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In this paper, we prove that if a linear q–delay difference equation satisfies Perron’s
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1 Introduction

Studies on linear q–difference equations have started at the beginning of the last century
in intensive works by Jackson [1], Carmichael [2], Mason [3], Adams [4], Trjitzinsky [5]
and some other authors such as Poincare, Picard and Ramanunjan. However, from the
1930s up to the beginning of the 1980s, the theory of linear q–difference equations has
lagged noticeably behind the sister theories of linear difference and differential equations.
Since the 1980s, an extensive and somewhat surprising interest in the subject reappeared
in many areas of mathematics, physics and applications including mainly new difference
calculus and orthogonal polynomials, q–combinatorics, q–arithmetics, integrable systems
and variational q–calculus, see the recent papers [6–11].

The asymptotic properties of q–difference equations have been rarely considered in the
literature. There are few recent results dealing with subjects like spectral analysis, oscilla-
tion behavior of solutions, factorization method and symmetries of these type of equations,
we name the papers [12–18]. The stability behavior of q–delay difference equations, in
particular, is our main concern in this paper. We start by mentioning a few background
details that serve to motivate the results of this paper.
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It is well known in the theory of ordinary differential equations (see eg. [19, page 120])
that if for every continuous function f(t) bounded on [0,∞), the solution of the equation
x′(t) = A(t)x(t) + f(t), t ≥ 0 satisfying x(0) = 0 is bounded on [0,∞), then the trivial
solution of the corresponding homogeneous equation x′(t) = A(t)x(t), t ≥ 0 is uniformly
asymptotically stable. Later on, this result, which is known as Perron Theorem [20], was
extended in [19, page 371] to delay differential equations. Indeed, it was shown that if for
every continuous function f(t) bounded on [0,∞), the solution of the equation

x′(t) = A(t)x(t) +B(t)x(t− τ) + f(t), t ≥ 0, τ > 0

satisfying x(t) = 0 for t ∈ [−τ, 0], is bounded on [0,∞), then the trivial solution of the
equation

x′(t) = A(t)x(t) +B(t)x(t− τ), t ≥ 0 (1.1)

is uniformly asymptotically stable. Perron’s theorem for impulsive delay differential equa-
tions has been considered in the paper [21]. A discrete analogue of the above result has
been published in [22]. In particular, Perron theorem has been proved for equations of
form

∆x(n) = A(n)x(n) +B(n+ 1)x(n− j + 1), n ≥ 0, j ∈ {2, 3, 4, . . .}, (1.2)

where ∆x(t) denotes the forward difference x(t + 1) − x(t). Recently, we proved this
result for a type of impulsive delay difference equations [23]. For more related results, see
the papers [24–26]. To the best of authors’ knowledge, however, there are a few results
concerning stability of q–delay difference equations [27, 28]. Motivated by this, we con-
tribute to the theory of q–difference equations by proving Perron’s theorem for a type of
q–delay difference equations of the form

Dqx(t) = A(t)x(t) + qB(qt)x(q−α0+1t), t ∈ qZ,

where qZ = {qi : i ∈ Z} with q > 1 and α0 ∈ N.

2 Adjoint equation and solutions representations

We introduce some preliminary notations that would help in understanding later analy-
sis. For the function f : qZ → R, the expression

Dqf(t) =
f(qt)− f(t)

(q − 1)t
(2.1)

is called the q–derivative (or Jackson derivative [29]) of function f . Together with the
definition of q–derivative, arises naturally that of the q–integral of a given function. In
view of Definition 1.71 in [30, page 26], one can designate the indefinite q-integral by∫

f(t)qt = F (t) + C, (2.2)
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where F is a pre–antiderivative of f and C is an arbitrary constant. The definite q–integral
turns out to be defined as follows

∫ b

a

f(t)qt = (q − 1)

β−1∑
i=α

qif(qi) = (q − 1)

q−1b∑
t=a

tf(t), (2.3)

where a = qα and b = qβ . We note that (2.3) is the q–analogue of formula (ii) of Theorem
1.79 in [30, page 29].

We are now in a position to define the q–analogue of some well known rules of calculus.
The q–derivative of the composition of functions f and g is given by

Dq(f ◦ g)(t) = (Dqf)(g(t))Dqg(t), (2.4)

where g(t) = ct, c ∈ R. The q–derivative of the product of functions f and g is interpreted
as

Dq(fg)(t) = f(qt)Dqg(t) +Dqf(t)g(t). (2.5)

The fundamental theorem of calculus for q–difference operator turns out to be defined as
follows ∫ b

a

Dqf(t)qt = f(b)− f(a), (2.6)

where a, b ∈ qZ. By means of (2.4), one can write the Newton–Libniz formula for q–
difference operator in this form

Dq

∫ h(t)

k(t)

f(x)qx = f(h(t))Dqh(t)− f(k(t))Dqk(t), (2.7)

where h(t) = qα0t and k(t) = qt.
We shall prove Perron’s theorem for the q–delay difference equation

Dqx(t) = A(t)x(t) + qB(qt)x(q−α0+1t), t ∈ qZ, α0 ∈ N, (2.8)

where it is assumed that A,B : qZ → Rm×m are bounded matrices. Equation (2.8) is
being designated to be the q–version of equations (1.1) and (1.2).

By a solution of (2.8), we mean a function x which is defined for all t ∈
[q−α0+1t0,∞)qZ and satisfies (2.8) for t ∈ [t0,∞)qZ = {qi : i ≥ β}, β ∈ Z. It is
easy to see that for any given t0 ≥ a = qα1 and initial condition of the form

x(t) = ϕ(t), t ∈ [q−α0+1t0, t0]qZ (2.9)

(2.8) has a unique solution x(t) which is defined for t ∈ [q−α0+1t0,∞)qZ and satisfies the
initial condition (2.9).
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We shall start by constructing the adjoint equation of (2.8) with respect to a function
resembles the one obtained in [19, page 359]. It turns out that the q–analogue of this
function has the form

< y(t), x(t) >= yT (t)x(t) +

∫ qα0 t

qt

yT (α)B(α)x(q−α0α)qα, (2.10)

where ′′T ′′ denotes the transposition.
Define the equation

Dqy(t) = −AT (t)y(qt)− qα0BT (qα0t)y(qα0t). (2.11)

Lemma 2.1. Let x(t) be any solution of (2.8) and y(t) be any solution of (2.11), then

< y(t), x(t) >= c = constant. (2.12)

Proof. Clearly, it suffices to show that Dq < y(t), x(t) >= 0. Then

Dq < y(t), x(t) >= Dq(y
T (t)x(t)) +Dq

[ ∫ qα0 t

qt

yT (α)B(α)x(q−α0α)qα
]
.

By virtue of relations (2.5) and (2.7), we have

Dq < y(t), x(t) > = yT (qt)Dqx(t) +Dqy
T (t)x(t) + yT (qα0t)B(qα0t)x(t)Dqq

α0t

− yT (qt)B(qt)x(q−α0+1t)Dqqt.

In view of equations (2.8) and (2.11), we obtain

Dq < y(t), x(t) > = yT (qt)
[
A(t)x(t) + qB(qt)x(q−α0+1t)

]
−

[
yT (qt)A(t) + qα0yT (qα0t)B(qα0t)

]
x(t)

+ qα0yT (qα0t)B(qα0t)x(t)

− qyT (qt)B(qt)x(q−α0+1t) = 0.

Thus, < y(t), x(t) >= c = constant. The proof is complete.

By virtue of Lemma 2.1, we may say that equation (2.11) is an adjoint of (2.8). It
is easy to verify also that the adjoint of (2.11) is (2.8), that is, they are mutually adjoint of
each other.

Definition 2.1. A matrix solution X(t, s) of (2.8) satisfying X(t, t) = I and X(t, s) = 0

for t < s is called a fundamental matrix of (2.8).

Definition 2.2. A matrix solution Y (t, s) of (2.11) satisfying Y (t, t) = I and Y (t, s) = 0

for t > s is called a fundamental matrix of (2.11).
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It is to be noted that the construction of function (2.10) is of special interest in itself.
We shall use function (2.10) to derive the solutions representations of equations (2.8) and
(2.11).

In view of relation (2.12), we observe that

< y(t), x(t) >=< y(t0), x(t0) > . (2.13)

Looking at function (2.10), if we replace x(s) by X(s, t0) and y(s) by Y (s, t) in (2.13)
and use the properties of the fundamental matrices, we get the identity

X(t, t0) = Y T (t0, t). (2.14)

Furthermore, replacing y(s) by Y (s, t) in (2.13) and using identity (2.14) and the properties
of the fundamental matrix Y (t, s), we have the following result.

Lemma 2.2. Let X(t, s) be a fundamental matrix of (2.8) and t0 = qβ ≥ a = qα1

(1 ≤ α1 ≤ β). If x(t) is a solution of (2.8), then

x(t) = X(t, t0)x(t0) +

∫ qα0 t0

qt0

X(t, α)B(α)x(q−α0α)qα. (2.15)

One can also obtain the solutions representation of equation (2.11) in like manner. In-
deed, upon replacing x(s) by X(s, t) in relation (2.13), we can derive the solutions repre-
sentation of the adjoint equation (2.11). Namely,

Lemma 2.3. Let Y (t, s) is a fundamental matrix of (2.11) and t0 = qβ ≥ a = qα1

(1 ≤ α1 ≤ β). If y(t) is a solution of (2.11), then

y(t) = Y (t, t0)y(t0) +

∫ qα0 t0

qt0

Y (t, q−α0α)BT (α)y(α)qα. (2.16)

Consider the equation

Dqx(t) = A(t)x(t) + qB(qt)x(q−α0+1t) + f(t), t ∈ qZ, (2.17)

where f : qZ → Rm. Then the solutions representation of (2.17) is given by the following
result.

Lemma 2.4. Let X(t, s) be a fundamental matrix of (2.8) and t0 = qβ ≥ a = qα1

(1 ≤ α1 ≤ β). If x(t) is a solution of (2.17), then

x(t) = X(t, t0)x(t0)+

∫ qα0 t0

qt0

X(t, α)B(α)x(q−α0α)qα+

∫ t

t0

X(t, qα)f(α)qα. (2.18)

The proof of the above statement is straightforward and can be achieved by direct sub-
stitution and by using the relation

Dq

∫ t

a

f(t, τ)qτ =

∫ t

a

Dt
qf(t, τ)qτ + f(qt, t).
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3 Perron’s theorem

Perron condition for equation (2.8) is formulated as follows.

Definition 3.1. Equation (2.8) is said to verify Perron’s condition if for every bounded
function f(t) on [a,∞)qZ , the solution of (2.17) with x(t) = 0 for t ∈ [q−α0+1a, a] is
bounded on [a,∞)qZ .

Lemma 3.1. If equation (2.8) verifies Perron’s condition, then there exists a constant C
such that ∫ t

a

∥X(t, qα)∥qα < C for t ≥ a, t ∈ qZ, (3.1)

where ∥ · ∥ denotes any convenient matrix norm.

Proof. By virtue of Lemma 2.4, the solution of (2.17) satisfying (2.9) with ϕ(t) = 0

has the form

x(t) =

∫ t

a

X(t, qα)f(α)qα.

Let B denote the set of all bounded functions f on [a,∞)qZ supplied by the norm ∥f∥∞ =

supt∈[a,∞)
qZ
∥f(t)∥. Clearly, B is a Banach space.

For each t ∈ [a,∞)qZ , define a sequence of linear operators Ut : B → Rm by

Ut(f) =

∫ t

a

X(t, qα)f(α)qα.

By using the estimate ∥Ut(f)∥ ≤
∫ t

a
∥X(t, qα)∥qα∥f∥∞, it follows that the operators Ut

are bounded. By virtue of Perron condition, we deduce that for each f ∈ B we can find
cf > 0 such that supt∈[a,∞)

qZ
∥Ut(f)∥ ≤ cf . Hence, by using the Banach–Steinhaus

Theorem, there exists a constant L > 0 such that

sup
t

∥Ut(f)∥ ≤ L∥f∥∞, for all f ∈ B. (3.2)

For fixed t ∈ [a,∞)qZ , let xrk(1 ≤ r, k ≤ m) be the elements of the matrix X(t, qα)

where a ≤ α < t, α ∈ qZ. Let ep denote the canonical basis having the unity at the p-th
place and zero otherwise. Let fr

α be the element of B with its α−component the vector Vr

of Rm and zeros otherwise, where Vr =
∑m

k=1 signxrkek. The vector Xfr
α(α) will have

its r − th component equal to
∑m

k=1 |xrk|.
From (3.2), we can write

∥
∫ t

a

X(t, qα)fr
α(α)qα∥ ≤ M2,

where M2 = L supr ∥Vr∥. Hence∫ t

a

m∑
r=1

|xrk(t, qα)|qα ≤ M2.
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Since the above relation is true for every r, we take the summation
∑m

k=1 of both sides to
deduce that there exists C such that (3.1) holds. The proof is finished.

Lemma 3.2. If equation (2.8) verifies Perron’s condition, then there exists a constant M >

0 such that
∥X(t, s)∥ < M for t ≥ s ≥ a.

Proof. Having taken into account that Y T (r, t) satisfies equation (2.11), we integrate
both sides with respect to r from s to t (s ≥ a) to get

Y T (t, t)− Y T (s, t) = −
∫ t

s

Y T (qr, t)A(r)qr −
∫ t

s

qα0Y T (qα0r, t)B(qα0r)qr.

It follows that

Y T (s, t) = I +

∫ t

s

Y T (qr, t)A(r)qr + qα0

∫ t

s

Y T (qα0r, t)B(qα0r)qr.

Changing the variable qu = qα0r, we obtain

Y T (s, t) = I +

∫ t

s

Y T (qr, t)A(r)qr + q

∫ qα0−1t

qα0−1s

Y T (qr, t)B(qr)qr.

Using the relation Y T (s, t) = X(t, s) and that Y (r, t) = 0 for r > t, we have

X(t, s) = I +

∫ t

s

X(t, qr)A(r)qr + q

∫ t

qα0−1s

X(t, qr)B(qr)qr.

Taking the norm of both sides yields

∥X(t, s)∥ ≤ 1 + γ(1 + q)

∫ t

s

∥X(t, qr)∥qr,

where γ = max{supt≥a ∥A(t)∥, supt≥a ∥B(t)∥}. Employing inequality (3.1) results in
the desired conclusion.

Lemma 3.3. If equation (2.8) verifies Perron’s condition, then its zero solution is uniformly
stable.

Proof. Let x(t; t0, ϕ) be the solution of (2.8) satisfying (2.9). In view of Lemma 2.2,
the solution has the form

x(t; t0, ϕ) = X(t, t0)x(t0) +

∫ τ−1(t0)

σ(t0)

X(t, s)B(s)x(q−αs)qs, t ≥ t0.

Changing the variable u = q−α0s, we get

x(t; t0, ϕ) = X(t, t0)x(t0) + qα0

∫ t0

q−α+1t0

X(t, qα0s)B(qα0s)ϕ(s)qs, t ≥ t0.
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By virtue of Lemma 3.2, we obtain

∥x(t; t0, ϕ)∥ ≤ M1∥ϕ∥0,

where M1 = M(1 + γα0q
α0) and ∥ϕ∥0 = supt∈[q−α+1t0,t0] ∥x(t)∥. Thus, the trivial

solution is uniformly stable.

Theorem 3.1. If equation (2.8) verifies Perron condition, then its zero solution is uniformly
asymptotically stable.

Proof. In view of Lemma 3.3, one can deduce that it remains to prove that

lim
t→∞

x(t; t0, ϕ) = 0 (3.3)

uniformly with respect to t0 and ϕ.
For our purpose, let λ ≥ t0, then the solution has the form

x(t; t0, ϕ) = X(t, λ)x(λ; t0, ϕ) +

∫ λ

q−α+1λ

X(t, qα0s)B(qα0s)x(s; t0, ϕ)qs.

Integrating both sides with respect to λ from t0 to t, we have∫ t

t0

x(t; t0, ϕ)qλ =

∫ t

t0

X(t, λ)x(λ; t0, ϕ)qλ

+

∫ t

t0

∫ λ

q−α+1λ

X(t, qα0s)B(qα0s)x(s; t0, ϕ)qsqλ

or

(n− n0 − 1)x(t; t0, ϕ) =
n−1∑

m0=n0

X(qn, qm0)x(qm0 ; qn0 , ϕ)

+
n−1∑

m0=n0

m0−1∑
k=m0−α0+1

X(qn, qk+α0)B(qk+α0)x(qk; qn0 , ϕ),

where t = qn, t0 = qn0 , λ = qm0 and s = qk. Interchanging the order of summations to
get

(n− n0 − 1)x(qn; qn0 , ϕ) =

n−1∑
m0=n0

X(qn, qm0)x(qm0 ; qn0 , ϕ)

+

n0−1∑
k=n0−α0+1

k+α0−1∑
m0=n0

X(qn, qk+α0)B(qk+α0)x(qk; qn0 , ϕ)

+

n−α0∑
k=n0

k+α0−1∑
m0=k+1

X(qn, qk+α0)B(qk+α0)x(qk; qn0 , ϕ)

+
n−2∑

k=n−α0+1

n−1∑
m0=k+1

X(qn, qk+α0)B(qk+α0)x(qk; qn0 , ϕ).
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Using that X(s, t) = 0 for s < t, the last term of the above equation vanishes. Taking the
norm for both sides and using Lemma 3.1, Lemma 3.2 and Lemma 3.3, we obtain

(n− n0 − 1)∥x(qn; qn0 , ϕ)∥ ≤ M1C∥ϕ∥0 + γ∥ϕ∥0Mα2
0M1q

α0

+ γ∥ϕ∥0M1(α0 − 1)qα0

n−1∑
k=n0+α0−1

∥X(qn, qk+α0)∥.

It follows that
(n− n0 − 1)∥x(qn; qn0 , ϕ)∥ ≤ M2∥ϕ∥0,

where
M2 = M1C + γMM1α

2
0q

α0 + γM1(α0 − 1)Cqα0 .

Thus,

∥x(qn; qn0 , ϕ)∥ ≤ M2

(n− n0 − 1)
∥ϕ∥0.

Letting t → ∞ which takes place as n → ∞, we get the desired conclusion (3.3). The
solution is uniformly asymptotically stable.
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