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Abstract: A quantum computer exploits the rules of quantum mechanics to speed up computations. However, one has to mitigate noise
and decoherence to avoid computational errors in order to successfully build quantum computers.
Recently the theory of quantum error control codes has been extended to the case of asymmetric quantum channels — qubit-flip and
phase-shift errors may have equal or different probabilities. In this paper, we further develop this theory and establish the connection
between asymmetric quantum codes and subsystem codes. We present families of subsystem and asymmetric quantum codes obtained
from classical BCH and RS codes.
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1 Introduction

Quantum computers theoretically are able to solve certain
problems more quickly than any deterministic or
probabilistic computers. An example of such problems is
the factorization of large integers in polynomial time. The
novel idea is that a quantum computer exploits the rules
of quantum mechanics to speed up computations.
However, one has to mitigate noise and decoherence to
avoid computational errors in order to successfully build
quantum computers. Recently, the theory of quantum
codes is extended to include construction of asymmetric
quantum error-correcting codes (AQEC) for correcting
error in channels with qubit-flip error probability PrX
different from the phase-shift error probability PrZ.
Typically PrZ ≥ PrX. First constructions of AQEC
appeared in [11,17,28]. In [1] two families of asymmetric
CSS quantum codes were constructed on the base on
classical BCH codes. For an introduction into CSS codes
see for example [8,10,23–26].

Note that several attempts to characterize noise error
models in quantum systems were made in [19, 25].
Recently, quantum error correction has been extended

over amplitude-damping channels [13], which is an
example of asymmetric quantum channel.

The asymmetric quantum cyclic codes that we
construct in this work have simple encoding and decoding
circuits that can be implemented using shift-registers with
feedback connections. Also, their algebraic structure
simplifies the problem their parameters estimation.
Furthermore, their stabilizers can be easily found from
generator polynomials of the corresponding classical
codes.

In this paper, we construct quantum error-correcting
codes (QEC) that correct quantum errors that may destroy
quantum information with different probabilities. We
propose two generic methods that can be applied to any
classical cyclic codes in order of obtaining asymmetric
quantum cyclic codes. We use these methods to construct
asymmetric quantum BCH, RM, RS codes, and further
families of asymmetric subsystem codes (ASSC). Note
that several classes of AQECs are also presented
in [1,7,17,22].

Notation: Let q be a power of a primep. We denote
by Fq the finite field withq elements. LetC be an additive
code overFq2 of lengthn (note thatC is linear overFp).
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If C has minimum distanced and size(q2)k we will say
that it is an[n,k,d]q2 code. We define the Euclidean inner
product for vectorsx,y ∈ F

n
q by 〈x|y〉 = ∑n

i=1xiyi and the
Euclidean dual code ofC as

C⊥ = {x∈ Fn
q2 | 〈x|y〉= 0 for all y∈C}.

We define the Hermitian inner product for vectorsx,y ∈
Fn

q2 as〈x|y〉h = ∑n
i=1xq

i yi and the Hermitian dual ofC as

C⊥h = {x∈ Fn
q2 | 〈x|y〉h = 0 for all y∈C}.

If C is an [n,(n − k)/2]q2 self-orthogonal code, i.e.,

C ⊆ C⊥h, then it defines aq-ary quantum stabilizer code
Q that encodesk logical quibits into n qubits with
minimum distanced = minc∈C⊥h\C wt(c), for details

see [10], [25], [8]. We will say thatQ is an [[n,k,d]]q
stabilizer code. The

A special family of stabilizer code are CSS codes. In
this case a self orthogonal code overFq2 is constructed
from one or two codes overFq and it is further used to
construct a quantum stabilizer code. Omitting details, we
describe CSS codes as follows. IfC is an [n,k,d]q
classical additive code such thatC ⊆ C⊥, that is C is
self-orthogonal with respect to the Euclidean inner
product, then it can be used to construct an[[n,n−2k,d]]q
stabilizer code. Also recall that ifC is an [n,k,d]q
classical additive dual-containing code,C⊥ ⊆ C, respect
to the Euclidean inner product, then there exists an
[[n,2k−n,d]]q stabilizer code. More generally, ifC1 and
C2 are[n,k1,d1]q and[n,k2,d2]q two classical codes such
thatC1 ⊆C2, then there exists a[[n,k2− k1,d]]q stabilizer
code.

Let Ai andA⊥
i , i = 1, . . . ,n, be the number of vectors

of weight i in codes C and C⊥h respectively. Since
C⊆C⊥h we haveA⊥

i ≥ Ai . Let dQ be the first integer such
that A⊥

dQ
> AdQ. ThendQ is the minimum distance ofQ

and we will say thatQ is an [[n,k,dQ]]q quantum
stabilizer code. Further if the minimum distance ofC⊥h is
dQ (potentially it could be smaller thandQ) we will say
thatQ is apurequantum code. Details on the connection
between quantum stabilizer codes and classical
self-orthogonal codes can be found in [10], [25], [8].

The following theorem establishes the connection
between two classical codes and QECs (Quantum
Error-correcting Codes), AQECs, SSCs (Subsystem
Codes), ASSCs (Asymmetric Subsystem Codes).

Theorem 1(CSS AQEC and ASSC). Let C1 and C2 be
two classical codes with parameters[n,k1,d1]q and
[n,k2,d2]q respectively, and

dx = min
{

wt(C1\C
⊥
2 ),wt(C2\C

⊥
1 )

}

, and

dz = max
{

wt(C1\C
⊥
2 ),wt(C2\C

⊥
1 )

}

.

i) If C⊥
2 ⊆ C1, then there exists an AQEC with

parameters

[[n,dimC1−dimC⊥
2 ,wt(C2\C

⊥
1 )/wt(C1\C

⊥
2 )]]q

=[[n,k1+ k2−n,dz/dx]]q.

Also, there exists a QEC with parameters[[n,k1+ k2−
n,dx]]q.

ii) From [i], there exists an SSC with parameters[[n,k1+
k2−n− r, r,dx]]q, 0≤ r < k1+ k2−n.

iii) If C ⊥
2 = C1 ∩C⊥

1 ⊆ C2, then there exist ASSCs with
parameters [[n,k2 − k1,k1 + k2 − n,dz/dx]]q and
[[n,k1+ k2−n,k2− k1,dz/dx]]q.

Furthermore, all the above codes are pure to their
minimum distances.

The paper is organized as follows. Sections2, 3,
and 6 are devoted to two families of AQECs, namely
BCH AQECs and RS AQECs. Sections4 and7 consider
the problem of construction of asymmetric subsystem
codes and their relation to AQECs. We show the tradeoff
between subsystem codes and AQECs. Section7 presents
the bound on AQEC and ASSC parameters. Finally, the
paper is concluded with a discussion in Section8.

2 Asymmetric Quantum Codes

Let H be the Hilbert space
H = Cqn

= Cq ⊗Cq ⊗ ...⊗Cq. Let vectors|x〉,x ∈ Fq,
for an orthonormal basis ofCq, assumingq = p2. For
a,b ∈ Fq we define the unitary operatorsX(a) andZ(b)
that act inCq as

X(a)|x〉= |x+a〉, Z(b)|x〉= ω tr(bx)|x〉, (1)

whereω = exp(2π i/p) is a primitivepth root of unity and
tr is the trace operation fromFq to Fp.

Leta=(a1, . . . ,an)∈Fn
q andb=(b1, . . . ,bn)∈Fn

q, and
further

X(a)|x〉= |x+a〉, Z(b)|x〉= ω tr(bx)|x〉, (2)

whereω = exp(2π i/p) is a primitivepth root of unity and
tr is the trace operation fromFq to Fp

Let a= (a1, . . . ,an)∈Fn
q andb=(b1, . . . ,bn)∈Fn

q. Let
us denote by

X(a) = X(a1)⊗ ·· · ⊗X(an), and

Z(b) = Z(b1)⊗ ·· · ⊗Z(bn) (3)

the tensor products ofn error operators and further

Ex = {X(a)|a∈ Fn
q}, Ez = {Z(b)|b ∈ Fn

q} (4)

We define the error groupsGx andGz by

Gx = {ωcEx|c∈ Fp}= {ωcX(a) |a∈ Fn
q,c∈ Fp},

Gz = {ωcEz|c∈ Fp}= {ωcZ(b) |b ∈ Fn
q,c∈ Fp}. (5)

c© 2015 NSP
Natural Sciences Publishing Cor.



Quant. Inf. Rev.3, No. 2, 23-32 (2015) /www.naturalspublishing.com/Journals.asp 25

We will say thatGx and Gz represent the qubit-flip and
phase-shift errors, respectively. The entire error group is
defined by

G = 〈Gx,Gz〉

=
{

ωcX(a)Z(b)|c∈ Fp,a,b ∈ Fn
q

}

(6)

The error operators fromGx and Gz represent the
qubit-flip and phase-shift errors respectively.

Typically quantum codes are constructed under the
assumption that for any nonzeroa,b ∈ Fq the error
operators from X(a) and Z(b) have the same
probabilities, i.e., PrX(a) = PrZ(b). Physical
experiments show that this assumption does not hold in
reality [17, 28]. Below we derive families of asymmetric
quantum error codes that are matched to quantum
channels with PrZ(b)> PrX(a).

Definition 1(AQEC). A q-ary asymmetric quantum
code Q, denoted by[[n,k,dz/dx]]q, is a q-ary [[n,k]]
stabilizer code that can correct any⌊dx−1

2 ⌋ flip errors and

any⌊dz−1
2 ⌋ phase-flip errors.

The ratio ρ = dz/dxis used to comparedz and dx.
Therefore, ifdz > dx, then the AQEC has a ratio great
than one and therefore the code is capable of correcting
more phase-shift errors than qubit-flip errors. In our work,
we would like to increase both the minimum distancesdz
anddx as well as dimensionk of the quantum code.

Connection to Classical nonbinary Codes.Let C1 and
C2 be [n,k1,d1]q and [n,k2,d2]q codes over Fq
respectively. let [n,k1,d1]q and [n,k2,d2]q be their
parameters. Denote byHi a parity check matrix of codeCi
for i = 1,2. If C⊥

i ⊆ C1+(i mod 2), thenC⊥
1+(i mod 2) ⊆ Ci .

So, the rows ofHi , which form a basis forC⊥
i , can be

extended to form a basis forC1+(i mod 2) by adding some
vectors. If now Ci are cyclic codes with generator
polynomialsgi(x) thenki = n− deg(gi(x)), see [16, 18].
The relation between codesC1 andC2 is shown in Fig.1.

Code vectors ofC1 and C2 correspond to certain
elements of the groupsGx and Gz respectively. This
connection is well-know, see for example [10,20,21]. The
following Lemmas shows that Asymmetric CSS quantum
codes can be constructed fromC1 andC2.

Lemma 1( CSS AQEC). Let Ci , i = 1,2 be [n,ki ,di ]q
classical codes with the property that C⊥

i ⊆ C1+(i mod 2).
Let dx = min

{

wt(C1\C⊥
2 ),wt(C2\C⊥

1 )
}

, and
dz = max

{

wt(C1\C⊥
2 ),wt(C2\C⊥

1 )
}

. Then there exists an
[[n,k1+ k2−n,dz/dx]]q pure ACSS code.

We use the same definition of pure code as stated in [10]
[1]. Now we would like to find codesC1 andC2 that would
give us large values fordx anddz for givenn andk1+k2−
n.

C
1
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q

2n


C
2


C
1
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C
2
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Fig. 1: Constructions of asymmetric quantum codes based on
two classical codesC1 and C2 with parameters[n,k1] and
[n,d2] such thatCi ⊆ C1+(i mod 2) for i = {1,2}. AQEC has

parameters[[n,k1+ k2−n,dz/dx]]q wheredx = wt(C1\C⊥
2 ) and

dz = wt(C2\C⊥
1 )

3 Asymmetric Quantum BCH and RS Codes

In this section we construct asymmetric CSS codes on the
base of classical BCH and RS codes. We will restrict
ourself to the Euclidean construction overFq, though the
generalization to the Hermitian construction overFq2 is
straightforward.

BCH codes form a well known family of classical
cyclic codes, see for example [15, 16, 18]. Below we
remind their definition.

Let q be a power of a prime andn a positive integer
such that gcd(q,n) = 1. Thecyclotomic coset Sx modulon
is defined by

Sx = {xqi modn | i ∈ Z, i ≥ 0}. (7)

Let furtherm be the multiplicative order ofq modulon
and α be a primitive element inFqm. A nonprimitive
narrow-sense BCH code Cwith designed distanceδ is a
cyclic code with a generator monic polynomialg(x) that
hasα,α2, . . . ,αδ−1 as its roots,

g(x) =∏
i∈S

(x−α i), (8)

whereS= S1∪S2∪ ...∪Sδ−1. Thus,c is a codeword inC
if and only if c(α) = c(α2) = . . .= c(αδ−1) = 0. A parity
check matrix of this code can be defined as

Hbch=











1 α α2 · · · αn−1

1 α2 α4 · · · α2(n−1)

...
...

...
. . .

...
1 αδ−1 α2(δ−1) · · · α(δ−1)(n−1)











. (9)

In general the dimensions and minimum distances of
BCH codes are not known. However, lower bounds on
these two parameters are given byd ≥ δ and
k≥ n−m(δ −1). Fortunately, in [4,6] exact formulas for
the dimensions and minimum distances are given under
certain conditions. In particular, the following result hods.

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


26 S. A. Aly Ahmed: Families of Quantum Cyclic and Subsystem Codes for ...

Theorem 2(Dimension BCH Codes).Let q be a prime
power and gcd(n,q) = 1, with ordn(q) = m. Then a
narrow-sense BCH code of length q⌊m/2⌋ < n ≤ qm− 1
over Fq with designed distanceδ in the range
2 ≤ δ ≤ δmax = min{⌊nq⌈m/2⌉/(qm − 1)⌋,n}, has
dimension of

k= n−m⌈(δ −1)(1−1/q)⌉. (10)

Proof.See [4, Theorem 10].

In [25, 27] Steane constructed first binary quantum
BCH codes. In [14] Grasslel. at. proposed a family of
quantum BCH codes and presented tables of best known
BCH codes.

One of main challenges in [4, 6] were proofs of
dual-containing conditions for BCH codes. We can avoid
these problems by looking for BCH codes that are nested.
The following result allows obtaining a family of
quantum codes derived from nonprimitive narrow-sense
BCH codes, see our initial results [7].

Theorem 3.Let m= ordn(q) and q⌊m/2⌋ < n ≤ qm − 1
where q is a power of a prime and2≤ δ ≤ δmax, with

δ ∗
max=

n
qm−1

(q⌈m/2⌉−1− (q−2)[modd]),

then there exists a quantum code with parameters

[[n,n−2m⌈(δ −1)(1−1/q)⌉,≥ δ ]]q
pure toδmax+1

Proof.See [4, Theorem 19].

3.1 AQEC-BCH

Fortunately, the mathematical structure of BCH codes
always us easily to show the nested required property
needed in Lemma1. Indeed, from Theorem2 we know
that the generator polynomialg(x) has degree
m⌊(δ − 1)(1− 1/δ )⌋ if δ ≤ δmax. Therefore the code
dimension is equal tok = n − deg(g(x)). Hence, the
nested structure of BCH codes is obvious and can be
described as follows. Let

δi+1 > δi > δi−1 ≥ . . .≥ 2, (11)

and letCi be a BCH code with the generator polynomial
gi(x) defined by the roots{2,3, . . . ,δ − 1}. So, Ci has
parameters[n,n−deg(gi(x)),di ≥ δi ]q and

Ci+1 ⊆Ci ⊆Ci−1 ⊆ . . . (12)

We need to ensure thatδi 6= δi+1 and that the
difference among them is large enough. Therefore the sets
of roots{2, . . . ,δi − 1} and{2, . . . ,δi+1 − 1} are distinct.
This means that the cyclotomic cosets generated byδi and
δi+1 are not the same,S1∪ . . .∪Sδi−1 6= S1∪ . . .∪Sδi+1−1.
Let δ⊥

i be the designed distance of the codeC⊥
i . Then the

following result gives a family of AQEC BCH codes over
Fq.

Table 1: Families of asymmetric quantum BCH codes [9]
q C1 BCH Code C2 BCH Code AQEC

2 [15,11,3] [15,7,5] [[15,3,5/3]]2
2 [15,8,4] [15,7,5] [[15,0,5/4]]2
2 [31,21,5] [31,16,7] [[31,6,7/5]]2
2 [31,26,3] [31,16,7] [[31,11,7/3]]
2 [31,26,3] [31,16,7] [[31,10,8/3]]
2 [31,26,3] [31,11,11] [[31,6,11/3]]
2 [31,26,3] [31,6,15] [[31,1,15/3]]
2 [127,113,5] [127,78,15] [[127,64,15/5]]
2 [127,106,7] [127,77,27] [[127,56,25/7]]

Theorem 4(AQEC-BCH). Let gcd(n,q) = 1, with
ordn(q) = m. Let C1 and C2 be two narrow-sense BCH
codes of length q⌊m/2⌋ < n ≤ qm − 1 with designed
distances δ1 and δ2 in the range
2 ≤ δ1,δ2 ≤ δmax = min{⌊nq⌈m/2⌉/(qm − 1)⌋,n} and
δ1 < δ⊥

2 ≤ δ2 < δ⊥
1 .

If S1∪ . . .∪Sδ1−1 6= S1∪ . . .∪Sδ2−1, then there exists
an asymmetric

[[n,n−m⌈(δ1−1)(1−1/q)⌉−m⌈(δ2−1)(1−1/q)⌉,≥ dz/dx]]q

quantum code with
dz = wt(C2\C⊥

1 )≥ δ2 > dx = wt(C1\C⊥
2 )≥ δ1.

Proof. From the nested structure of BCH codes, we know
that if δ1 < δ⊥

2 , thenC⊥
2 ⊆ C1, similarly if δ2 < δ⊥

1 , then
C⊥

1 ⊆ C2. By Lemma2, using the fact thatδ ≤ δmax, the
dimension of the code Ci is given by
ki = n − m⌈(δi − 1)(1 − 1/q)⌉ for i = 1,2. Since
S1 ∪ . . . ∪ Sδ1−1 6= S1 ∪ . . . ∪ Sδ2−1, this means that
deg(g1(x)) < deg(g2(x)), hence k2 < k1. Furthermore
k⊥1 < k⊥2 .

Let us denote dx = wt(C1\C⊥
2 ) ≥ δ1 and

dz = wt(C2\C⊥
1 )≥ δ2 and assume thatdz > dx. (If dx > dz

we interchange the roles of codesC1 andC2.) Then, by
Lemma1 and the assumptions there exists AQEC with
parameters[[n,k1+ k2−n,≥ dz/dz]]q.

Usually the designed minimum distance gives only a
lower bound on the true minimum distance of BCH codes.
We argue that in our case the true minimum distances meet
with the designed minimum distances for small values of
designed distances. that are particularly interesting to us.
One can also use the condition shown in [4, Corollary 11.]
to ensure that the minimum distance meets the designed
distance for certain bounds of the designed distance.

The condition on the designed distancesδ1 andδ2, as
shown in Theorem (4) and in [4, Corollary 11.], allows us
to give formulas for the dimensions of BCH codesC1 and
C2. However, we can derive AQEC-BCH without this
condition as shown in the following result. This is
explained by an example in the next section.
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Lemma 2.Letgcd(m,q) = 1, and n,q⌊m/2⌋ < n≤ qm−1, is
so that m= ordn(q). Let C1 and C2 be[n,k1,dx ≥ δ1]q and
[n,k2,dz ≥ δ2]q BCH codes respectively, such thatδ1 <

δ⊥
2 ≤ δ2 < δ⊥

1 , and k1+ k2 > n. If S1∪ . . .∪Sδ1−1 6= S1∪
. . .∪Sδ2−1, then there exists an asymmetric

[[n,k1+ k2−n,≥ dz/dx]]q

quantum code with

dz = wt(C1\C
⊥
2 ) = δ2 > dx = wt(C2\C

⊥
1 ) = δ1.

This theorem can be used to construct any asymmetric
cyclic quantum codes. Also, one can construct
asymmetric quantum codes using codes overFq2.

3.2 RS Codes

In this section we construct a family of asymmetric
quantum codes based on classical Reed-Solomon codes.
Recall that a RS code with lengthn= q−1 and designed
distanceδ over Fq is an [[n,n− δ + 1,δ ]]q cyclic code
with the generator polynomial

g(x) =
d−1

∏
i=1

(x−α i). (13)

We use RS codes to construct an asymmetric quantum
code as follows.

Theorem 5. Let n= q−1 and C1 and C2 be [n,n−d1+
1,d1]]q and [n,n−d2 +1,d2]q RS codes respectively. Let
further d1 < d2 < d⊥

1 = n−d1. Then there exists an[[n,n−
d1−d1+2,dz/dx]]q, AQEC code with dx = d1 < dz = d2.

Proof. Sinced1 < d2 < d⊥
1 , thenn−d⊥

1 +1< n−d2+1<
n−d1 + 1 andk⊥1 < k2 < k1. HenceC⊥

2 ⊂ C1 andC⊥
1 ⊂

C2. Let dz = wt(C2\C⊥
1 ) = d2 anddx = wt(C1\C⊥

2 ) = d1.
Therefore there must exist AQEC with parameters[[n,n−
d1−d1+2,dz/dx]]q.

It is obvious that the constructed code is a pure code. One
can also derive asymmetric quantum RS codes based on
RS codes overFq2. Also, generalized RS codes can be
used to derive similar results. In fact, one can derive
AQEC from any two classical cyclic codes obeying the
pair-nested structure overFq.

4 AQEC and Connection with Subsystem
Codes

In this section we consider a large class of quantum codes
called asymmetric subsystem codes (ASSs). In particular,
we construct families of subsystem BCH codes and
subsystem cyclic codes overFq In [2,3,7] we constructed
other families of subsystem cyclic, BCH, RS and MDS
codes overFq2.

Subsystem quantum codes are a special class of
quantum codes in which errors can be corrected as well as
avoided (isolated).

C
1
 C
2

dual
 C


1

dual


C
2

F
q


2n


k=dim C
2 
- dim C
1
 r= dim C
1
- dim C
2

^dual


Yellow

Detectable errors


Green

Undetectable errors


Fig. 2: A quantum code Q is decomposed into two subsystem A
(info) and B (gauge)

Definition 2( Subsystem Codes). An [[n,k, r,d]]q
subsystem code is a subspace Q that a) can be
represented as a tensor product of subspaces A and B,
such that Q= A⊗B, with dimA = k anddimB = r, and
b) all errors of weight less than d on subsystem A are
detectable.

Subsystem codes can be constructed from the classical
codes overFq andFq2. The classical codes do not need to
be self-orthogonal (or dual-containing) as shown in the
Euclidean construction below. General constructions of
subsystem codes, known as the subsystem CSS and
Hermitian constructions, were proposed in [5]. Below we
consider a special case of the subsystem CSS
construction.

Lemma 3(SSC Based CSS Euclidean Construction).If
C1 is a k′-dimensionalFq-linear code of length n that has
a k′′-dimensional subcode C2 = C1∩C⊥

1 and k′ + k′′ < n,
then there exist

[[n,n− (k′+ k′′),k′− k′′,wt(C⊥
2 \C1)]]q

[[n,k′− k′′,n− (k′+ k′′),wt(C⊥
2 \C1)]]q

subsystem codes.

Proof. We remind that ifa,b,c,d∈ Fn
q then the symplectic

inner product between vectors(a,b) and(c,d) is defined
by

(a,b)∗ (c,d) = 〈a|d〉+ 〈b|c〉

Further, the symplectic weight of a vector(a,b) is defined
by

swt((a,b)) = |{(ai,bi) 6= (0,0)}|.

For a linear codeC⊆ F2n
q we define

swt(C) = min
a∈C,a6=0

swt(a).
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The symplectic dual ofC is defined by

C⊥s = {b∈ F2n
q : b∗sa= 0,∀a∈C}.

Let us now define the codeX = C1 × C1 ⊆ F2n
q ,

therefore X⊥s = (C1 × C1)
⊥s = C⊥s

1 × .. Hence
Y = X∩X⊥s = (C1×C1)∩ (C⊥s

1 ×C⊥s
1 ) =C2×C2. Thus,

dimFq Y = 2k′′. Hence |X||Y| = q2(k′+k′′) and

|X|/|Y| = q2(k′−k′′). By Theorem [5, Theorem 1], there
exists a subsystem codeQ = A ⊗ B with parameters
[[n, logqdimA, logqdimB,d]]q such that

i) dimA= qn/(|X||Y|)1/2 = qn−k′−k′′ .
ii) dim B= (|X|/|Y|)1/2 = qk′−k′′ .
iii) d = swt(Y⊥s\X) = wt(C⊥

2 \C1).
Exchanging the roles ofC1 andC⊥

1 , we obtain the other
subsystem code.

Some particular construction of subsystem codes
(SSC) requires thatC2 be self-orthogonal,C2 ⊆ C⊥

2 ,
see [10]. However, both AQEC and SSC can be
constructed from the pair-nested classical codes. Hence
classical codesC1 and C2 with the property that
C2 =C1∩C⊥

1 ⊆C⊥
2 , can be used to construct a subsystem

code and an asymmetric quantum code.
The construction in Lemma3 can be generalized to

asymmetric subsystem codes (ASSC) CSS construction in
a similar way. This means that we can consider an
[[n,k,dz/dx]]q AQEC as a [[n,k,0,dz/dx]]q subsystem
code. Therefore all results obtained in [2, 3, 5] directly
follow from this construction, by just fixing the minimum
distance condition.

We have shown in [2,3] that all stabilizer codes (pure
and impure) can be reduced to subsystem codes. We say
that a code is Co-SSC if it can be produced from SSC by
reducing the dimension and increasing the minimum
distance, as it is done in the following Theorem.

Theorem 6( Trading Dimensions of SSC and Co-SSC).
If there exists anFq-linear [[n,k, r,d]]q subsystem code
with k > 1 that is pure up to d′, then there exists an
Fq-linear [[n,k− 1, r + 1,≥ d]]q subsystem code that is
pure up tomin{d,d′}. If a pure (Fq-linear) [[n,k, r,d]]q
subsystem code exists, then a pure (Fq-linear)
[[n,k+ r,d]]q stabilizer code exists.

We have shown in [4,6] that narrow sense BCH codes,
primitive and non-primitive, with lengthn and designed
distanceδ are Euclidean dual-containing codes if and only
if

2≤δ ≤ δmax=
n

qm−1
(q⌈m/2⌉−1−(q−2)), (14)

werem is odd.
We use this result and [3, Theorem 2] to obtain

nonprimitive subsystem BCH codes from classical BCH
codes overFq andFq2 [5,6]. In [2] subsystem codes from
primitive BCH codes were obtained.

Lemma 4. Let m be an odd positive integer such that
q⌊m/2⌋ < n ≤ qm − 1. Let
2 ≤ δ ≤ δmax =

n
qm−1(q

⌈m/2⌉ − 1− (q− 2)). Then there
exists an [[n,n − 2m⌈(δ − 1)(1 − 1/q)⌉ − r, r,≥ δ ]]q
subsystem BCH code with
0≤ r < n−2m⌈(δ −1)(1−1/q)⌉.

Proof. We know that if
2 ≤ δ ≤ δmax = n

qm−1(q
⌈m/2⌉ − 1− (q− 2)), then the

classical BCH codes contain their Euclidean dual
codes, [4, Theorem 3.]. Therefore using [4, Theorem 19.],
we obtain an [[n,n − 2m⌈(δ − 1)(1 − 1/q)⌉,≥ δ ]]q
stabilizer code.

According to Theorem6 any stabilizer code can be
reduced to a subsystem code. Therefore for anyr in the
range 0≤ r < n− 2m⌈(δ − 1)(1− 1/q)⌉ there exists
subsystem BCH code with parameters
[[n,n−2m⌈(δ −1)(1−1/q)⌉− r, r,≥ δ ]]q.

We can also construct subsystem BCH codes from
stabilizer codes using the Hermitian constructions where
the classical BCH codes are defined overFq2.

Lemma 5. Let m= ordn(q2). For any δ in the range
2 ≤ δ ≤ δmax = ⌊n(qm − 1)/(q2m − 1)⌋, there exists a
subsystem

[[n,n−2m⌈(δ −1)(1−1/q2)⌉− r, r,dQ ≥ δ ]]q

code that is pure up to δ , where
0≤ r < n−2m⌈(δ −1)(1−1/q2)⌉.

Proof. According to [4, Theorem 14.] if
2 ≤ δ ≤ δmax = ⌊n(qm− 1)/(q2m− 1)⌋, then there exists
a classical[n,n−m⌈(δ −1)(1−1/q2)⌉,≥ δ ]q BCH code
that contains its Hermitian dual code. Hence, according
to [4, Theorem 21.], the existence of a classical codes
containing its Hermtian codes guarantees the existence of
corresponding quantum codes. Now from [3, Theorem 2]
we get that there exists an
[[n,n−2m⌈(δ −1)(1−1/q2)⌉− r, r,dQ ≥ δ ]]q subsystem
code that is pure up to δ , for any
0≤ r < n−2m⌈(δ −1)(1−1/q2)⌉.

Instead of constructing subsystem codes from
stabilizer BCH codes as shown in Lemmas4, 5, we can
also construct subsystem codes from classical BCH codes
over Fq andFq2 under some restrictions on the designed
distanceδ . Let Si be a cyclotomic coset defined as{iq j

modn | j ∈ Z}. We will construct only SSC from
nonprimitive BCH codes overFq (for codes overFq2 and
further details see [2]).

Lemma 6. Let m= ordn(q) be an odd integer, and
2 ≤ δ ≤ δmax =

n
qm−1(q

⌈m/2⌉ − 1− (q− 2). Let C2 be a

BCH code with length q⌊m/2⌋ < n≤ qm−1,gcd(n,q) = 1,
and the generator polynomial with roots from the set
TC2 = {S0,S1, . . . ,Sn−δ}. Let T ⊆ {0} ∪ {Sδ , . . . ,Sn−δ}.
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Table 2: subsystem BCH codes using the Euclidean Construction
Subsystem Code Parent Designed

BCH Code distance

[[15,4,3,3]]2 [15,7,5]2 4
[[15,6,1,3]]2 [15,5,7]2 6
[[31,10,1,5]]2 [31,11,11]2 8
[[31,20,1,3]]2 [31,6,15]2 12
[[63,6,21,7]]2 [63,39,9]2 8
[[63,6,15,7]]2 [63,36,11]2 10
[[63,6,3,7]]2 [63,30,13]2 12
[[63,18,3,7]]2 [63,24,15]2 14
[[63,30,3,5]]2 [63,18,21]2 16
[[63,32,1,5]]2 [63,16,23]2 22
[[63,44,1,3]]2 [63,10,27]2 24
[[63,50,1,3]]2 [63,7,31]2 28

[[15,2,5,3]]4 [15,9,5]4 4
[[15,2,3,3]]4 [15,8,6]4 6
[[15,4,1,3]]4 [15,6,7]4 7
[[15,8,1,3]]4 [15,4,10]4 8
[[31,10,1,5]]4 [31,11,11]4 8
[[31,20,1,3]]4 [31,6,15]4 12
[[63,12,9,7]]4 [63,30,15]4 15
[[63,18,9,7]]4 [63,27,21]4 16
[[63,18,7,7]]4 [63,26,22]4 22

∗ punctured code
+ Extended code

Let further C1 ⊆ Fn
q be a BCH code with generator

polynomial roots from the set
TC1 = {S0,S1, . . . ,Sn−δ} \ (T ∪ T−1) where
T−1 = {−t modn | t ∈ T}. Then there exists a subsystem
BCH code with the parameters[[n,n− 2k− r, r,≥ δ ]]q,
where k = m⌈(δ − 1)(1 − 1/q)⌉ and
0≤ r = |T ∪T−1|< n−2k.

Proof. The proof can be divided into the following parts:

1.We know that TC2 = {S0,S1, . . . ,Sn−δ} and
T ⊆ {0} ∪ {Sδ , . . . ,Sn−δ} are nonempty sets. Hence
T⊥

C2
= {S1, . . . ,Sδ−1}. Further, if

2 ≤ δ ≤ δmax =
n

qm−1(q
⌈m/2⌉−1− (q−2)), wherem

is odd, then C2 ⊆ C⊥
2 . Now, if

k = m⌈(δ − 1)(1− 1/q)⌉, then dimC⊥
2 = n− k and

dimC2 = k.
2.We know thatC1 ∈ Fn

q is a BCH code with generator
polynomial roots from TC1 = TC2 \ (T ∪ T−1) =

{S0,S1, . . . ,Sn−δ} \ (T ∪ T−1) where
T−1 = {−t modn | t ∈ T}. Thus the generator
polynomial roots of the dual codeC⊥

1 belong to the set
T⊥

C1
= {S1, . . . ,Sδ−1}∪T ∪T−1 = TC⊥

2
∪T ∪T−1. We

can compute the union set TC2 as
TC1 ∪ T⊥

C1
= {S0,S1, . . . ,Sn−δ} = TC2. Therefore,

C1 ∩ C⊥
1 = C2. Furthermore, if

0≤ r = |T ∪T−1|< n−2k, then dimC1 = k+ r.

3.From step (i) and (ii), and for 0≤ r < n−2k, and by
Lemma 3, there exits a subsystem code with
parameters
[[n,dimC⊥

2 − dimC1,dimC1 − dimC2,d]]q =

[[n,n−2k− r, r,d]]q, d = minwt(C⊥
2 −C1)≥ δ .

One can also construct asymmetric subsystem BCH
codes by using the distancesdx and dz as shown in the
AQEC definition. In other words one can obtain ASSCs
with parameters [[n,n − 2k − r, r,dz/dx]]q and
[[n, r,n− 2k− r,dz/dx]]q. The extension to ASSCs based
on RS codes is straightforward and similar to our
constructions in [2,3].

5 Cyclic Subsystem Codes

Now, we will give a general construction of subsystem
cyclic codes. Any cyclic codes, including BCH, RS, RM
and duadic code, can be used in this construction. We
show that if a classical cyclic code, sayC2 is
self-orthogonal, i.e.,C2 ⊆ C⊥

2 , then one can useC2 to
construct cyclic subsystem codes. We will consider only
codes overFq, and the case ofFq2 is considered in [2].

Theorem 7. Let C2 be a k-dimensional self-orthogonal
cyclic code of length n overFq. Let sets of roots TC2 and
TC⊥

2
define codes C2 and C⊥2 respectively. Let further T be

a subset of TC2 \TC⊥
2

and C1 be a cyclic code of length n

overFq with generator polynomial roots from TC1 = TC2 \

(T ∪T−1). If r = |T ∪T−1| is in the range0≤ r < n−2k,
and d=minwt(C⊥

2 \C), then there exists a subsystem code
with parameters[[n,n−2k− r, r,d]]q.

Proof. See [2] and S.Aly, 2008 Thesis, for details.

Now, using Theorem7, we can construct asymmetric
cyclic subsystem codes with parameters
[[n,n− 2k− r, r,dz/dx]]q for all 0 ≤ r < n− 2k where
dx = min{wt(C⊥

2 \C1),wt(C⊥
2 \C

⊥
1 )} and

dz = max{wt(C⊥
1 \C2),wt(C⊥

1 \C2)}.

6 Illustrative Example

In Section 3, we constructed a family of asymmetric
quantum codes with large minimum distance for given
length and code dimension. Below we present a simple
example of the construction.

Let C1 be the [15,11,3]2 BCH code with generator
matrix
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































1000 0 0 0 0 0 0 0 1 1 0 0
0100 0 0 0 0 0 0 0 0 1 1 0
0010 0 0 0 0 0 0 0 0 0 1 1
0001 0 0 0 0 0 0 0 1 1 0 1
0000 1 0 0 0 0 0 0 1 0 1 0
0000 0 1 0 0 0 0 0 0 1 0 1
0000 0 0 1 0 0 0 0 1 1 1 0
0000 0 0 0 1 0 0 0 0 1 1 1
0000 0 0 0 0 1 0 0 1 1 1 1
0000 0 0 0 0 0 1 0 1 0 1 1
0000 0 0 0 0 0 0 1 1 0 0 1

































. (15)

ThenC⊥
1 is the[15,4,8]2 code with generator matrix







1000 1 0 0 1 1 0 1 0 1 1 1
0100 1 1 0 1 0 1 1 1 1 0 0
0010 0 1 1 0 1 0 1 1 1 1 0
0001 0 0 1 1 0 1 0 1 1 1 1






. (16)

Let now C2 be the [15,7,5]2 BCH code defined by
generator matrix



















1000 0 0 0 1 0 0 0 1 0 1 1
0100 0 0 0 1 1 0 0 1 1 1 0
0010 0 0 0 0 1 1 0 0 1 1 1
0001 0 0 0 1 0 1 1 1 0 0 0
0000 1 0 0 0 1 0 1 1 1 0 0
0000 0 1 0 0 0 1 0 1 1 1 0
0000 0 0 1 0 0 0 1 0 1 1 1



















. (17)

ThenC⊥
2 is the[15,8,4]2 code with generator matrix























1000 0 0 0 0 1 1 0 1 0 0 0
0100 0 0 0 0 0 1 1 0 1 0 0
0010 0 0 0 0 0 0 1 1 0 1 0
0001 0 0 0 0 0 0 0 1 1 0 1
0000 1 0 0 0 1 1 0 1 1 1 0
0000 0 1 0 0 0 1 1 0 1 1 1
0000 0 0 1 0 1 1 1 0 0 1 1
0000 0 0 0 1 1 0 1 0 0 0 1























. (18)

AQEC. We assume that the codeC1 corrects the bit-flip
errors such thatC⊥

2 ⊂ C1. Furthermore,C⊥
1 ⊂ C2. Further

dx = wt(C1\C⊥
2 ) = 3 anddz = wt(C2\C⊥

1 ) = 5. Hence,
there must exist asymmetric quantum error control codes
(AQEC) with parameters
[[n,k1 + k2 − n,dz/dx]]2 = [[15,3,5/3]]2. This quantum
code can detect 4 phase-shift errors and 2 bit-flip errors.
Fault tolerant circuits for this code can be constructed
similarly to the circuit presented for[[9,1,3]]2 and
[[7,1,3]]2 codes.
SSC.We can also construct a subsystem code based on
the codes C1 and C2. First, we notice that
C⊥

1 = C2 ∩ C⊥
2 6= /0, C2 ⊂ C1 and C⊥

2 ⊂ C1. Next,
k = dimC1 − dimC2 = 4 and r = dimC2 − dimC⊥

1 = 3,
and d = wt(C1\C2) = 3. Therefore, there exists a
subsystem code (SSC) with parameters[[15,4,3,3]]2, and
an asymmetric subsystem code (ASSC) code with
parameters[[15,4,3,5/3]]2.

Remark.A natural question is to ask how we should choose
distancesdz anddx. A possible answer follows from real
physical systems. Often, the time needed for a phase-shift
error to occur is much less than the time needed for a qubit-
flip error. Hence one has to design codes withdz anddx that
fit a particular physical model.

7 Bounds on Asymmetric QEC and
Subsystem Codes

In this section we generalize the Singleton bound for the
asymmetric codes and asymmetric subsystem codes. We
show in the asymmetric case dimensions and minimum
distances can be trade off in a similar manner as shown
in [2,3].

7.1 Asymmetric Singleton Bound

Theorem 8. An [[n,k,dz/dx]]q asymmetric pure quantum
code must have

dx ≤ (n− k+2)/2,

and the bound

dx+dz≤ (n− k+2). (19)

Proof. Existence of an[[n,k,dz/dx]]q asymmetric code
implies existence of two codesC1 and C2 such that
C⊥

2 ⊆ C1 andC⊥
1 ⊆ C2. furthermoredx = wt(C1\C⊥

2 ) and
dz = wt(C2\C⊥

1 ). Hence we havedx ≤ (n− k1 + 1) and
dz ≤ (n− k2 + 1), and by adding these two terms we
obtaindx+dz≤ n− (k1+ k2−n)+2= n− k+2.

One can also show that asymmetric subsystem codes
obey the Singleton bound

Lemma 7. Asymmetric subsystem codes with parameters
[[n,k, r,dz/dx]]q for 0≤ r < k satisfy

k+ r ≤ n−dx−dz+2. (20)

Remark.In fact, the AQEC RS codes obtained in Section3
are optimal in a sense that they meet the asymmetric
Singleton bound with equality. Codes that meet Singleton
bound are called maximum distance separable (MDS)
codes. The conclusion is that MDS QECs are also MDS
AQEC. Furthermore, MDS SSC are also MDS ASSC.

7.2 Asymmetric Hamming Bound

Based on the discussion presented in the previous
sections, we can treat subsystem code constructions as a
special class of asymmetric quantum codes where
C⊥

i ⊂ C1+(i mod 2), for i ∈ {1,2} andC2 = C1 ∩C⊥
1 . We

use this observation in the following theorem.
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Lemma 8. A pure ((n,K,K′,dz/dx))q asymmetric
subsystem code satisfies

⌊ dx−1
2 ⌋

∑
j=0

(

n
j

)

(q2−1) j ≤ qn/KK′. (21)

Proof. Considering an asymmetric code as a symmetric
code we conclude that a pure((n,K,K′,dz/dx)))q code
implies the existence of a pure((n,KK′,dx))q code. The
((n,KK′,dx))q code must obey the quantum Hamming
bound [5,12]. Therefore it follows that

⌊ dx−1
2 ⌋

∑
j=0

(

n
j

)

(q2−1) j ≤ qn/KK′.

It is easy to check that∑
⌊ dz−1

2 ⌋
j=0

(n
j

)

(q2 − 1) j not
necessarily less than or equal toqn/KK′. As an example,
consider the asymmetric subsystem codes[[15,4,3,5/3]]2
and[[15,6,1,5/3]]2, wheredz = 5, in which

⌊ dz−1
2 ⌋

∑
j=0

(

n
j

)

(q2−1) j 6≤ qn/KK′. (22)

8 Conclusion

This paper introduced a new theory of asymmetric
quantum codes. It establishes a link between asymmetric
and symmetric quantum control codes, as well as
subsystem codes. Families of AQEC are derived based on
RS and BCH codes over finite fields. Furthermore we
introduced families of subsystem BCH codes. Tables of
AQEC-BCH and CSS-BCH are shown overFq.
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