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Abstract: In the paper, we present some applications and features related with the new notions of fractional derivatives with a time
exponential kernel and with spatial Gauss kernel for gradient and Laplacian operators. Specifically, for these new models we have
proved the coherence with the thermodynamic laws. Hence, wehave revised the standard linear solid of Zener within continuum
mechanics and the model of Cole and Cole inside electromagnetism by these new fractional operators. Moreover, by the Gaussian
fractional gradient and through numerical simulations, wehave studied the bell shaped filtering effects comparing theresults with
exponential and Caputo kernel.
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1 Introduction

Some classical constitutive equations used in the study of electromagnetism, continuum mechanics and thermodynamics
are not always adequate to represent all materials occurring in these fields. Only as an example, we observe as in
electromagnetism is not always convenient to assume unity parameters appearing in the constitutive equations
mimicking the famous Cole and Cole (see [1], [2]) formula, or the standard linear solid model introduced byZener [3]
for anelastic solids.

More broadly, the evolution of the theoretical works occurred in recent time suggests that for obtaining convenient
representation of the phenomena, it is reasonable to consider new or more general constitutive equations.

For these reasons, in this paper we use the definitions of fractional derivative studied in [4]. Especially, the
representation of time fractional derivative by an exponential kernel and for non-local spatial dependence the new notion
of fractional gradient and Laplacian by a Gaussian kernel function.

The inside of these new models, we have defined a new notion of fractional integral, which allowed us to obtain
directly the classical Cattaneo-Maxwell equation.

Moreover, it is worth to note as these new derivatives with the exponential kernels (see [4]) maintain the pseudo-
plastic feature of Caputo’s derivative. Indeed, the response to a field that tends to a constant value, goes to zero. Besides,
in the case of fatigue behavior, the fractional formalism can be used to change the order of the time derivative to take into
account changes of the structural properties during the fatigue phenomena (see [5]).

Concerning constitutive equations in general, we note alsothe need that they are mathematically and physically
rigorous, satisfying the thermodynamic restrictions (see[5] and [6]). Specifically, we have studied the consistency of the
new constitutive equations with the dissipation law.

Finally, in the last part of the work, by numerical simulations, we have considered the bell shaped filtering effects
comparing the results with exponential and Caputo kernel.
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2 M. Caputo and M. Fabrizio: Applications of new time and spatial...

2 Fractional Time Derivative with an Exponential Kernel

2.1 Definition and Properties

In the paper [4] a new notion of fractional derivative was proposed by meansthe following operator

D(α) f (t) =
1

(1−α)

∫ t

a
exp

[

−
α

1−α
(t − τ)

]

d
dτ

f (τ) dτ, (1)

whereα ∈ [0,1]is the order of the derivative. While the functionf (t) is a subset ofC(a,∞), such thata ∈ [−∞,0] and
f (a) = 0. We can prove that, whenα = 1 we obtain the classical first derivative, whereas ifα = 0 , we have from (1) the
function f (t). Under these hypothesis, we can proceed through an integration by parts of the integral (1). So we obtain

D(α) f (t) =
1

(1−α)
( f (t)−

α
1−α

∫ t

a
f (τ)exp

[

−
α

1−α
(t − τ)

]

dτ , t > a (2)

or if α > 0, in the equivalent form

D(α) f (t) =
α

(1−α)2

∫ t

−∞
( f (t)− fa(τ))exp

[

−
α

1−α
(t − τ)

]

dτ , t > a, (3)

where fa denotes the extension of the functionf (t) by

fa(t) = f (t), t ≥ a,

fa(t) =0, −∞ < t < a.

Remark.From definition (1), we can say that the operatork of the convolution (1) is given by

k= exp

[

−
α

1−α
(t − τ)

]

d
dτ

.

Moreover, by the use of representation (2) of (1), we obtain

D(α) f (t) =
1

(1−α)

d
dt

∫ t

a
exp

[

−
α

1−α
(t − τ)

]

f (τ) dτ.

The definition (1) and the consequence representations (2) and (3) allow us to identify the domain on which the operator
(1) is well defined by the set

W
α ,1(a,∞) =

{

f (t) ∈ L1(a,∞);( f (t)− fa(τ))exp

[

−
α

1−α
(t − τ)

]

∈ L1(a, t)×L1(a,∞)

}

,

whose norm is given forα 6= 1 by

‖ f (t)‖
W α,1(a,∞) =

∫ ∞

a
| f (t)|dt+

α
(1−α)

∫ ∞

a

∫ t

−∞
| fa(τ)|exp

[

−
α

1−α
(t − τ)

]

dτdt.

2.2 Some Applications

A natural application of the definition (1) is given in the study of visco-plastic materials related toa bodyB. So that, the
stressσ(x, t), by the use of the representation (1) of this new fractional derivative, is denoted by

σ(x, t) =
1

1−α
A(x)

∫ t

−∞
ε̇a(x,τ)exp

[

−
α(t − τ)
1−α

]

dτ

=
1

1−α
A(x)

∫ t

−∞
(ε(x, t)− εa(x,τ))exp

[

−
α(t − τ)
1−α

]

dτ

=−
1

1−α
A(x)

∫ ∞

0
(ε(x, t)− εa(x, t − s))exp

[

−
αs

1−α

]

ds,

(4)
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where the coefficientA(x) is a positive define fourth order tensor. The state for this problem in a pointx∈ B is given by
the pair(ε(x, t),εt (x,s)), whereεt

a(x,s) = εa(x, t − s) (with s∈ (a, t]) is the history of the strain tensor.
Now, we can test if the equation (4) is compatible with the dissipation principle, which we state through the free

energyψ(ε(x, t),εt (x,s))

ψ(ε(x, t),εt (x,s)) =
1

2ρ(1−α)

∫ ∞

0
A(ε(x, t)− εa(x, t − s)) · (ε(x, t)− εa(x, t − s))exp

[

−
αs

1−α

]

ds

by the inequality

ρψ̇(εt (x,s))≤ σ(x, t) · ε̇(x, t), (5)

so that

σ(t) · ε̇(t) =
1

1−α

∫ ∞

0
A(ε(t)− εa(t − s))exp

[

−
αs

1−α

]

·
d
dt
(ε(t)− ε +a (t − s))ds

+

∫ ∞

0
A(ε(t)− εa(t − s))exp

[

−
αs

1−α

]

·
d
ds

(ε(t)− εa(t − s)))ds

=ρψ̇(ε(t),εt (s))

+
1

2(1−α)

∫ ∞

0

d
ds

[A(ε(t)− εa(t − s)) · (ε(t)− εa(t − s))]exp

[

−
αs

1−α

]

ds.

(6)

Then, we have

ρψ̇(ε(t),εt (s)) =σ(t) · ε̇(t)

−
1

2(1−α)

∫ ∞

0

d
ds

[A(ε(t)− εa(t − s)) · (ε(t)− εa(t − s))]exp

[

−
αs

1−α

]

ds

=σ(t) · ε̇(t)−D(t),

(7)

where the dissipationD(t)≥ 0 is defined by

D(t) =
α

2(1−α)2

∫ ∞

0
A(ε(t)− εa(t − s)) · (ε(t)− εa(t − s))exp

[

−
αs

1−α

]

ds.

Then, from (7) we obtain the inequality (5).

3 Constitutive Equations by the New Fractional Derivative

In order to solve some specific initial condition problems concerning the heat diffusion, and diffusion in general, we then
suggest the following new fractional constitutive equation using the new fractional derivatives with different exponential
kernels

au(t)+
b

(1−α)

∫ t

0
u′(τ)exp

[

−
α(t − τ)
1−α

]

dτ = cw(t)+
d

(1− γ)

∫ t

0
w′(τ)exp

[

−
γ(t − τ)
1− γ

]

dτ, (8)

or in a formal sense

(a+bD(α))u(t) = (c+dD(γ))w(t), (9)

wherea,b,c,d are parameters,Dα andDγ are fractional derivatives with the exponential kernel. This equation is a natural
generalization mimicking the time domain of the constitutive equation of Zener [3], for the standard linear solid, and the
frequency domain of Cole and Cole formula [1] for dielectrics.

Depending on the values and dimensions of the parameters thefunctionsw(t) andu(t) could alternatively be the heat
flux and the temperature gradient in the case of heat transmission or the flux and the concentration in the case of a diffusion
of substance in a porous medium, or the induction and the applied field in the case of electromagnetic phenomena.
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In order to solve equation (9) we take its Laplace Transform(LT), with p variable, indicating withU andW theLT
of u andw, respectively and assume zero initial conditionsu(0) = 0 andw(0) = 0. Then, from (9) we have

U(a+
b

1−α p

p+ α
1−α

) =W(c+
d

1−γ p

p+ γ
1−γ

), (10)

or equivalently

W =U
(a+B)(p+aV)
(c+D)(p+ cZ)

p+Z
p+V

. (11)

where

V =
α

1−α
, Z =

γ
1− γ

, B=
b

1−α
, D =

d
1− γ

.

The form (10) and (11) for the system functions is the most simple for the computation of the time domain expressions as
we will see later. However, if we put

L = a+B, H = c+D , M = a
V
L
,

N = c
Z
H

= c
γ

1− γ
(c+

d
1− γ

) = cγ
c(1− γ)+d
(1− γ)2 ,

(12)

then, for the computation of the wave velocity, the equation(11) may be more simply written

W =U
L
H

p+M
p+N

p+Z
p+V

,

U =W
H
L

p+N
p+M

p+V
p+Z

.

(13)

The system functions in theLT domain are then

1
R
=

H
L

p+ cZ
H

p+aV
L

p+V
p+Z

. (14)

In the Fourier domain, the system function have the following expression to be used for the computation of the wave
velocity.

R=
L
H
{(( f 2+MN)( f 2+ZV)− (N−M)(V −Z))+

+ i f ((N−M)( f 2+ZV)+ (V −Z)( f 2+MN))}
1

(M2+ f 2)( f 2+V2)
.

(15)

We set now

R(ω) = α(ω)+ iβ (ω) = Re(R(ω) = Im(R(ω)),

α(ω) =
L
H

(ω2+MN)(ω2+ZV)− (N−M)(V −Z)
(M2+ω2)(ω2+V2)

,

β (ω) = ω
L
H

(N−M)(ω2+ZV)+ (V −Z)(ω2+MN)

(M2+ω2)(ω2+V2)

(16)

which provides the function

1
R(ω)

=
α(ω)− iβ (ω

α(ω)2+β (ω)2 . (17)
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4 Case Whenw(x, t) Is Flux and u(x, t) Is Gradient

An interesting case occurs whenw(x, t) is the flux of a fluid andu(x, t) is the gradient of concentration of a solutes(x, t)
carried by the fluid. In this case, we may associate to the system function in theLT domain the continuity equation of the
solute obtaining

Wx+ pS= 0,

W =
L
H

Sx(1+
M−N
p+N

)(1+
Z−V
p+V

),
(18)

whereU = gradS= Sx.
So differentiating with respect tox we find

Wx+ pS= 0,

Wx = Sxx(1+
M−N
p+N

)(1+
Z−V
p+V

)
L
H
,

and finally obtain

R(p) =
L
H
(1+

M−N
p+N

)(1+
Z−V
p+V

) =
L
H

(p+N)(p+V)

(p+M)(p+Z)
,

R(p)
p

Sxx = S,

S(x, p) = J(p)exp

[

−x(
R(p)

p
)0.5

]

.

(19)

The solutions(x, t) is found with theLT−1 integrating along the Bromwich path

s(x, t) =
1

2π i

∫ +i∞

−i∞
J(p)exp

[

pt− px(
d

R(p)
)0.5

]

dp. (20)

The fitting to the data depends on the choice of the parametersa,b,c,d, α,γ definingR(p) which imply the limits to the
wave velocity. For instance setting in equations (10) and (11): d = a= 0 one obtains the classic case of diffusion.

5 The Case of the Equations of Elasticity

In the case whenW is LT stress andU is deformation, we associate the system equations to equilibrium condition Eq. in
theLT domain

Wx(x, p) = ρ p2S, (21)

Wx =Ux
L
H

(p+N)(p+V)

(p+M)(p+Z)
, (22)

whereρ is the density of the medium. Hence, we obtain

Sxx = ρ p2 (p+N)(p+V)

(p+M)(p+Z)
H
L

S, (23)

Sxx = (p2 ρ
R(p)

)S,

whose solution is

S(x, p) = J(p)exp

[

−x(p(
ρ

R(p)
)0.5)

]

.
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The solutions(x, t) is obtained with theLT−1 integrating along the Bromwich path , the straight line parallel to the
imaginary axis on the real portion of the complex plane

s(x, t) =
1

2π i

∫ +i∞

−i∞
J(p)exp

[

pt− x(p(
ρ

R(p)
)0.5

]

dp. (24)

It all depends on the choice of the parametersa,b,c,d,α,γ definingR(p) which imply the limits to the wave velocity.
For instance the cased = 0 which would mimic the Kelvin-Voigt classic case gives the following time domain form

of the system function, that is the response to a unit delta function of strain

h(t) =
L
c
{1+(M−V)exp(−Vt)},

or more explicitly

w(t) =
a+ b

1−a

c
{1+(M−V))exp[−Vt]}, (25)

h(t) =
a+ b

1−a

c
{1+

aα(a(1−α)+b)
1−α

exp

[

−
α

1−α
t

]

}, (26)

which implies a simple relaxation to the initial form governed by an exponential at a different rate than in as in the classic
Kelvin Voigt model with the first order derivative or as in thecase when the fractional derivative is of the Caputo type.

6 Equivalent Representations of Constitutive Equations with Different Fractional Time
Derivatives

Now we consider a particular case of the equation (8) with α = γ, then

au(α)(t)+bu(t) = cw(α)(t)+dw(t), (27)

where we suppose,u(0) = w(0) = 0. So, from definition of fractional derivative (1), we obtain

u(α)(t) =
1

1−α
(u(t)−

α
1−α

∫ t

0
u(τ)exp

[

−
α

1−α
(t − τ)

]

dτ) (28)

by a time derivation of (28) we have

d
dt

u(α)(t) =
1

1−α
(u̇(t)−

α
1−α

(u(t)−
α

1−α

∫ t

0
u(τ)exp

[

−
α

1−α
(t − τ)

]

dτ)

=
1

1−α
(u̇(t)−αu(α)(t)),

(29)

a similar expression also applies tow(α). Hence, if we derive the equation (27) with respect to timet, we have by (29)

a
1−α

(u̇(t)−αu(α)(t))+bu̇(t) =
c

1−α
(ẇ(t)−αw(α)(t))+dẇ(t)

then, using again the equation (27) we obtain the equivalence of the equation (27) with the following

(
a

1−α
+b)u̇(t)+

α
1−α

bu(t) = (
c

1−α
+d)ẇ+

α
1−α

dw(t). (30)

Finally, by a suitable choice of the coefficientsa,b,c,d, we can obtain other particular cases of equivalence between
different fractional derivatives.
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Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl.2, No. 1, 1-11 (2016) /www.naturalspublishing.com/Journals.asp 7

7 Fractional Integral

It is worth to associate to the fractional derivative (1) the following fractional integral

0I
α f (t) =

1
α

∫ t

0
f (τ)exp

[

−
1−α

α
(t − τ)

]

dτ , α ∈ [0,1] (31)

for α = 0, we obtain the functionf (t). Otherwise, whenα = 1, we have

0I
1 f (t) =

∫ t

0
f (τ)dτ

while
d
dt 0

I
α f (t) =

1
α

f (t)−
1−α

α2

∫ t

0
f (τ)exp

[

−
1−α

α
(t − τ)

]

dτ =
1
α

f (t)−
1−α

α 0
I

α f (t).

Now, if we suggest for the heat fluxq the following constitutive equation

q(t) =−k0 0I
α ∇θ (t) =−

k0

α

∫ t

0
∇θ (τ)exp(−

1−α
α

(t − τ))dτ (32)

we have

q̇(t) =−
k0

α
∇θ (t)+ k0

1−α
α2

∫ t

0
∇θ (τ)exp(−

1−α
α

(t − τ))dτ

from which

q̇(t) =−
k0

α
∇θ (t)−

(1−α)

α
q(t), (33)

that coincides with the Cattaneo-Maxwell equation

α
(1−α)

q̇(t) =−q(t)−
k0

(1−α)
∇θ (t). (34)

Of course, whenα = 0 we obtain the Fourier law,

q(t) =−k0∇θ (t). (35)

8 Fractional Time Derivative by a Gaussian Kernel

In this section, by the use of Gaussian kernels, we introducea new of fractional time derivative. In the next section, by the
definition given in [4], we study some features and behaviors of the gradient and Laplacian Gaussian fractional operators.

The definitions (9) and (31) of fractional derivative and integral show interesting connections with the temporal
derivatives, as point out in the Sections 2 and 3. However, accordingly to these remarks and similarly to that proposed
and defined in [4] for the gradient and the Laplacian fractional, the introduction of a new temporal fractional derivative
by an error function kernel appears of interest.

Then, we consider a smooth functionf (t) : [a,T] such thata∈ [−∞,T) and f (a) = 0 . If α is a fractional coefficient
such that 0≤ α ≤ 1, we define the new time fractional derivative by

Dα

Dtα f (t) =
1+α2

√

πα(1−α)

∫ t

a
ḟ (τ)exp

[

(−
(t − τ)2

(1−α)
α
]

dτ.

It is well known that

lim
α→1

2
√

πα(1−α)
exp

[

−
(t − τ)2

(1−α)
α
]

= δ (t − τ)

so that we have
Dα=1

Dtα=1 f (t) = lim
α→1

1+α2
√

πα(1−α)

∫ t

a
ḟ (τ)exp

[

−

(

(t − τ)2

(1−α)
α
)]

dτ = ḟ (t).
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While, for α = 0 we obtain
Dα=0

Dtα=0 f (t) =
∫ t

a
ḟ (τ) dτ = f (t).

If we denote withfa(t) the extension off (t) by

fa(t) =

{

f (t) for t ≥ a,
0 for −∞ < t < a,

then fort ≥ a we have

Dα

Dtα f (t) =
2α(1+α2)
√

πα(1−α)3

∫ t

−∞
( fa(τ)− f (t))(τ − t)exp

[

−
(t − τ)2

(1−α)
α
]

dτ.

A natural application of it we have in the study of viscoelastic materials related to a bodyB. So that, the stressσ(x, t)
becomes

σ(x, t) =
2(1+α2)

√

πα(1−α)3
A(α,x)

∫ ∞

0
(ε(x, t)− εa(x, t − s))

d
ds

ϕ(α,s)ds,

where the coefficientA(α,x) is a positive define fourth order tensor. The state for this problem in a pointx∈ B is given
by the pair(ε(x, t),εt (x,s)), where the history of the strain tensorεt(x,s) := ε(x, t − s), with s∈ (a, t] .

For this system the free energyψ(εt(s)) is defined by

ψ(ε(x, t),εt (s)) =
α(1+α2)

√

πα(1−α)3

∫ ∞

0
(A(ε(x, t)− εa(x, t − s)) · (ε(x, t)− εa(x, t − s))sexp

[

−s2α
(1−α)

]

ds.

9 Fractional Derivative by a Spatial Gaussian Kernel

In order to study an equation of the type (9), when the fractional derivative is given by a Gaussian kernel, we take its
Fourier Transform(FT) with variableω , indicating here withU andW theFT of u andw respectively.

Let us first remember the definition of fractional gradient and of itsFT proposed in [4]

∇α u(x) =
α

1−α
π

α
2

∫

Ω
∇u(y)exp

[

−
α2(x− y)2

1−α2

]

dy,

FT(∇α u(x))(ξ ) = π
1−α

2 FT(∇u)(ξ )exp

[

−
π2(1−α)2

α2 ξ 2)

]

,

(36)

then applying these definitions to equation of type (9) we find

(a+bπ
1−α

2 )exp(−πω2(
1−α

α
)2)U = (c+dπ

1−γ
2 )exp(−πω2(

1− γ
γ

)2)W, (37)

or

UH =W, (38)

with

H =
(a+bπ

1−α
2 )exp(−πω2(1−α

α )2)

(c+dπ
1−γ

2 )exp(−πω2(1−γ
γ )2)

.

The system functionH( f ) is an interesting real function, which seems to imply no phase change, but amplitude change
and frequency dependent wave velocity. Its time domain expression is obtained by integrating on the Bromwich path.

Concerning the possibility of the various models obtained eliminating one of the parametersa,b,c,d, we note that:
a= 0 →presence of both Gaussian exponential,−πω2(1−α

α )2, −πω2(1−γ
γ )2.

b= 0 → presence of only the exponential with exponent,−πω2(1−γ
γ )2.

c= 0 → presence of both Gaussian exponents,−πω2(1−α
α )2 , −πω2(1−γ

γ )2.
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d = 0 → presence of only the Gaussian exponential,−πω2(1−α
α )2.

Concerning the models witha = 0 or c = 0 we note that because of the presence of two different exponential they
could seem more capable to fit a larger variety of phenomena. However again we note that each phenomenon is probably
associate to a particular constitutive equation and the flexibility of the constitutive equation models considered here is not
a real issue; the first issue is the search for the most appropriate constitutive equation.

We note the interesting case whenc = 0 which mimics the Maxwell model and has an increasing and eventually
asymptotically diverging system function. Is of interest also the case when d = 0 which mimics the Voigt model when the
system function rapidly converges to the constant value c/a, models witha= 0 orc= 0:

Fig. 1: Bell shaped filtering effect of fractional derivative with Gaussian kernel.

Fig. 2: Bell shaped filtering effect of fractional derivative with Gaussian kernel.

Fig. 3: Bell shaped altering effect of fractional derivative with Gaussian kernel.
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Fig. 4: High pass converging filtering effect of fractional derivative with exponential kernel.

Fig. 5: High pass diverging filtering effect of fractional derivative with Caputo kernel.

10 Appendix. The Time Domain Expression of the System Functions

It is of interest, to the practitioner of application of fractional calculus, the time domain expression of the system functions
associated to the constitutive equation defined in Section 3, by means of formulae (8) and (9). Namely, we consider
equations (15), (16) and (17) with f = iω , that the system functions,

W =U
L
H

p+M
p

p+Z
p+V

,

U =W
H
L

p+N
p+M

p+V
p+Z

(39)

and obtain their time domain expression. For instance concerningw(t) we find

w(t) =
L
H
(δ (t)+ (M−N)exp(−Nt))∗ (δ (t)+ (Z−V)exp((V)t)), (40)

where∗ denotes the convolution. Finally we have

w(t) =
L
H
{1+(M−N)exp(−Nt)+ (Z−V)exp(−Vt)

−
(M−N)(Z−V)

N−V
(exp(−Nt)− (exp(−Vt))}.

(41)

We note that the solutionw(t) in the general case is formed by the function and its correlation with a linear combination
of two different exponents and that in order to be physicallyadmissible it implies thatN ≥ 0,V ≥ 0.

Simplifying further equation (41) we find

w(t) =
L
H
{1+

(M−N)(N−Z)
(N−V)

exp(−Nt)

+
(Z−V)(M−V)

N−V
exp(−Vt)}.

(42)
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Concerning the presence of the two exponentials appearing in equation (40) we note that in three special cases only the
exponent−V is present as shown in the following table

d =0→ D = γ = Z = N = 0,H = c;N = 0,

only the exponential with exponent−Vt.

c=0→ H = D,N = 0;N = 0,

only the exponential with exponent−Vt.

a=0→ M = 0,L = B,

the exponential with exponent−Vt and−Nt.

b=0→ B= 0,L = a,M =V;M =V,

only the exponential with exponent−Vt.

(43)

It is seen in the equations (43) that, with the exception of the case whena= 0, the time domain expression of the system
function contains only the exponential with the negative exponent−Vt =−α/(1−α)t.

Note that the exponent−Nt implies only the presence of the parameters of the operator applied to w(t) and the
exponent−Vt implies only the parameters of the operator applied tou(t); the two exponential are then independent
operators.

One may note that the constitutive equation model witha= 0, which includes the exponential with negative exponents :
−Vt=−α/(1−α)t and−Nt=−cγt(c(1−γ)+d)/(1−γ)2 could seem more capable to fit a larger variety of phenomena.
However each phenomenon is probably associate to a particular constitutive equation and the flexibility of the constitutive
equation models considered here is not a real issue; the firstissue is the search for the most appropriate constitutive
equation.
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