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Abstract: This paper presents an example in which the fractional ccdiulus (FOC) provides better results than the traditiona
integer order system. The dynamical system considered$aregler-actuated and has 2 degrees of freedom along withtotmput
which is 2-D Gantry crane system. Control of this crane systeessential, as its failure causes accident that can heopienearby.
This paper designs IOPID controller (integer order PID) &@PID controller (fractional order PID) for the considergdtem and
their performances are compared to validate that FOPIDttstbeontroller than IOPID.
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1 Introduction

The concept of fractional order calculus is as old as the eotional integer order calculus. In the last decade, a grwi
number of works by many researchers from various fields afnes and engineering deal with dynamical systems
described by fractional partial differential equatiot [2], [3], [4], [5], [6], [7], [8], [9]. A FO system (fractional-order)
characterized by fractional integydlifferential operatorgequations. Fractional controllers having 2 extra pararaete
compared to conventional PID controllers; therefore, 2em@riables can be controlled and hence 2 more specifications
can be achieved that may improves the system performadgd 11], [12], [13], [14].

FOC emerges in'f century when notions of operator proposed by Leibniz’s through a letter to L'Hopital. Since
then the progress in the area of FDO were supported by marhematicians/scientist& §, [16], [17], [18], [19]. FOC
was not eligible for any applications in spite of its longthiy because of the lack of geometric interpretation, ptaisi
interpretation and its complexit@()]. Application of FOC into the real-world is only 4 decaded.dWleanwhile, fractional
calculus acquired much attraction of researchers due t@ésapplications in engineering and technology, i.e. td&/a
electrochemistry, towards porous media, towards cortteiards viscoelasticityZ[1], [22] etc. The fractional order of the
systems can give the information about the behavior of msE®and material23]. Currently there are various concepts
of FOC is being extended towards the development of congstess P4], [25], in signal filtering 6] and the observer
discussed ing7] can also be extend with the help of FOC towards the fractiobserver. 1] proposed a generalized PID
controller asP1 DB which have integrator of orden” and differentiator of orderf’.

1.1 Preliminaries

Fractional order calculus (FOC) gives the generalizatiothe Integer order calculus (IOC). The generalization @l re
order is as follows:
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Fig. 1: Regions for FOC and IOC
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wherea € R.
Different notions of FOC has developed by various mathegizats P1], [22]:

—Riemann-Liouville (RL):
For 0< a < 1 expression is:-

1 d gt (1)
a __ -
aby = rin—a) dt"/o (t—r)"*"*ldT’

—Gruinwald-Letnikov (GL):
~2 in which 'a’ some constant then by GL:-

. t
Takingn = (T

t-a
1] MNa+1)
a _1\m _
abD; _rlmlmoh“ 20( ) o= 1)f(t mh),

—Caputo:
This is defined whem— 1< a < n':-

1 /t fM(1) dr

Df = .
T Fm—a) Ja T_nyem

The Riemann-Liouville and Caputo formulation coincidetwaach other, when the initial condition taken to be zero.

a

This paper provides the FOPID controller design and armaligsi the considered crane and compares it with the
traditional PID controller to prove FOPID is better conkeolthan PID controller.
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2 Modeling of the System

Systems that can’t be controlled to follow any trajectory ®rmed as under-actuated systeg8 because these systems
have the actuators less than the degrees of freedom.

2-D Gantry crane is used to transport load from a point tofzroas shown in Fig. 2. These cranes able to handle
heavy loads and are used in factories, depots and shipsegttheSmodeling and control of these systems are necessary
which is discussed in this paper. For a basic 2-D Gantry ¢itheeequations of motion can be derived while assuming the
following:

1.The system begins from equilibrium with zero initial c@ns.
2.The load movement is limited for a few degrees to satisfgdir model.
3.Cable length is constant and weight of the cable is ndgégi
4.A step input is applied.
Let us assume that is load mass and/’ is trolley mass, the cable length to bg force applied on this system is to
be 'u(t)’ and '(m= )’ as gravity force. The position of the trolley is denoted kft)’ and '6(t)’ is the tilt angle. Design
Requirements:

—Settling timeTs less than 7 seconds.
—Peak overshoot value to be max22.5%.

There are various methods in which one can get modeling iequsadf a dynamical system. This paper uses Euler-
Lagrangian (EL) method. To model a system using EL it is negfliio find energies of the considered system.

E=T-V (1)

Where £ = Lagrangian, V = Potential Energy, T = Kinetic Energy.
From Fig. 2, one can easily get the position coordinatesefdad agx+ 1sinf, —IcosB).

Fig. 2: Schematic diagram of 2-D Gantry crane

So, the totalV’ and the T’ of the whole system can be obtained as
Viotal :\/trolly+\/load
Viota = Mgl + mg(l — IcosB)
Tiotal = Ttrolly+ Tjoad

Tiotal = %Mx2+ %m((xz) +1262 4 2%6l cosh).
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Therefore, the Lagrangian of the system can be represesited a

£ = Tiotal — Vhotal

£= %sz + %m((kz) +1262 4 2%61 cosh) — (Mgl + mg(l — lcosh)). )

Putting Lagrangiang’ from (2) to EL equations shown below

da o5y o5
dt \ dx ox

and
E(iﬁ)_@:o
dt\go) 96
We get,
(M + m)X+ mi Bcosd — ml 62sinf = u (3)
16 + scosh +gsind = 0. (4)

Findingx and®,

g utm 62sin6 + gmsind cosd
M +m—mcog 6
j_ ucosd +m 62sin6 cosf + (M + m)gsind
micos?6 — (M +m)l '

(5)

(6)
Casting eqn. (5) and eqn. (6) into standard non-linear-siaaee as

d
i f(zu,t).

Letzy =X, 2o =X=71,23=0, andz = 0 = 73.
The final nonlinear state-space matrices of 2-D Gantry csgatem will be

2
a u+mlz4? sinzz+gmsinzs coszs
E | _ M+m-mcogz;
dt | z Z4
74 ucosza+mi 42 sinzz cosza+g(M-+m) sinzg

micogzz—(M+m)l

Linearizing the state-space obtained by taking Jacol@@n [29], [30] at (z,),uo) = (0,0) as

d
gt 02= J=2(Z), U0) 62+ J—(7), Uo) Ou.
After some mathematical manipulations the linearized ixatr
0 1 0 0 0
d o 0o 0 1
—(M _
0 0 Mms g W

And the output matrix as,

<
I
L —|
or
oo
— o
oo
| I |
DD X X
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Table 1: System parameters

Parameter Description Value
m Mass of the load 1kg

M Mass of the trolley 0.25kg
g Gravitational Constant 9.8mk°
| Length of the cable 0.6m

Table 2: PID Controller parameters

Controller Gains

Ko K ka
PID Theta Controller -5 4 -0.1
PID Position Controller 5 2 3

3 Controller Design

For comparing IOPID and FOPID controllers, we would desigithltype of controllers for the considered 2-D Gantry
crane and then compare the responses.

3.1 Integer Order PID Controllers

Position controller controls the position of the movabtdley and angle (theta) controller is to control’s the loadition
so that it moves to the desired position and suppress theysarigle of the cable as fast as possible. For the purpose of
designing the controllers we need the values of the paramet¢he crane system. Mahmud Iwan Solihin and Wahyudi
proposed a lab-scale experimental set ugitj for a gantry crane system. Referring the same, we take tteenters for
controller design as:

In order to achieve fast motion of trolley with small overshdhe PID position controller is optimized by considering
the following desired specifications:

—Overshook 22.5%,
—Settling time< 7s,
—Steady state errot +1%.

After substituting the values of the system parameterstirtdinearized state space model of the system in equation,
we get,

0 1 0 0 0
d 0 0 392 O 4
0 0 -8167 O —6.67
And the output matrix as

X
|1 0 0 O X
Y=1o o0 1 o]| 6
0

Using PID Tuner block of MATLAB SIMULINK, the PID controlleparameters are.
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Table 3: FOPID Controller parameters

Controller Gains

kp ki kg a B
FOPID Theta| -5 4 -0.1 0.8 0.9
Controller
FOPID Position| 5 2 3 0.95 0.9
Controller

Table 4: Comparison of Controllers

Performance Controller
IOPID FOPID
Amplitude in radians (angle) | 1 1
Settling Time in sec (angle) 6.4 25
Amplitude in m (trolley| 1.3 1.4
position)
Settling Time in sec (trolley] 2.5 15
position)
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Fig. 3: Angle Comparison of the Controllers
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Fig. 4: Position Comparison of the controllers.

3.2 Fractional Order PID Controllers

FOPID controllers have five parameters that can be condralldle IOPID controllers have only three of them. Here
andp are the order of integration and differentiation respetyithat can take any arbitrary value. The valuesrand

B are considered to be 1(only integral) in IOPID controllérst the purpose of comparison we have kept the values of
gainskp, ki andky in FOPID same as those in IOPID controllers and only changedlues ofx and ranging between

0 and 1. Table 3 lists the obtained FOPID controller pararaete

3.3 Comparison

Comparing the results of IOPID and FOPID controllers, it benobserved that, the swing angle can be controlled in a
very less time.

Observing Table 4, Fig. (4), and Fig. (5), we can concludégbtling time of FOPID controller is less than that of
IOPID controller for theta controller as well as positiomtwller. For the chosen values afand 8 the amplitude of
FOPID controller and IOPID controller is always under thedfied range.

4 Conclusion

The main aim of controlling the swing angle as well as posii®achieved in this paper for 2-D Gantry crane system.
The FOPID proves better controller as compared on the bésistting time which is summarizes in Table 4. The
FOPID controllers utilize two more parameters to provideerféexible PID controllers. Even the small changes in these
two parameters may provide better controller response.réggt shows that the FOPID controllers perform better as
compared to the IOPID controllers for controlling the swantgle as well as position of 2-D Gantry crane system.
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