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Abstract: This paper presents an example in which the fractional ordercalculus (FOC) provides better results than the traditional
integer order system. The dynamical system considered hereis under-actuated and has 2 degrees of freedom along with 1 control input
which is 2-D Gantry crane system. Control of this crane system is essential, as its failure causes accident that can harm people nearby.
This paper designs IOPID controller (integer order PID) andFOPID controller (fractional order PID) for the consideredsystem and
their performances are compared to validate that FOPID is better controller than IOPID.
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1 Introduction

The concept of fractional order calculus is as old as the conventional integer order calculus. In the last decade, a growing
number of works by many researchers from various fields of science and engineering deal with dynamical systems
described by fractional partial differential equations [1], [2], [3], [4], [5], [6], [7], [8], [9]. A FO system (fractional-order)
characterized by fractional integral/differential operators/equations. Fractional controllers having 2 extra parameters as
compared to conventional PID controllers; therefore, 2 more variables can be controlled and hence 2 more specifications
can be achieved that may improves the system performance [10], [11], [12], [13], [14].

FOC emerges in 7th century when notions of operators 1st proposed by Leibniz’s through a letter to L’Hopital. Since
then the progress in the area of FDO were supported by many mathematicians/scientists [15], [16], [17], [18], [19]. FOC
was not eligible for any applications in spite of its long history because of the lack of geometric interpretation, physical
interpretation and its complexity [20]. Application of FOC into the real-world is only 4 decades old. Meanwhile, fractional
calculus acquired much attraction of researchers due to itsvast applications in engineering and technology, i.e. towards
electrochemistry, towards porous media, towards control,towards viscoelasticity [21], [22] etc. The fractional order of the
systems can give the information about the behavior of processes and materials [23]. Currently there are various concepts
of FOC is being extended towards the development of control systems [24], [25], in signal filtering [26] and the observer
discussed in [27] can also be extend with the help of FOC towards the fractional observer. [1] proposed a generalized PID
controller asPIα Dβ which have integrator of order ’α ’ and differentiator of order ’β ’.

1.1 Preliminaries

Fractional order calculus (FOC) gives the generalization of the Integer order calculus (IOC). The generalization to real
order is as follows:
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Fig. 1: Regions for FOC and IOC
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whereα ε R.
Different notions of FOC has developed by various mathematicians [21], [22]:

–Riemann-Liouville (RL):
For 0< α < 1 expression is:-

aDα
t =

1
Γ (n−α)

dn

dtn

∫ t

0

f (τ)
(t − τ)α−n+1dτ,

–Grünwald-Letnikov (GL):
Takingn = (t−a)

h in which ’a’ some constant then by GL:-

aDα
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h→0

1
hα

t−a
h

∑
m=0

(−1)m Γ (α +1)
m!Γ (α −m+1)

f (t −mh),

–Caputo:
This is defined when ’n−1< α < n’:-

aDα
t =

1
Γ (m−α)

∫ t

a

f m(τ)
(t − τ)α−m+1 dτ.

The Riemann-Liouville and Caputo formulation coincide with each other, when the initial condition taken to be zero.

This paper provides the FOPID controller design and analysis for the considered crane and compares it with the
traditional PID controller to prove FOPID is better controller than PID controller.
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2 Modeling of the System

Systems that can’t be controlled to follow any trajectory are termed as under-actuated systems [28] because these systems
have the actuators less than the degrees of freedom.

2-D Gantry crane is used to transport load from a point to another as shown in Fig. 2. These cranes able to handle
heavy loads and are used in factories, depots and ships etc. So, the modeling and control of these systems are necessary
which is discussed in this paper. For a basic 2-D Gantry crane, the equations of motion can be derived while assuming the
following:

1.The system begins from equilibrium with zero initial conditions.
2.The load movement is limited for a few degrees to satisfy linear model.
3.Cable length is constant and weight of the cable is negligible.
4.A step input is applied.

Let us assume that′m′ is load mass and′M′ is trolley mass, the cable length to be ’l’, force applied on this system is to
be ’u(t)’ and ’(m∗ g)’ as gravity force. The position of the trolley is denoted by ’x(t)’ and ’θ (t)’ is the tilt angle. Design
Requirements:

–Settling timeTs less than 7 seconds.
–Peak overshoot value to be max≤ 22.5%.
There are various methods in which one can get modeling equations of a dynamical system. This paper uses Euler-

Lagrangian (EL) method. To model a system using EL it is required to find energies of the considered system.

£ = T −V (1)

Where,£ = Lagrangian , V = Potential Energy, T = Kinetic Energy.
From Fig. 2, one can easily get the position coordinates of the load as(x+ lsinθ ,−lcosθ ).

Fig. 2: Schematic diagram of 2-D Gantry crane

So, the total ’V ’ and the ’T ’ of the whole system can be obtained as

Vtotal =Vtrolly +Vload

Vtotal = Mgl +mg(l− lcosθ )
Ttotal = Ttrolly+Tload

Ttotal =
1
2

Mẋ2+
1
2

m((ẋ2)+ l2θ̇ 2+2ẋθ̇ lcosθ ).
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Therefore, the Lagrangian of the system can be represented as:

£ = Ttotal −Vtotal

£ =
1
2

Mẋ2+
1
2

m((ẋ2)+ l2θ̇ 2+2ẋθ̇ lcosθ )− (Mgl+mg(l− lcosθ )). (2)

Putting Lagrangian ’£’ from (2) to EL equations shown below

d
dt

(

∂£
∂ ẋ

)

−
∂£
∂x

= u

and

d
dt

(

∂£

∂ θ̇

)

−
∂£
∂θ

= 0.

We get,

(M +m)ẍ+mlθ̈cosθ −mlθ̇ 2sinθ = u (3)

lθ̈ + ẍcosθ + gsinθ = 0. (4)

Finding ẍ andθ̈ ,

ẍ =
u+mlθ̇ 2sinθ + gmsinθ cosθ

M+m−mcos2 θ
(5)

θ̈ =
ucosθ +mlθ̇ 2sinθ cosθ +(M+m)gsinθ

mlcos2θ − (M+m)l
. (6)

Casting eqn. (5) and eqn. (6) into standard non-linear state-space as

d
dt

z = f (z,u, t).

Let,z1 = x, z2 = ẋ = ż1, z3 = θ , andz4 = θ̇ = ż3.
The final nonlinear state-space matrices of 2-D Gantry cranesystem will be

d
dt


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


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
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









.

Linearizing the state-space obtained by taking Jacobian [28], [29], [30] at (z0),u0) = (0,0) as

d
dt

δ z = J=z(z0,u0)δ z+ J=z(z0,u0)δu.

After some mathematical manipulations the linearized matrix is,

d
dt

δ z =









0 1 0 0
0 0 mg

M 0
0 0 0 1

0 0 −(M+m)g
Ml 0









δ z+









0
1
M
0
−1
Ml









δu.

And the output matrix as,

y =

[

1 0 0 0
0 0 1 0

]







x
ẋ
θ
θ̇






.
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Table 1: System parameters
Parameter Description Value
m Mass of the load 1kg
M Mass of the trolley 0.25kg
g Gravitational Constant 9.8m/s2

l Length of the cable 0.6m

Table 2: PID Controller parameters
Controller Gains

kp ki kd
PID Theta Controller -5 4 -0.1
PID Position Controller 5 2 3

3 Controller Design

For comparing IOPID and FOPID controllers, we would design both type of controllers for the considered 2-D Gantry
crane and then compare the responses.

3.1 Integer Order PID Controllers

Position controller controls the position of the movable trolley and angle (theta) controller is to control’s the load position
so that it moves to the desired position and suppress the swing angle of the cable as fast as possible. For the purpose of
designing the controllers we need the values of the parameters of the crane system. Mahmud Iwan Solihin and Wahyudi
proposed a lab-scale experimental set up in [31] for a gantry crane system. Referring the same, we take the parameters for
controller design as:

In order to achieve fast motion of trolley with small overshoot, the PID position controller is optimized by considering
the following desired specifications:

–Overshoot≤ 22.5%,
–Settling time≤ 7s,
–Steady state error≤±1%.

After substituting the values of the system parameters intothe linearized state space model of the system in equation,
we get,

d
dt

δ z =







0 1 0 0
0 0 3.92 0
0 0 0 1
0 0 −81.67 0






δ z+







0
4
0

−6.67






δu

And the output matrix as

y =

[

1 0 0 0
0 0 1 0

]







x
ẋ
θ
θ̇







Using PID Tuner block of MATLAB SIMULINK, the PID controllerparameters are.
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Table 3: FOPID Controller parameters
Controller Gains

kp ki kd α β
FOPID Theta
Controller

-5 4 -0.1 0.8 0.9

FOPID Position
Controller

5 2 3 0.95 0.9

Table 4: Comparison of Controllers
Performance Controller

IOPID FOPID
Amplitude in radians (angle) 1 1
Settling Time in sec (angle) 6.4 2.5
Amplitude in m (trolley
position)

1.3 1.4

Settling Time in sec (trolley
position)

2.5 1.5

Fig. 3: Angle Comparison of the Controllers
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Fig. 4: Position Comparison of the controllers.

3.2 Fractional Order PID Controllers

FOPID controllers have five parameters that can be controlled while IOPID controllers have only three of them. Hereα
andβ are the order of integration and differentiation respectively that can take any arbitrary value. The values ofα and
β are considered to be 1(only integral) in IOPID controllers.For the purpose of comparison we have kept the values of
gainskp, ki andkd in FOPID same as those in IOPID controllers and only change the values ofα andβ ranging between
0 and 1. Table 3 lists the obtained FOPID controller parameters.

3.3 Comparison

Comparing the results of IOPID and FOPID controllers, it canbe observed that, the swing angle can be controlled in a
very less time.

Observing Table 4, Fig. (4), and Fig. (5), we can conclude that settling time of FOPID controller is less than that of
IOPID controller for theta controller as well as position controller. For the chosen values ofα andβ the amplitude of
FOPID controller and IOPID controller is always under the specified range.

4 Conclusion

The main aim of controlling the swing angle as well as position is achieved in this paper for 2-D Gantry crane system.
The FOPID proves better controller as compared on the basis of settling time which is summarizes in Table 4. The
FOPID controllers utilize two more parameters to provide more flexible PID controllers. Even the small changes in these
two parameters may provide better controller response. Theresult shows that the FOPID controllers perform better as
compared to the IOPID controllers for controlling the swingangle as well as position of 2-D Gantry crane system.
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