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Abstract: Quadratic fields have applications in different areas of mathematics such as quadratic forms, algebraic geometry, diophantine
equations, algebraic number theory, and even cryptography. The Unit Theorem for real quadratic fields says that every unit in the integer
ring of a quadratic field is given in terms of the fundamental unit of the quadratic field. Thus determining the fundamentalunits of
quadratic fields is of great importance. In this paper, we obtained an explicit formulation to determine the forms of continued fraction
expansion and fundamental units of certain real quadratic number fields where the period in the continued fraction expansion of the
quadratic irrational number of the certain real quadratic fields is equal to 7 by using a practical algorithm for special cases. Moreover,
a part of this paper is generalize and complete [2].
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1 Introduction and Notation

Determination of the fundamental units of quadratic fields
has a great importance at many branches in number
theory. Although the fundamental units of real quadratic
fields of Richaut-Degert type are well-known, explicit
form of the fundamental units are not known very well
and these determinations were very limited except for
these type. Therefore Tomita has described explicitly the
form of the fundamental units of the real quadratic fields
Q(

√
d) such that d is a square-free positive integer

congruent to 1 modulo 4 and the periodkd in the
continued fraction expansion of the quadratic irrational

numberωd = (1+
√

d
2 ) in Q(

√
d) is equal to 3 and 4, 5

respectively in [5] and [6]. Later, explicit form of the
fundamental units for all real quadratic fieldsQ(

√
d) such

that the periodkd in the continued fraction expansion of
the quadratic irrational numberωd is equal to 6, has been
described in [4]. The aim of this paper is to determine the
general forms of continued fractions and fundamental
units for special cases and also generalize and complete
the some of theorems had been given in [2].

In this paper, we will deal with some real quadratic
fields Q(

√
d) such thatd is a square free positive integer

not only congruent to 1 modulo 4 but also congruent to 2
modulo 4 and the periodkd = k in the continued fraction
expansion of the quadratic irrational numberωd in
Q(

√
d) is equal to 7 and describe explicitlyTd , Ud in the

fundamental unitεd = (Td+Ud
√

d
2 ) > 1 of Q(

√
d) and also

the form of d is written by using parameters which are
appearing in the continued fraction expansion ofωd .

Let I(d) be the set of all quadratic irrational numbers
in Q(

√
d). For an elementξ of I(d) if ξ > 1,

−1 < ξ ′
< 0 thenξ is called reduced, whereξ ′

is the
conjugate ofξ with respect toQ. More information on
reduced irrational numbers may be found in [3] and [7].
We denote byR(d) the set of all reduced quadratic
irrational numbers inI(d). It is well known that if an
elementξ of I(d) is in R(d) then the continued fractional
expansion of ξ is purely periodic. Moreover, the
denominator of its modular automorphism is equal to
fundamental unitεd of Q(

√
d) and the norm ofεd is

(−1)kd in [1] and [7]. In this paper[x] means the greatest
integer less than or equal tox and continued fraction with
periodkd = k is generally denoted by[a0,a1,a2, .....,ak].

∗ Corresponding author e-mail:ozenozer@klu.edu.tr

c© 2016 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/jant/040104


24 Ö. Özer∗, A. Pekin: Hermite-Hadamard Type Inequalities for...

2 Preliminaries and Lemmas

In this section some of the important required
preliminaries and lemmas are given.

Now, for any square-free positive integerd, we can put
d = a2+b with a,b∈ Z, 0< b ≤ 2a. Here, since

√
d−1<

a <
√

d the integersa andb are uniquely determined byd.
Let d be a square-free positive integer then we will

consider the following two special cases:
Case 1. d ≡ 1mod(4), if a is even, thenb= 8ℓ+5 with

l ∈ Z, ℓ≥ 0.
Case 2. d ≡ 2mod(4), if a is odd, thenb = 4m+1 with

m ∈ Z, m ≥ 0.
Let denote byDt

k the set of all positive square-free
integerd such thatd ≡ k(8) andb ≡ t(8). Hence, we have

Dt
k = {d ∈ Z | d ≡ k(8),b ≡ t(8)}. Then, we get

some remarks as follows:

Remark 2.1. d can be congruent to 1 or 5 modulo 8
sinced is congruent to 1 modulo 4.

In the case ofd ≡ 1(8), b can be congruent to 0, 1 or
5 modulo 8. Therefore, the set of all positive square-free
integers congruent to 1 modulo 8 is equalD0

1∪D1
1∪D5

1.
Thus the set of all positive square free integers congruent
to1 modulo 8 is the union ofD0

1,D1
1,D5

1.
In the case ofd ≡ 5(8), b can be congruent to 1, 4 or 5

modulo 8. So the set of all positive square-free integers
congruent to 5 modulo 8 is equal toD1

5∪D4
5∪D5

5.

Remark 2.2. Let d be a square-free positive integer
congruent to 1 modulo 4, then,

If a is even;b can only be congruent to 1 or 5 modulo
8 sinceb ≡ 1(mod4) whena is even. Then,d belongs to
D5

5∪D5
1 in the Case1.

Remark 2.3. The setsD0
1,D1

1,D5
1,D1

5,D4
5 and

D5
5 are represented as follows;
D0

1 = {d ∈D | d = a2+8m,a≡ 1(mod2),0< 4m< a}
D1

1 = {d ∈ D | d = a2 + 8m + 1,a ≡ 0(mod4),0 ≤
4m < a}

D5
1 = {d ∈ D | d = a2 + 8m + 5,a ≡ 2(mod4),0 ≤

4m < a−2}
D1

5 = {d ∈ D | d = a2 + 8m + 1,a ≡ 2(mod4),0 ≤
4m < a}

D4
5 = {d ∈ D | d = a2 + 8m + 4,a ≡ 1(mod2),0 ≤

4m < a−2}
D5

5 = {d ∈ D | d = a2 + 8m + 5,a ≡ 0(mod4),0 ≤
4m < a−2}

Now in order to prove our theorems we need the
following lemmas.

Lemma 2.4. For a square-free positive integerd > 5

congruent to 1 modulo 4, we putωd = (1+
√

d
2 ), q0 = [ωd ]

, ωR = q0 − 1+ ωd . Then ωd /∈ R(d), but ωR ∈ R(d)
holds. Moreover for the periodk of ωR, we get
ωR = [2q0−1,q1, .......,qk−1] and

ωd = [q0,q1, .......,qk−1,2q0−1]. Furthermore, let

ωR =
(Pk−1ωR+Pk−2)
(Qk−1ωR+Qk−2)

= [2q0−1,q1, .......,qk−1,ωR] be a
modular automorphism ofωR, then the fundamental unit
εd of Q(

√
d) is given by the following formula:

εd = (Td+Ud
√

d
2 )> 1 ,

Td = (2q0−1)Qk−1+2Qk−2, Ud = Qk−1, whereQi is
determined byQ−1 = 0, Q0 = 1, Qi+1 = qi+1Qi +Qi−1,
(i ≥ 0).

Moreover, for a square-free positive integerd
congruent to 2,3 modulo 4, we putωd =

√
d, q0 = [ωd ],

ωR = q0 + ωd . Then ωd /∈ R(d), but ωR ∈ R(d) holds.
Moreover for the period k of ωR, we get
ωR = [2q0,q1, .......,qk−1] and
ωd = [q0,q1, .......,qk−1,2q0]. Furthermore, let

ωR =
(Pk−1ωR+Pk−2)
(Qk−1ωR+Qk−2)

= [2q0,q1, .......,qk−1,ωR] be a
modular automorphism ofωR, then the fundamental unit
εd of Q(

√
d) is given by the following formula:

εd = (Td+Ud
√

d
2 )> 1 ,

Td = 2q0Qk−1 + 2Qk−2, Ud = 2Qk−1, where Qi is
determined byQ−1 = 0, Q0 = 1, Qi+1 = qi+1Qi +Qi−1,
(i ≥ 0).

Proof. See[6, Lemma 1].

Lemma 2.5. For a square-free positive integerd, we
put d = a2 + b (0 < b ≤ 2a), a,b ∈ Z. Moreover let
ωi = ℓi +

1
ωi+1

(ℓi = [ωi], i ≥ 0) be the continued fraction
expansion ofω = ω0 in R(d). Then eachωi is expressed

in the formωi =
a−ri+

√
d

ci
(ci,ri ∈ Z), andℓi, ci, ri can be

obtained from the following recurrence formula:

ω0 =
a−r0+

√
d

c0
,

2a− ri = ciℓi + ri+1,
ci+1 = ci−1+(ri+1− ri)ℓi (i ≥ 0), where 0≤ ri+1 < ci,

c−1 =
(b+2ar0−r0

2)
c0

.
Moreover for the periodk ≥ 1 of ω0, we get
ℓi = ℓk−i (1≤ i ≤ k−1),
ri = rk−i+1, ci = ck−i (1≤ i ≤ k).

Proof. See[1, Proposition 1] .

Lemma 2.6. For a square-free positive integerd

congruent to 1 modulo 4, we putωd = (1+
√

d
2 ), q0 = [ωd ]

andωR = q0−1+ωd.
If we put ω = ωR in Lemma 2.5. , then we have the

following recurrence formula:
r0 = r1 = a− l0 = a−2q0+1,

c0 = 2, c1 = c−1 =
(b+2ar0−r0

2)
c0

,

ℓ0 = 2q0−1, ℓi = qi (1≤ i ≤ k−1).

For a square-free positive integerd congruent to 2,3
modulo 4, we putωd =

√
d, q0 = [ωd ] andωR = q0+ωd.
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If we put ω = ωR in Lemma 2.5. , then we have the
following recurrence formula:

r0 = r1 = 0, c0 = 1, c1 = b,
ℓ0 = 2q0, ℓi = qi (1≤ i ≤ k−1).

Proof. It can be easily proved by using Lemma 2.5.

3 Theorems

Theorem 3.1. Let d = a2 + b ≡ 1mod(4) is a square
free integer for positive integera is even andb satisfying
0< b ≤ 2a, b ≡ 5mod(8) , ( i.e. d ∈ D1

5∪D5
5) . Let the

periodkd of the integral basis element ofωd = (1+
√

d
2 ) in

Q(
√

d) be 7. Then,

ωd = [ a
2,1, ℓ2, ℓ3, ℓ3, ℓ2,1,a−1]

for the positive integersℓ2, ℓ3 such that 1≤ ℓi ≤ a (i= 1,2)
and then

(Td ,Ud) = (A(AC+D)+B2(C+E),A2+B2)

and

d =C2+2rF +G

hold, whereA, B, C, D, E, F , G and the integersr ≥ 0 and
s ≥ 0 are determined uniquely as follows:

A = ℓ2ℓ3+ ℓ3+1
B = ℓ2+1
C = Ar+ s
D = (A+2)ℓ2ℓ3+ ℓ2

2+1
E = ℓ3+1
F = D−AE
G = 2CE +(A− ℓ3)

2+(B−2)2+(B−1)2

a = A(r+1)+ s− ℓ2, ℓ2(ℓ3−B)+1= rB2− sA.

Proof. In the casea is even andb ≡ 5mod(8), d ≡
1mod(4) can only belong toD5

1∪D5
5. Sinceq0 = [ωd ] =

a
2, it follows from Lemma 2.6 thatr0 = r1 = a−2q0+1=
1= a− ℓ0 thenℓ0 = a−1 , r1 = 1 andc0 = 2, c1 = c−1 =
a+4m+2. Fori = 1 and by Lemma 2.5 we have;

2a− r1 = c1ℓ1 + r2 ⇒ 2a = (a+ 4m+ 2)ℓ1 + r2 + 1
⇒ a(2− ℓ1) = (4m+2)ℓ1+ r2+1 ⇒ ℓ1 = 1 holds from
ℓ1 ≥ 0, a > 0 andℓ1 < 2.

Sinceℓ1 = ℓ6, ℓ2 = ℓ5, ℓ3 = ℓ4 then we obtain;

ωd = [ a
2,1, ℓ2, ℓ3, ℓ3, ℓ2,1,a−1].

for ℓ1 = 1 we have

a = 4m+ r2+3. (1)

a = 4m+ r2+3 ⇒ r2 = a−4m−3 is an odd number
because ofa is even, and sor2 < a holds from (1) and
b ≤ 2a. From Lemma 2.5; 2a− r2 = c2ℓ2 + r3 andc2 =
c0+(r2− r1)ℓ1 ⇒ c2 = a−4m−2 holds , and so we have
c2 = r2+1. Moreover, from Lemma 2.5 we get

2a = (r2+1)ℓ2+ r2+ r3 (2)

On the other hand, we have

c3 = c1+(r3− r2)ℓ2 ⇒ c3 = (a+4m+2)+ (r3− r2)ℓ2.

and

c4 = c2+(r4− r3)ℓ3 ⇒ c4 = (r2+1)+ (r4− r3)ℓ3.

By using equalitiesc3 = c4 anda = 4m+ r2 + 3 we
obtain

8m+4= (r2− r3)ℓ2+(r4− r3)ℓ3. (3)

Since 2a = c3ℓ3 + r3 + r4 from Lemma 2.5 then we
have

r4 = 2a− [(a+4m+2)+(r3− r2)ℓ2]ℓ3− r3. (4)

and
8m+6= (r2+1)ℓ2+ r3− r2. (5)

It follows from (3) and (5) we get immediately

r2 = (r3− r4)ℓ3+(r3+1)ℓ2+ r3−2. (6)

By takinga = 4m+ r2+3 and by using equalities (1),
(3) and (4) we can make an explication as follows:

d ∈ D1
5 ⇒ r2 ≡ 3mod(4), r3 ≡ 1mod(4) holds fora ≡

2mod(4),
d ∈ D5

5 ⇒ r2 ≡ 1mod(4), r3 ≡ 1mod(4) or
r3 ≡ 3mod(4) holds fora ≡ 0mod(4).

If d ∈ D5
5
⋃

D1
5 then we haver3 = 2r+1≡ 1mod(2),

r ≥ 0 andr4 = 2s+1 ∋ s ≥ 0. Furthermore we can easily
see that

r2 = 2(r− s)ℓ3+2(r+1)ℓ2+2r−1 (7)

from the Lemma 2.5 and from (4), (6).
We know thatc3 = c4 = (r2+1)+ (r3− r4)ℓ3 and so

if we put r2 = 2ℓ3(r − s) + 2(r + 1)ℓ2 + 2r − 1 in 2a =
[(r2+1)+ (r3+ r4)ℓ3]ℓ3+ r3+ r4 then we can obtain

a = r(ℓ2ℓ3+ ℓ3+1)+ s+ ℓ2ℓ3+1. (8)

In this equation, if we takeℓ2ℓ3+ ℓ3+1= A then we can
also writea = A(r + 1)+ s− ℓ3. By using equalities (1),
(3) and (7) we get 2a = (r2− r3)ℓ2+(r4− r3)ℓ3+4ℓ2(r+
1)+4ℓ3(r− s)+4r−2 and by taking in this equationr2 =
2(r−s)ℓ3+2(r+1)ℓ2+2r−1,r3 = 2r+1 andr4 = 2s+1
we haver(ℓ2 + 1)2 − s(ℓ2ℓ3 + ℓ3 + 1)− ℓ2[ℓ3 − ℓ2 − 1]−
1 = 0. SinceA = ℓ2ℓ3 + ℓ3 + 1, B = ℓ2 + 1 thenℓ2[ℓ3 −
B]+1= rB2− sA holds. We can immediately thatr ands
uniquely-defined from the equalitiesa = (r+1)A+ s− ℓ3
andℓ2[ℓ3−B]+1= rB2− sA.

Now, let’s determine the coefficientsTd andUd of the
fundamental unitεd by using Lemma 2.4. Since
Q−1= 0
Q0 = 1
qi = ℓi,(1≤ i ≤ kd −1)
Qi+1 = qi+1.Qi +Qi−1 (i ≥ 0)
Q1 = ℓ1 = 1
Q2 = ℓ2+1= B

c© 2016 NSP
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Q3 = ℓ2ℓ3+ ℓ3+1= A
Q4 = Aℓ3+B
Q5 = ℓ2(Aℓ3+B)+A = A(ℓ2ℓ3+1)+Bℓ2
Q6 = A(ℓ2ℓ3+1)+Bℓ2+Aℓ3+B = A2+B2

then we haveTd =(Ar+s)(A2+B2)+A[ℓ2ℓ3(A+2)+2]+
ℓ2[(A+1)+B] andUd = A2+B2 for taking the following
equalities 2q0 − 1 = a− 1 = Ar + s+ ℓ2ℓ3, Td = (2q0 −
1)Q6 + 2Q5, C = Ar + s, D = (A+ 2)ℓ2ℓ3 + ℓ2

2 + 1, E =

ℓ3+1 and soTd = A(AC+D)+B2(C+E), Ud = A2+B2

hold.
Now, we writed = a2+ b depends on the parameters

ℓ2, ℓ3, r ands. For this if we putr2 = 2(r − s)ℓ3+ 2(r+
1)ℓ2+2r−1, r3 = 2r+1, r4 = 2s+1 instead ofr2,r3 and
r4 in (4) then we obtain 8m+4= [2ℓ3(r− s)ℓ2+2ℓ2

2(r+
1)−2ℓ2+2(s− r)]ℓ3 andb = 8m+5= 2ℓ2

2(r+1)+2(r−
s)(ℓ2 − 1)ℓ3 − 2ℓ2 + 1. By putting the valuesa = A(r +
1)+ s− ℓ3 andb in d = a2+b we haved = a2+b= (Ar+
s)2+2r(D−AE)+2CE+(A−ℓ3)

2+(B−2)2+(B−1)2.
Where, if we takeD−AE = F and 2CE+(A−ℓ3)

2+(B−
2)2+(B−1)2 =G thend =C2+2rF+G holds. Thus, the
theorem is proved completely.

Theorem 3.2. Let d = a2+b ≡ 2mod(4) is a square
free integer such that a is odd integer and the periodkd of
the integral basis element ofωd =

√
d in Q(

√
d) be 7. If

b ≡ 1mod(4) then,

ωd = [a, ℓ1, ℓ2, ℓ3, ℓ3, ℓ2, ℓ1,2a]

for the positive integersℓ1, ℓ2, ℓ3 such that ℓi ≥ 1
(i = 1,2,3)
and then

(Td ,Ud) = (2[a(A2+B2)+BC+Aℓ2],2(A2+B2))

and

d = A2r2−2rD+E

hold, whereA, B, C, D, E, r ≥ 0, e ≥ 0 are integers and
these are determined uniquely as follows:

A = ℓ1ℓ2+1
B = ℓ1+Aℓ3
C = ℓ2ℓ3+1
D = Aeℓ1− ℓ2
E = ℓ2

1e2−2e+1
a = Ar − ℓ1e,

A2+B2−C2− ℓ2
2 = 2rB+2e(A+Bℓ3).

Proof. Sinced ≡ 2 (mod4) andb ≡ 1(mod4) then we
haveb = 4m + 1 for the positive integersa, b, m with
a < b ≤ 2a. From the Lemma 2.6. it is clear that
wd = [a, ℓ1, ℓ2, ℓ3, ℓ4, ℓ5, ℓ6,2a] for q0 = a and kd = 7.
Besides from the Lemma2.6 we obtainr0 = r1 = 0,
c0 = 1, c1 = b = 4m+1 ℓ0 = 2q0 = 2a. By using Lemma
2.5 and Lemma 2.6wd = [a, ℓ1, ℓ2, ℓ3, ℓ3, ℓ2, ℓ1,2a] for
ℓ1 = ℓ6, ℓ2 = ℓ5, ℓ3 = ℓ4 andℓi ≥ 1∋ ∀i = 1,2,3.
If we use the equality 2a− ri = ciℓi + ri+1 for i ≥ 0 in
Lemma 2.5 then we write 2a = (4m + 1)ℓ1 + r2.
Therefore(4m + 1)ℓ1 + r2 ≡ 0(mod2) and r2 = 2r − ℓ1

hold for the convenient integerr ≥ 0. If we consider these
equalities thena = 2mℓ1 + r holds, wherea is an odd
number and it is clear thatr should be an odd number.
Furthermore we obtainc2 = c0 + (r2 − r1)ℓ1 = 1+ r2ℓ1
from the equalityci+1 = ci−1 + (ri+1 − ri)ℓi (i ≥ 0).
Therefore if we use this equality and 2a− r2 = c2ℓ2+ r3
then we obtain 2a = (1+ r2ℓ1)ℓ2+ r2+ r3.

Since 2a = (4m+ 1)ℓ1 + r2 and 2a = (1+ r2ℓ1)ℓ2 +
r2+ r3 then we have

(4m + 1)ℓ1 = (1+ r2ℓ1)ℓ2 + r3. If we get (modℓ1)
then ℓ2 + r3 ≡ 0(modℓ1) and r3 = ℓ1t − ℓ2 hold for the
convenient integert ≥ 0. If r3 = ℓ1t − ℓ2 then it is easily
seen that 4m = t + 2rℓ2 − ℓ1ℓ2 − 1. Moreover if we take
A = ℓ1ℓ2 + 1 thent −A = 4m− 2rℓ2 holds and ift < A
then there is an integers < 0 such thatt − A = 2s. (if
t > A then look in [2].) If it is takens < 0, s = −e and
e > 0 then it is obtained 2e = A − t = 2rℓ2 − 4m,
e = rℓ2−2m and 2m = rℓ2− e By putting 2m = rℓ2− e in
a = 2mℓ1+ r then we havea = (rℓ2− e)ℓ1+ r = Ar− ℓ1e.
Sincec3 = c1+(r3− r2)ℓ2 = 4m+1+(r3− r2)ℓ2
r2 = 2r − ℓ1 ve r3 = ℓ1t − ℓ2 from the Lemma 2.5 then
c3 = At − ℓ2

2 holds. If we put the valuec3 in
2a = c3ℓ3 + r3 + r4 then we have
2a = (At − ℓ2

2)ℓ3 + r3 + r4. We know that c3 = c4
therefore if we take the equalities
At − ℓ2

2 = c2 + (r4 − r3)ℓ3, c2 = 1+ r2ℓ1 , r2 = 2r − ℓ1
,r3 = ℓ1t − ℓ2 ve r4 = (2r− ℓ1− tℓ3)A+ ℓ2(ℓ2ℓ3+1) then
we obtain At − ℓ2

2 = r2 + (r4 − r3)ℓ3
= 1+ r2ℓ1 + r4ℓ3 − r3ℓ3 = 1+ (2r − ℓ1)ℓ1 + [(2r − ℓ1 −
tℓ3)A + ℓ2(ℓ2ℓ3 + 1)]ℓ3 − (ℓ1t − ℓ2)ℓ3 =
(1+ ℓ2ℓ3)

2+2r(ℓ1+Aℓ3)− tℓ3(ℓ1+Aℓ3)− ℓ1(ℓ1+Aℓ3).

If it is takenℓ1+Aℓ3 = B , t = A−2e and 1+ ℓ2ℓ3 =C
thenA2 + B2 −C2 − ℓ2

2 = 2rB+ 2e(A+ Bℓ3) holds from
At − ℓ2

2 =C2+B(2r− tℓ3− ℓ1) andt = A−2e.

Now we will show that the integersr ande are uniquely
determined with the inequalitiesa = Ar − ℓ1e and A2 +
B2−C2− ℓ2

2 = 2rB+2e(A+Bℓ3). If we assume that the
integersr ands is not determined uniquely then we have
A2+B2 = 0 which is a contradiction because ofA,B > 0.
Therefore, the integersr ande are uniquely determined.

Then, we can calculate ,Qi+1 = qi+1Qi+Qi−1, (i ≥ 0)
whereQ−1 = 0 Q0 = 1 as follows
Q−1= 0
Q0 = 1
Q1 = ℓ1
Q2 = A
Q3 = B
Q4 = ℓ3B+A
Q5 = C(Aℓ3+ ℓ1)+Aℓ2 = BC +Aℓ2 andQ6 = A(ℓ1ℓ2 +
1)+ ℓ3(Aℓ3+ ℓ1)+BCℓ1 = A2+B2 hold by Lemma 2.4,
we obtain that

Td = 2[a(A2+B2)+BC+Aℓ2] andUd = 2(A2+B2).

c© 2016 NSP
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4 An Application

In this section, we will give numerical example by using
the algorithm of our Theorem 3.1. and Theorem 3.2. This
provides us to determineωd andεd rapidly.

As an application of Theorem 3.1. we can practically
determine the continued fraction expansion ofωd where
d = 113= 102+13≡ 1mod(4) for a = 10≡ 2mod(4)≡
0mod(2) andb= 13≡ 5mod(8). We easily see thatℓ1 = 1,
c0 = 2, r0 = r1 = 1, c1 = a + 4m+ 2 = 16, r2 = 3, for
a = 4m+3+ r2 andc2 = 4 for c2 = r2+1. Moreover

2a = (r2 + 1)ℓ2+ r2 + r3 ⇒ r3 = 1 holds forℓ2 = 4,
r2 = 3 a = 10,

c3 = c1 + (r3 − r2)ℓ2 ⇒ c3 = 8 and 8m+ 4 = (r2 −
r3)ℓ2+(r4−r3)ℓ3 ⇒ r4 = 3 hold forℓ1 = 1,ℓ2 = 4,ℓ3 = 2,
m = 1, r2 = 3, r3 = 1.

Henceωd can be determined rapidly as follows;

ωd = [5,1,4,2,2,4,1,9]

Moreover, the fundamental unit ofQ(
√

113) is easily
determined as

εd = 1552+146
√

113
2

sinceA = 11, B = 5, C = 1, D = 121,E = 3, F = 88
andG = 112.

In the same way, we can give an application for
theorem 3.2 by using the algorithm has been expressed in
this theorem and so if we take

d = 538= 232+9≡ 2mod(4) for a = 23≡ 1mod(2)
andb=9≡ 1mod(4). We can easily get thatℓ1 = 5,c0 = 1,
r0 = r1 = 0, c1 = b = 9,m = 2, r2 = 1,r3 = 3 r = 3, and
c2 =6 . Furthermore, we can calculatec3 = c1+(r3−r2)ℓ2
, ⇒ c3 = 23,r4 = 55ℓ2 = 7, ℓ3 = 1,t = 2, s =−17,e = 17,
r4 = 55.

Henceωd can be determined rapidly as follows;

ωd = [23,5,7,1,1,7,5,46]

Moreover, the fundamental unit ofQ(
√

538) is
obtained that

εd = 138102+5954
√

538
2

sinceA = 36,B = 41,C = 8, D = 3053,E = 7192.
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