gηηgηηη+

f gηη −M2gη = 0 (11)

f (0) = 0, f ′(0) = 1, g(0) = 1, g′(0) = c

(12)

f ′(∞) = 0, g
′
(∞) = 0.

WhereWe denotes Williamson parameter

We = Γ x

√

2a3

υ
,M =

σB2
o

ρ
(13)

WhereΓ ≻ 0 is time rate constant and M is the magnetic
parameter

C f x =
τwx

ρu2
w

C f y =
τwy

ρu2
w

(14)

After using boundary layer approximation shear stress rate
and coefficient of skin friction will become

τwx = µo (
∂u
∂ z

+
Γ
√

2
(

∂u
∂ z

)2 )z=0,

τwy = µo (
∂v
∂ z

+
Γ
√

2
(

∂v
∂ z

)2 )z=0 (15)

While the dimensionless forms of skin friction and local
Nusselt number are

1
√

2
C f x

1/2
Re

x
= [ f ′′ (0)+We f ′′2(0)],

1
√

2
C f y

1/2
Re

x
= [g′′ (0)+Weg′′2(0) ] (16)

where Rex=ux(x)/v is local Reynolds number based on the
stretching velocity uw(x).

3 Shooting Method

The non linear ordinary differential equations(11)− (12)
along with the boundary conditions (13) can be solved
using Runge-Kutta-Fehlberg method. The computation is
done by program which uses a symbolic and computer
language MATLAB. The required boundary value is
converted in to initial value problem by using shooting
method. In order to integrate (11) -(12) as initial
conditions are required for the value off ′′(0) andg′′(0)
but no such value is given at boundary. The suitable guess
value are chosen and then integration is carried out. The
numerical solution is obtained by using step size∆η
= 0.01 obtained the numerical solution withηmax, and
accuracy to fifth decimal place is chosen as criterion of
convergence.

First we reduce the original O. D. E to system of 1st

order ODE’s by substituting

y1 = f ′, y
′
2, y

′
3 = f ′′′,y4 = g,y5 = g

′
y6 = g′′,

(17)

f ′′′(1+We f ′′) = n f ′( f ′+ g′)

−(
n+1

2
) f ′′( f ′+ g′) (2)

g′′′(1+We g′′)g′′′ = n g′( f ′+ g′)

−(
n+1

2
)g′′( f ′+ g′) (3)

After using above substitutions Eqs.(19−20) becomes

y′3 =
ny2(y2+ y5)− ( n+1

2 )y3(y2+ y5)

1+We y2
(20)

y′6 =
ny5(y2+ y5)− ( n+1

2 )y6(y2+ y5)

1+We y6
(21)

As both the Momentum equations are of third. To solve it
in more content manner through a numerical technique
shooting is conjunction with Runge- kutta-Fehlberg
method. The non-linear momentum equation is converted
in to system of six first order simultaneous equations and
boundary condition are transformed. Boundary conditions
are transformed after using numerical approximation
becomes

y1(0) = 0, y2(0) = 1, ,y2(∞)→ 0 (22)

In order to solve non - linear equations it is must to
have three initial conditions one inf and one initial
condition in f

′
are known i.e. one initial condition off

′′
is

missing. However the value of f
′
is known at

η −→ ∞.The most important step of this method is to
choose the appropriate finite approximation value ofη∞.
Thus to estimate value ofη∞starting with some initial
guess and solve the boundary layer value problem
consisting of eq. (11)-(12) to obtainf

′′
(0). The solution

process is repeated with another large value of f” differ
only after derived significant digit. The last value ofη is
taken as finite value of limitη∞ for particular set of
physical parameter for determining velocityf (η)in
boundary layer. After getting all three initial condition,
the equation is reckoned through Runge-Kutta-Fehlberg
integration scheme.
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4 Graphs and Tables
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Fig. 1: Effect of stretching ratio parameter on velocity fields
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Fig. 2: Effect of magnetic parameter on velocity fields
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Fig. 3: Effect of Williamson parameter on velocity fields
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Table 1: Validation of present result with previous published
literature for skin friction values along x- direction

5 Discussion

The numerical computation of the problem has been
carried out for various values of involving parameters.
The calculated solution is compared via tables with some
previous computed solutions.Table. 1 represents
comparison of skin friction coefficient with kudenatti et

Table 2: Validation of present result with previous published
literature for values of skin friction coefficient

Table 3: Validation of present result with previous published
literature for values of skin friction coefficient

Table 4: Effect of c, We and M on skin friction coefficient in x-
and y- direction

al. [23] for M = 0 andWe = 0. It is observed fromTable. 1
that for c = 0 the present phenomenon reduces to two
dimensional. This table reflects that both results have
good agreement with each other. It is also depicted from
the values of table that coefficient of skin friction
increases by increasing Williamson parameter.Table. 2
represents comparison of skin friction coefficient with
kudenatti et al.[23] for M =0 ,We = 0 and at C = 0.5. It is
concluded from theTable. 2 that at C = 0.5 skin friction
effects fluid flow in both lateral directions and behavior of
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parameter on skin friction is same as that forTable. 1.
Then Additionally, comparison of Skin friction flow for C
= 1 is discussed inTable. 3. In this case axi-symmetric
flow is obtained for 3-dimensional flow. It can be seen
from the table that the computed results is accurate.

Fig. 1 discloses that enhancement in stretching ratio
parameter c causes decrease in velocity along x- direction
whereas velocity distribution along y- direction increases.
Physically it holds because of the fact that stretching
parameter is ratio of fluid velocity along y-direction to the
fluid velocity in x-direction. So stretching parameter
directly relates to the y- component of velocity and
indirectly relates to the x-component of velocity. Due to
this reason the vertical component of velocity increases
with an enhancement in C on the other velocity
distribution along x-direction decreases, the results for
two dimensional flow can be obtained from three
dimensional flow by reducing c = 0 also result for
asymmetric flow can be deduced if c = 1.

Fig. 2 depicts that for higher values of magnetic
parameter boundary layer thickness and the magnitude of
the velocity in both lateral directions decreases.
Physically it occurs due to the reason that magnetic field
can induced current in the fluid which causes a
resistive-type of force among the fluid particles, which
slows down the motion of the fluid.

Fig. 3 is plotted to study the behavior of Williamson
parameter on velocity field in x- and y- directions. It is
observed that velocity of the fluid declines in x- and y-
directions with an increase in Williamson parameter. This
is due to the fact that Williamson parameter is ratio of
relaxation time to the retardation time. So by increasing
Williamson parameter relaxation time increases due to
which fluid particles take more time to restore their
position so as a result viscosity increases and velocity of
fluid particles decreases.

Skin friction coefficients are computed through
formula given in Eq.(16). The influence of different
parameters on skin friction coefficient is shown via
Fig.(4)-(7) Fig. 4 reflects variations in skin friction
coefficient for different values of Williamson parameter
We and magnetic field parameterM. As imposed
magnetic field thickens momentum boundary layer and
reduced fluid velocity which as an outcome causes
increase in skin friction coefficient. It is also observed
that by increasing Williamson parameterWe skin friction
coefficient along y- direction enhances. Fig. (5)-(7)
characterizes the comportment of magnetic parameter and
stretching ratio parameter on coefficient of skin friction in
x-direction. It is noticed that for stronger magnetic field
the skin friction coefficient increases monotonically.
From physical viewpoint, it can be noticed that the
Lorentz force increases the values of local skin friction
coefficient. It can also be noticed from figure that by
increasing Williamson parameter coefficient of skin
friction increases along x- direction. It is due to fact that
by increasing Williamson parameter it thickens the fluid
and it become more viscous. Also the impact of stretching

ratio parameter on skin friction is displayed and it is
concluded that stretching ratio parameter increases the
coefficient of skin friction in x- and y- direction. During
the analysis it is found that Skin friction in case of
non-newtonian fluid enhances due to increase in viscosity
as compared to newtonian fluid. For this model specially
the effects of Williamson parameter on skin friction is
analyzed and conclusion is made on that as this is rate
type of fluid describes both relaxation to retardation time
and causes declination in momentum transport so it
enhances the skin friction and it is compared graphically
that skin friction values are increased in case of
Williamson fluid flow as compared to newtonian fluid
flow.

6 Concluding remarks

The contemporary study delivers numerical study of three-
dimensional Williamson fluid flow over stretching surface
and possessions of emerging parameters are conversed for
momentum transport in both x-, y- directions.

–Momentum transport decreases with an increase in
Williamson parameter, magnetic parameter.

–Stretching ratio parameter show opposite behavior for
velocity distribution in lateral directions.

–Shear stresses increases with an increase in
Williamson parameter, magnetic parameter, stretching
ratio parameter.
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