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Abstract: In the paper, we present some applications and featuraedeldth the new notions of fractional derivatives with aéim
exponential kernel and with spatial Gauss kernel for gradaad Laplacian operators. Specifically, for these new isode have
proved the coherence with the thermodynamic laws. Hencehave revised the standard linear solid of Zener within cantm
mechanics and the model of Cole and Cole inside electroniagndy these new fractional operators. Moreover, by thesGian
fractional gradient and through numerical simulations, hage studied the bell shaped filtering effects comparingréiselts with
exponential and Caputo kernel.
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1 Introduction

Some classical constitutive equations used in the studieofremagnetism, continuum mechanics and thermodynamics
are not always adequate to represent all materials ocguiminthese fields. Only as an example, we observe as in
electromagnetism is not always convenient to assume urdtanpeters appearing in the constitutive equations
mimicking the famous Cole and Cole (s€, [2]) formula, or the standard linear solid model introducedZener [

for anelastic solids.

More broadly, the evolution of the theoretical works ocedrin recent time suggests that for obtaining convenient
representation of the phenomena, it is reasonable to camsév or more general constitutive equations.

For these reasons, in this paper we use the definitions ofidred derivative studied in4]. Especially, the
representation of time fractional derivative by an expdiaéRernel and for non-local spatial dependence the nevonot
of fractional gradient and Laplacian by a Gaussian kernetion.

The inside of these new models, we have defined a new notioractidnal integral, which allowed us to obtain
directly the classical Cattaneo-Maxwell equation.

Moreover, it is worth to note as these new derivatives with élxponential kernels (sed]] maintain the pseudo-
plastic feature of Caputo’s derivative. Indeed, the respdo a field that tends to a constant value, goes to zero.&gsid
in the case of fatigue behavior, the fractional formalism lba used to change the order of the time derivative to take int
account changes of the structural properties during thguiphenomena (seB]].

Concerning constitutive equations in general, we note #ilsoneed that they are mathematically and physically
rigorous, satisfying the thermodynamic restrictions (&end [6]). Specifically, we have studied the consistency of the
new constitutive equations with the dissipation law.

Finally, in the last part of the work, by numerical simulaisy we have considered the bell shaped filtering effects
comparing the results with exponential and Caputo kernel.
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2 Fractional Time Derivative with an Exponential Kernel

2.1 Definition and Properties

In the paper4] a new notion of fractional derivative was proposed by meahadollowing operator

1 t a d
(a) - = N S 1 el
D@t 1) (1_0()/aexp[ 2t r)} A dr, )
wherea € [0, 1]is the order of the derivative. While the functidi(t) is a subset 0€(a, ), such thaia € [—,0] and
f(a) = 0. We can prove that, whem = 1 we obtain the classical first derivative, whereas i 0 , we have fromJ) the
function f (t). Under these hypothesis, we can proceed through an intykat parts of the integrallj. So we obtain

t
D@ f(t) = (1_1a)(f(t)—%/a f(T)exp[—ﬁ(t—T)} dr,t>a @)
orif a > 0, in the equivalent form
t
D@ f(t) = ﬁ [W(f(t) (1)) exp {—%(t - r)] dr.t>a, 3)

wheref, denotes the extension of the functibft) by

fa(t) =f(t), t>a
fa(t) =0, —oo<t<a.

Remarki=rom definition ), we can say that the operatoof the convolution 1) is given by

a d
k: exp[—m(t - T):| E

Moreover, by the use of representati@y ¢f (1), we obtain
1 d ft a
(a) -_ - = __Y q_
D' f(t) (1—a)dt/anp{ 1—a(t T)] f(1) dr.

The definition () and the consequence representati@psaid @) allow us to identify the domain on which the operator
(2) is well defined by the set

potae) = { 10 € Liam)i(1) - fu(m)exp| - 120~ 1)] e Lian x La) .

whose norm is given foar £ 1 by

1 ©lyesam = [ w|f(t>|dt+ﬁ I / m|fa<r>|exp[—ﬁ<t—r>} drdt.

2.2 Some Applications

A natural application of the definitiorl) is given in the study of visco-plastic materials related teody%. So that, the
stresso(x,t), by the use of the representatidi) ¢f this new fractional derivative, is denoted by

o(xt) = iA(x)/_tmé‘a(x, r)exp{—a(t_r)] dr

1-a 1-a
- 00 [ - atmen]- D ar “
- AR [ ex ) — el —s))exp[_%} ds
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where the coefficienA(x) is a positive define fourth order tensor. The state for thihjam in a poink € # is given by
the pair(e(x,t), €' (x,s)), wheree (x,s) = a(x,t —S) (with s € (a,t]) is the history of the strain tensor.

Now, we can test if the equatiod)(is compatible with the dissipation principle, which wetstéhrough the free
energy((xt), £(x,9))

(e D), e'(x9) = 1 5 / A£(xt) — gax,t ) (e(x,t)—ea(x,t—s))exp{—%]ds

by the inequality

pP(e'(x.9) < a(xt)-E(x.t), (5)
so that
o(t)-£(t) = a/ A(e(t) — ea(t —5)) exp _% %(e(t)—£+a(t—s))ds
+/ A(£(t) — £alt —5)) exp _g -%(e(t)—ea(t—s)))ds ©
=p(e(t),'(s))
+2(17ia)/0 dis[A(s(t)—sa(t—s))-(a(t)—sa(t—s))]exp __95 14s
Then, we have
pW(e(t),'(s)) =al(t)-&(t)
—ﬁ/j dES[A(s(t)—sa(t—s))-(a(t)—sa(t—s))]exp —% ds @)
=o(t)-&(t) - D(t),
where the dissipatiob(t) > 0 is defined by
D(t) 1 a7 / A(e(t) — galt — ) - (£(t) — £alt — 5)) exp| ——2>— | ds

Then, from ) we obtain the inequalitys).

3 Constitutive Equations by the New Fractional Derivative

In order to solve some specific initial condition problemaaerning the heat diffusion, and diffusion in general, wenth
suggest the following new fractional constitutive equatising the new fractional derivatives with different expotial
kernels

b t at—r1) B d t y(t—1)
au(t)+(1_a)/0 u'(T)exp|— - dr_cw(t)+m/om/(r)exp[— 1y }dr, (8)
or in a formal sense
(a+bD@)u(t) = (c+dDY)w(t), 9)

wherea, b, c,d are parameter§? andD are fractional derivatives with the exponential kernelisTéguation is a natural
generalization mimicking the time domain of the constiteitequation of Zeneid], for the standard linear solid, and the
frequency domain of Cole and Cole formulg for dielectrics.

Depending on the values and dimensions of the parametefsritonsw(t) andu(t) could alternatively be the heat
flux and the temperature gradientin the case of heat tras&misr the flux and the concentration in the case of a diffusio
of substance in a porous medium, or the induction and theeapfitld in the case of electromagnetic phenomena.
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In order to solve equatior®) we take its Laplace Transfor(b.T), with p variable, indicating wititd andW the LT
of uandw, respectively and assume zero initial conditioi8) = 0 andw(0) = 0. Then, from §) we have

Ua+ i"i)=W(c+ Yo, (10)
p 1—a p+1Ty
or equivalently
., (@a+B)(p+aV)p+Z
W=U D) (pred) prv (11)
where
a y b _d

“1oq ‘Tioy BT ima PEiTy

The form @0) and (1) for the system functions is the most simple for the companiadf the time domain expressions as
we will see later. However, if we put

L:a+B, H:C+D, M:a\éa

12)
z d c(1—y)+d (
N =C—=C— _—) = - -
Ch =C1— y(c+ 1= y) cy iy
then, for the computation of the wave velocity, the equatiidl) may be more simply written
LptMp+Z
Hp+Np+V’
Hp+Np+V (13)
Lp+Mp+Z
The system functions in tHelT domain are then
z
C_
1 _Hp+cgp+V (14)

R Lptalp+z

In the Fourier domain, the system function have the follgnvxpression to be used for the computation of the wave
velocity.

R={((12 4 MN)(2 +-2V) — (N~ M)(V ~ Z))+

. 1 (15)
+|f((N—M)(f2+ZV)+(V—Z)(f2+MN))}(M2+fz)(f2+vz).
We set now
R(w) = a(w) +iB(w) = RgR(w) = IM(R(w)),
L (@ +MN)(w?+2ZV)— (N=M)(V-2)
alw) =45 (M2 + ?)(w? +V2) ’ (16)
~ L(N=M)(@P+2ZV)+ (V- Z)(«? + MN)
plw) = wg (M2 1 @) (w? 1 V2)
which provides the function
1 a(w)-—-iB(w 17)

Rlw)  a(w)?+p(w)?
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4 Case Whenw(x,t) Is Flux and u(x,t) Is Gradient

An interesting case occurs wheifx,t) is the flux of a fluid andi(x,t) is the gradient of concentration of a sols{e,t)
carried by the fluid. In this case, we may associate to thesystinction in theeT domain the continuity equation of the
solute obtaining

L M-N zZ-V (18)
W= -—-S5(1 1
HSX( + p+N)( +p+V)’

whereU = gradS=S;.
So differentiating with respect to we find

W+ pS=0,
M —N Z—-V . L
Wi = Six(1+ m)(“‘ p—i——V)ﬁ’
and finally obtain
L M—N Z-V. L (p+N)(p+V)
(P) H( + p+N)( p+V) H(p+M)(p+2)’
R
(pp) Su=S. (19)
R
S p) = J(p)exp| -x(“P1)0%]
The solutions(x,t) is found with theL T~ integrating along the Bromwich path
_ 1o d o5
x0) = 5z [ 3prexp pt- i) dp (20)

The fitting to the data depends on the choice of the parameters d, a, y definingR(p) which imply the limits to the
wave velocity. For instance setting in equatioh@)@nd (L1): d = a = 0 one obtains the classic case of diffusion.
5 The Case of the Equations of Elasticity

In the case wheW is LT stress antl is deformation, we associate the system equations to bruitn condition Eq. in
theLT domain

W (X, p) = pp°S, (21)
L (p+N)(p+V)
W= (oM 2)° =

wherep is the density of the medium. Hence, we obtain

TS (23)

S pp PNV H
X )

(p+M)(p+2) L

(2 P
Sx=(p R(p)>3

whose solution is

Sx.p) = J(p) exp[—x(p(%fﬁ)] |
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The solutions(x,t) is obtained with the.T ! integrating along the Bromwich path , the straight line flatdo the
imaginary axis on the real portion of the complex plane

1 +ioo

s(x.t) = J(p)exp[pt—x<p<i>°~5 dp. (24)

R(p)

It all depends on the choice of the parameteisc, d, a, y definingR(p) which imply the limits to the wave velocity.
For instance the cagsk= 0 which would mimic the Kelvin-\oigt classic case gives tlildwing time domain form
of the system function, that is the response to a unit dettation of strain

2_711 —joo

h(t) = %{1+ (M—V)exp—V1)},

or more explicitly

a+ 2
w(t) = S5 (14 (M- V) expl-Vi}. (25)
b _
ht) = a+Cl—a{1+ a“(a(i_ g>+b) exp ——1fat }, (26)

which implies a simple relaxation to the initial form govethby an exponential at a different rate than in as in theiclass
Kelvin Voigt model with the first order derivative or as in tbase when the fractional derivative is of the Caputo type.

6 Equivalent Representations of Constitutive Equations vth Different Fractional Time
Derivatives

Now we consider a particular case of the equatB)m(th a = y, then
au@(t) + bu(t) = cw ¥ (t) + dw(t), (27)

where we suppose(0) = w(0) = 0. So, from definition of fractional derivativé), we obtain

t
U (1) = 1_1a( t) — 111/0 u(ﬂexp[—%(t—r)} dr) (28)
by a time derivation 0fZ8) we have
t
%u(a)(t)—l_la(U(t)— 1fa(u(t)—%/o u(r)exp[—%(t—r)} dr) 29)
1

Zm(u(t) —au®(1)),

a similar expression also appliesw®). Hence, if we derive the equatioBq) with respect to time, we have by 29)

a

o (A(t) — au (1)) + bi(t) = O iut) — awl@ () + dint)

1-a

then, using again the equatia?i/f we obtain the equivalence of the equati@i)(with the following

a
1-a

bu(t) = (=2 + d)W+ —2—dw(t). (30)

a .
(z——=+Db)u(t) + - -

1-a

Finally, by a suitable choice of the coefficieras,c,d, we can obtain other particular cases of equivalence between
different fractional derivatives.
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7 Fractional Integral

It is worth to associate to the fractional derivatii¢ {he following fractional integral
071 ( / f(T)exp {—T(t - r)] dr, a€]0,]] (31)

for a = 0, we obtain the functiori(t). Otherwise, whemr = 1, we have

o7 (t / f(r

while g L L L L
9 ga _ 10 2y 29 gag
dtﬂ f(t)= af(t) r)exp[ p (t r)}dr af(t) p OJ f(t).
Now, if we suggest for the heat fluxthe following constitutive equation
o l-a
q(t) = —ko o906t /De exp(—=_ 2 (t—T))dz (32)
we have ko 1 . 1
. —-a —a
q(t)_—EDB(t) 72 /ODQ(T)GXD(—T(I—T))dT
from which
. ko l-a
att) = —2oe) - - qq), (39

that coincides with the Cattaneo-Maxwell equation

gyl = —at) - 208 (34)

Of course, whem = 0 we obtain the Fourier law,

a(t) = —koI(1). (35)

8 Fractional Time Derivative by a Gaussian Kernel

In this section, by the use of Gaussian kernels, we introdusaw of fractional time derivative. In the next section, g t
definition given in ], we study some features and behaviors of the gradient apldtian Gaussian fractional operators.

The definitions 9) and @1) of fractional derivative and integral show interestinghoections with the temporal
derivatives, as point out in the Sections 2 and 3. Howevegrakingly to these remarks and similarly to that proposed
and defined in4] for the gradient and the Laplacian fractional, the intrctibn of a new temporal fractional derivative
by an error function kernel appears of interest.

Then, we consider a smooth functid(t) : [a, T] such thaa € [-,T) andf(a) =0 . If a is a fractional coefficient
such that X a < 1, we define the new time fractional derivative by

bY f(t) = 1+a® / T)exp [ _T)Za dr
Dt "V /mi(1—a) (1—a) ]
It is well known that )
. 2 (t—1)
lim exp|— al=o5(t—-r1
a—1 na(l_a) p[ (1—0) ( )

so that we have

DDtorT::ll f(t) = li \/%/ exp[ < ;—_2;(})
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While, for a = 0 we obtain

pa=0 t .
S f(t):/a f(1) dr =

If we denote withf,(t) the extension of (t) by

[ f(t) for t>a,
fa(t)_{o for —o <t <a,

then fort > a we have

D_"f(t)_ 2a(1+a?) / (fa(1) — f(t (—t)exp[_(t_r)za

Dta Ve (1—a)? (1-a)

A natural application of it we have in the study of viscoelastaterials related to a bod¥. So that, the stress(x,t)
becomes

dr.

2(1+a?)
m(l1-a)d
where the coefficiemA(a,X) is a positive define fourth order tensor. The state for thidfem in a poink € % is given

by the pair(g(x,t), €' (x,s)), where the history of the strain tensg(x, s) := £(x,t — ), with s€ (at].
For this system the free energy(e!(s)) is defined by

o(xt) = A(a,x)/om(s(x,t)—sa(x,t—s))d%d)(a,s)ds

Wext),4(s)) = \/%/ —Ea(xt—9)- (a(x,t)—aa(x,t—s))sexp[%] ds

9 Fractional Derivative by a Spatial Gaussian Kernel

In order to study an equation of the typ®,(when the fractional derivative is given by a Gaussian &knve take its
Fourier Transforn{F T) with variablec, indicating here wittJ andW the FT of u andw respectively.
Let us first remember the definition of fractional gradierd ahits FT proposed in4]

0o = 2ot [ cutyexe| - B oy )
FT(°u) €)= T (0 exp - Ol -
then applying these definitions to equation of typjve find
(a+ bnl_iﬂ)exp(—nwz(l?Ta)z)U — (c+dm?) exp(—nwz(iyy)z)w, (37)
or
UH =W, (38)
with

_ (a+bm 7 ) exp— (59 ?)

(c+dmz")exp(~mw2(5Y)2)

The system functiokd (f) is an interesting real function, which seems to imply no phasange, but amplitude change
and frequency dependent wave velocity. Its time domainesgion is obtained by integrating on the Bromwich path.
Concerning the possibility of the various models obtainedieating one of the parameteasb, c,d, we note that:

a=0 —presence of both Gaussian exponentiaifw?(1:2)?, —nwz(l—;y)z.

b= 0 — presence of only the exponential with exponenmwz(l;yy)z.

c=0 — presence of both Gaussian exponentsiw?(122)? —nwz(l;yy)z.
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d =0 — presence of only the Gaussian exponentiaifw?(1-2)2.

Concerning the models wita = 0 or c = 0 we note that because of the presence of two different expiahéhey
could seem more capable to fit a larger variety of phenomeoaekier again we note that each phenomenon is probably
associate to a particular constitutive equation and théofléy of the constitutive equation models consideredehisrnot
a real issue; the first issue is the search for the most agpteonstitutive equation.

We note the interesting case wher= 0 which mimics the Maxwell model and has an increasing andteady
asymptotically diverging system function. Is of interdsbathe case when d = 0 which mimics the Voigt model when the
system function rapidly converges to the constant valuenatalels witha= 0 orc = 0:

radient filter Gauss kernel v=0.8

Fig. 1: Bell shaped filtering effect of fractional derivative withaGssian kernel.

dient filter Gauss kernel v =0.5

0 *-—e

0 o1 02 03 04 05 06 07 08

Fig. 2: Bell shaped filtering effect of fractional derivative withaGssian kernel.

18
16 \\gmdlent filter Gauss kernel v=0.2
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14
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04 -
0,2

0

o 0,05

waveflimber % 0.2

Fig. 3: Bell shaped altering effect of fractional derivative witu@sian kernel.
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exp kernel LT filter v=0.2 dia, v=0.5 squ,
v=0.8 tri

: —

Fig. 4: High pass converging filtering effect of fractional derivatwith exponential kernel.

Cap kernel LT filter v=0.2 dia, v=0.5 squ, v =0.8 tri

frequency

Fig. 5: High pass diverging filtering effect of fractional deriwagiwith Caputo kernel.

10 Appendix. The Time Domain Expression of the System Funains

Itis of interest, to the practitioner of application of ftemal calculus, the time domain expression of the systemtfans
associated to the constitutive equation defined in Sectjdmy 3neans of formulaegf and @). Namely, we consider
equations15), (16) and (L7) with f = iw, that the system functions,

Lp+Mp+Z
W=U—-"———+—
H p p+V’
(39)
_wH PN p+V
~ Lp+Mp+z
and obtain their time domain expression. For instance congw(t) we find
L
w(t) = ﬁ(é(t) + (M —=N)expg—Nt)) « (d(t) + (Z—V)expq(V)t)), (40)
wherex denotes the convolution. Finally we have
w(t) :%{14— (M —N)exp(—Nt) + (Z—V)exp—Vt)
— _ (41)
- M2V o) — (exp v},

We note that the solutiow(t) in the general case is formed by the function and its coitglatith a linear combination
of two different exponents and that in order to be physicadlynissible it implies thail > 0,V > 0.
Simplifying further equation41) we find

L. (M=—N)(N-2)

w(t):ﬁ{1+ N=V) exp(—Nt)
(42)
+ Wexﬁ—w)}.
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Concerning the presence of the two exponentials appeariaguation 40) we note that in three special cases only the
exponent-V is present as shown in the following table

d=0—-D=y=Z=N=0,H=c,N=0,
only the exponential with exponentVt.

c=0—-H=D,N=0;N=0,
only the exponential with exponent V1.
(43)
a=0—-M=0,L=B,
the exponential with exponentVt and — Nt.

b=0—-B=0,L=aM=V;M=V,
only the exponential with exponentVt.

Itis seen in the equationgd) that, with the exception of the case wheen- 0, the time domain expression of the system
function contains only the exponential with the negativeaent-Vt = —a/(1— a)t.

Note that the exponentNt implies only the presence of the parameters of the operatolieal tow(t) and the
exponent—Vt implies only the parameters of the operator appliedi(ty; the two exponential are then independent
operators.

One may note that the constitutive equation model @withO, which includes the exponential with negative exponents :
—Vt=—a/(1-a)tand—Nt= —cyt(c(1—y)+d)/(1—y)?could seem more capable to fit a larger variety of phenomena.
However each phenomenon is probably associate to a partmuhstitutive equation and the flexibility of the condtite
equation models considered here is not a real issue; thasktst is the search for the most appropriate constitutive
equation.
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