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Abstract: A quantum computer exploits the rules of quantum mechanispéed up computations. However, one has to mitigate noise
and decoherence to avoid computational errors in orderdeessfully build quantum computers.

Recently the theory of quantum error control codes has bemaed to the case of asymmetric quantum channels — qipbasftl
phase-shift errors may have equal or different probaéditin this paper, we further develop this theory and esfalfie connection
between asymmetric quantum codes and subsystem codese¥émpfamilies of subsystem and asymmetric quantum codamet
from classical BCH and RS codes.

Keywords: Quantum Error-correcting Codes (QEC), Subsystem Code€)(SBrror-Correcting Codes, Asymmetric Quantum
Channels

1 Introduction over amplitude-damping channeld3, which is an
example of asymmetric quantum channel.
The asymmetric quantum cyclic codes that we

Quantum computers theoretically are able to solve certairtonstruct in this work have simple encoding and decoding
problems more quickly than any deterministic or circuits that can be implemented using shift-registers wit
probabilistic computers. An example of such problems isfeedback connections. Also, their algebraic structure
the factorization of large integers in polynomial time. The simplifies the problem their parameters estimation.
novel idea is that a quantum computer exploits the rulesFurthermore, their stabilizers can be easily found from
of quantum mechanics to speed up computationsgenerator polynomials of the corresponding classical
However, one has to mitigate noise and decoherence t@odes.
avoid computational errors in order to successfully build  In this paper, we construct quantum error-correcting
quantum computers. Recently, the theory of quantumcodes (QEC) that correct quantum errors that may destroy
codes is extended to include construction of asymmetriqquantum information with different probabilities. We
quantum error-correcting codes (AQEC) for correcting propose two generic methods that can be applied to any
error in channels with qubit-flip error probability Rr  classical cyclic codes in order of obtaining asymmetric
different from the phase-shift error probability 22r  quantum cyclic codes. We use these methods to construct
Typically PrZ > PrX. First constructions of AQEC asymmetric quantum BCH, RM, RS codes, and further
appeared in11,17,28]. In [1] two families of asymmetric  families of asymmetric subsystem codes (ASSC). Note
CSS quantum codes were constructed on the base oat several classes of AQECs are also presented
classical BCH codes. For an introduction into CSS codesn [1,7,17,22].
see for exampled, 10,23-26).

Note that several attempts to characterize noise error Notation: Let q be a power of a prim@. We denote
models in quantum systems were made irl9, 5. by Fq the finite field withg elements. Le€ be an additive
Recently, quantum error correction has been extendedode oveilf of lengthn (note thatC is linear overfp).
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If C has minimum distance and size(g?)X we will say

that it is an[n, k,d] > code. We define the Euclidean inner

product for vectors;,y € Fg by (xly) = 3L xyi and the
Euclidean dual code @& as

C-={xeFp|(xy)=0forallyeC}.

We define the Hermitian inner product for vectoty €
F", as(xy)n = S, X'y and the Hermitian dual & as
q

Chth={xe ng | (X]y)h =0 forally € C}.

If Cis an [n,(n—k)/2]p self-orthogonal code, i.e.,
C C C'h, then it defines a-ary quantum stabilizer code
Q that encodesk logical quibits into n qubits with
minimum distanced = minceclh\cwt(c), for details
see [LCO], [29], [8]. We will say thatQ is an [[n,k,d]]q
stabilizer code. The

i) If C3 C C, then there exists an AQEC with
parameters

[[n,dimCy — dimCi‘,Wt(Cz\Cf)/Wt(Cl\C%‘)]]q
:[[n, kl =+ k2 —n, dz/dx]]q.

Also, there exists a QEC with parametérsk; + ko —
N, dy]]q-

ii) Fromq[i], there exists an SSC with parametéps, k; +
ko—n—r,rdylg, 0<r <ki+ko—n.

i) 1If C3 =CyNC{ C Cy, then there exist ASSCs with
parameters [[n,ko — ki,ki + ko — n,d;/dy]]q and
[[n, ki+ko—n ko — kl,dz/dx]]q.

Furthermore, all the above codes are pure to their

minimum distances.

The paper is organized as follows. Sectid)s3,
and 6 are devoted to two families of AQECs, namely

A special family of stabilizer code are CSS codes. InBCH AQECs and RS AQECs. Sectiodsand7 consider

this case a self orthogonal code o is constructed
from one or two codes ovdfq and it is further used to

the problem of construction of asymmetric subsystem
codes and their relation to AQECs. We show the tradeoff

construct a quantum stabilizer code. Omitting details, wePetween subsystem codes and AQECs. Sedtipresents

describe CSS codes as follows. @ is an [n,k,d]q
classical additive code such th@C C*, that isC is

self-orthogonal with respect to the Euclidean inner

product, then it can be used to constructam — 2k, d]]q
stabilizer code. Also recall that i€ is an [n,k,d]q
classical additive dual-containing codg: C C, respect

to the Euclidean inner product, then there exists anLet

[[n, 2k — n,d]]q stabilizer code. More generally, @; and
C; are[n,ky,d1]q and[n, ko, d2]q two classical codes such
thatC; C Cy, then there exists gn, ko — ky, d]]q stabilizer
code.

Let A andAl,i = 1,...,n, be the number of vectors
of weight i in codesC and C'h respectively. Since
C C C*h we haveAl > A;. Letdg be the first integer such
thatAjQ > Adg- Thendg is the minimum distance o
and we will say thatQ is an [[nk,dg]lq quantum

stabilizer code. Further if the minimum distanced3fh is
do (potentially it could be smaller thadg) we will say

the bound on AQEC and ASSC parameters. Finally, the
paper is concluded with a discussion in Secon

2 Asymmetric Quantum Codes

T be the Hilbert space
A =CT =CI0C%w...o CY. Let vectors|x),x € Fy,
for an orthonormal basis of9, assumingq = p?. For
a,b € Fq we define the unitary operatorya) andZ(b)
that act inCY as

X@[x) = [x+a),  Z{D)x) =" x), 1)

wherew = exp(2ri /p) is a primitive pth root of unity and
tr is the trace operation froffg to Fy,.

Leta=(ay,...,an) € Fgandb = (by,...,bn) € Fg, and
further
Z(b)x) = w"™x),

X(@)[x) = [x+a), )

thatQ is apurequantum code. Details on the connection wherew = exp(2ri/p) is a primitive pth root of unity and

between quantum stabilizer codes and
self-orthogonal codes can be found @], [25], [8].

The following theorem establishes the connection

classicatr is the trace operation froffg to Fp

Leta=(ag,...,an) € Fg andb = (by,...,by) € Fg. Let
us denote by

between two classical codes and QECs (Quantun(®) = X(a1)®---@X(an), and

Error-correcting Codes), AQECs, SSCs (SubsystemZ(b) = Z(b1)® --- ®Z(bn)

Codes), ASSCs (Asymmetric Subsystem Codes).

Theorem 1(CSS AQEC and ASSC). Let G and G be
two classical codes with parameter®,ky,di]q and
[N, ko, d2]q respectively, and

dy = min { wt(C;\C3),wt(C>\Ci) }, and

d, = max{ wt(C;\Cz),wt(Cx\C1) }.

3
the tensor products aferror operators and further
Ex= {X(a)|ac Fg}, Ez={Z(b)|b € Fg} (4)
We define the error groufs, andG; by
Gx = {w°Ex|c € Fp} = {w"X(a)|a€ Fg,c € Fp},
G, ={w°E/|ce Fp} = {w°Z(b)|b e Fg.ce Fp}.  (5)
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We will say thatGx and G; represent the qubit-flip and E 2n

phase-shift errors, respectively. The entire error graup i q

defined by
G - <Gx,Gz>

_ {wCX(a)Z(b)|ce Fpabe Fg} (6)

Typically quantum codes are constructed under theE/i/% iiaggzzfmgfen;: Ofaﬁzygmviﬁihc qzraanr;uerrercsorc]iis b:ﬁgd on
assumption that for any nonzemb € Fq the error ! 2 P In. ko]

operators from X(a) and Z(b) have the same [n, o] such thatG; € Cpi modg for i ={1,2}. AQEf has
probabilities, i.e., PX(a) = Prz(b). Physical Parametersn ks +kp —n.dz/dy]]q whereds = wt(C1\C; ) and
experiments show that this assumption does not hold irfz =Wt(C2\Cy)

reality [17,28]. Below we derive families of asymmetric

guantum error codes that are matched to quantum

channels with PZ(b) > PrX(a).

The error operators fronGx and G, represent the
qubit-flip and phase-shift errors respectively.

Definition 1(AQEC). A g-ary asymmetric quantum 3 Asymmetric Quantum BCH and RS Codes

code Q, denoted by[n,k,dz/dgla, lel a g-ay (K] 0 ihis section we construct asymmetric CSS codes on the
stabilizer code that can correct a3 | flip errors and  pase of classical BCH and RS codes. We will restrict
anyLdzz’lj phase-flip errors. ourself to the Euclidean construction oy, though the

) ) generalization to the Hermitian construction ovep is

The ratio p = dz/dyis used to compare, anddv.  straightforward.

Therefore, ifd; > dy, then the AQEC has a ratio great ~ BCH codes form a well known family of classical
than one and therefore the code is capable of correctingyclic codes, see for exampld§, 16, 18]. Below we
more phase-shift errors than qubit-flip errors. In our work, remind their definition.

anddy as well as dimensiok of the quantum code. such that gcft, n) = 1. Thecyclotomic coset,anodulon
is defined by

Connection to Classical nonbinary CodesLet C; and ; , ,
C, be [nky,diq and [nkpdy)q codes over Fy = {xd modn|ieZ,i>0}. (7)
respectively. let[nky,dilq and [n.kp,doq be their | et furtherm be the multiplicative order off modulon
parameters. Denote Ity a parity check matrix of cod®  and a be a primitive element irFqn. A nonprimitive
fori=1,2.1f G CCiy (i moda thenCi\ i moazy €G- narrow-sense BCH code @ith designed distancé is a
So, the rows ofH;, which form a basis foC, can be  cyclic code with a generator monic polynomgk) that
extended to form a basis f@;_; moq2 by adding some hasa, a?,...,a% asits roots,
vectors. If now C; are cyclic codes with generator ‘
polynomialsg; (x) thenk; = n— deggi(x)), see 16, 18]. g(x) = I_L(X— a'), (8)
The relation between cod€s andC; is shown in Figl. Ie

Code vectors ofC; and C, correspond to certain

elements of the group&x and G, respectively. This whereS=§U%U...USs_1. Thus,cis a codeword ir¢’

. . . . . 67 . .
connection is well-know, see for exampleg[20,21]. The  if and onlyifc(a) =c(a?) =... = c(a°*) = 0. A parity
following Lemmas shows that Asymmetric CSS quantumcheck matrix of this code can be defined as
codes can be constructed franandC,. 1 a a? ... "1

. 1 a2 qg* ... g2
Lemma 1( CSS AQEC). LetG,i = 1,2 be [nki,di|q Hoch= | . . . ) ) (9)
classical codes with the property that G- Cii(i mod2- ol : K :
Let d = min{wt(C\C)Wt(CA\C{)},  and 1%t g0t . @7ty
d; = max{ wt(C1\Cy ),wt(C2\Cy ) } . Then there exists an In general the dimensions and minimum distances of
[N, k1 + k2 —nN,d;/d]]q pure ACSS code. BCH codes are not known. However, lower bounds on

o these two parameters are given by > & and
We use the same definition of pure code as statedGh [ | > n—m(5— 1). Fortunately, in 4, 6] exact formulas for
[1]. Now we would like to find code€; andC; thatwould  the dimensions and minimum distances are given under

give us large values falx andd; for givennandki +k2—  certain conditions. In particular, the following resultd=o
n.
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Theorem 2(Dimension BCH Codes)Let g be a prime Table 1: Families of asymmetric quantum BCH codé&§ [
power andgcdn,q) = 1, with ordy(q) = m. Then a q | G BCH Code | C; BCH Code AQEC
narrow-sense BCH code of length™? < n<gq"—1
over Fq with designed distanced in the range 2 [15113] [157,5] [115,3,5/3]]2
2 < 0 < Omax = min{[ng™=l/(q" — 1)],n}, has 2| 31215 31167 | [[316.7/5])
dimension of 2| 31263 31,16,7] 31,11,7/3]
n_ _ _ 2 [31,26,3] [31,16,7] [[31,10,8/3]]
k=n-m[(6—1)(1-1/q)]. (10) 2| [31,263 [31,11,11] ([31,6,11/3]]
ProofSee §, Theorem 10]. 2| [31,263 [31,6,15 ([31,1,15/3]]
In [25, 27] Steane constructed first binary quantum g Hg 1(1)2% Hg;;g;% Eg;gg;gﬁﬂ

BCH codes. In 14] Grasslel. at. proposed a family of
guantum BCH codes and presented tables of best known
BCH codes.

One of main challenges in4][ 6] were proofs of
dual-containing conditions for BCH codes. We can avoid Theorem 4(AQEC-BCH). Let gcdn,q) = 1, with
these problems by looking for BCH codes that are nestedprd,(q) = m. Let G and G be two narrow-sense BCH

The following result allows obtaining a family of .y4es of length V2 < n < g™ — 1 with designed
quantum codes derived from nonprimitive narrow-senseyistances & and & in  the  range

BCH codes, see our initial resultg][ 2 < 81,8 < Omax = min{[nd™? /(g™ — 1)|,n} and
Theorem 3Let m= ordy(q) and ™2 <n<gq"—1 & <& <&H<S;.
where q is a power of a prime arfi< d < dmax, With IfSU...USs5 1 # SU...USs,_4, then there exists
n /o an asymmetric
5r>:1ax: (q( / W—l—(q—Z)[modd),

"1

then there exists a quantum code with parameters
[[n,n—2m[(d—1)(1-1/a)],> d]]q

pure todmax+ 1

[[n,n—m[(&—1)(1-1/0)] —m[(&—1)(1-1/q)],> dz/lq

guantum code with
d; = Wt(C2\Ci) > & > dy = wWt(C1\Cy ) > 1.

Proof. From the nested structure of BCH codes, we know
ProofSee fi, Theorem 19]. that if & < 8-, thenCJ C Cy, similarly if & < &;, then
C{ C C,. By Lemmaz2, using the fact thad < dmax, the
dimension of the <code C is given by
3.1 AQEC-BCH ki=n-m[(§ — 1)(1 —1/q)] for i = 1,2. Since
SSU...US5 1 # S U... US4, this means that
Fortunately, the mathematical structure of BCH codesdeggi(x)) < deggz(x)), hencek, < k;. Furthermore
always us easily to show the nested required propertk; < kj-.
needed in Lemmd. Indeed, from Theorer@ we know Let us denote dx = wt(C;\Cy) > & and

that the generator polynomialg(x) has degree d, = Wt(C,\C{-) > & and assume thak > dy. (If dy > d;
m[(d —1)(1—1/8)] if & < dmax Therefore the code \ye jnterchange the roles of codés andC,.) Then, by

dimension is equal tk = n—dedg(x)). Hence, the | emma1 and the assumptions there exists AQEC with
nested structure of BCH codes is obvious and can bgarametergn, Ky + ko — N, > dy/d]]g.

described as follows. Let
0i1>0>01>...>2, (12) Usually the designed minimum distance gives only a
and letC; be a BCH code with the generator polynomial 'ower bound on the true minimum distance of BCH codes.
gi(x) defined by the rootd2,3,...,5 — 1}. So,C; has  We argue thatin our case the true minimum distances meet
parameterfn, n— deg(gi(x)),d; > &]q and with the designed minimum distances for small values of
designed distances. that are particularly interestingsto u

CGncGEGac... (12) " One can also use the condition shown4nCorollary 11.]

We need to ensure thah # .1 and that the to ensure that the minimum distance meets the designed
difference among them is large enough. Therefore the setgjstance for certain bounds of the designed distance.
of roots{2,...,4 — 1} and{2,..., 41 — 1} are distinct. The condition on the designed distandgsand,, as
This means that the cyclotomic cosets generated byd  shown in Theorend) and in 4, Corollary 11.], allows us
di1arenotthe sam& U...US; 1 #SU...USs, ;1. to give formulas for the dimensions of BCH cod®sand
Let & be the designed distance of the c@fe Thenthe C,. However, we can derive AQEC-BCH without this
following result gives a family of AQEC BCH codes over condition as shown in the following result. This is
Fq. explained by an example in the next section.
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Lemma 2Letgedm,q) =1,and ng™? <n<q"—1,is
S0 that m= ordh(q). Let G and G be [n,kq, dx > 1]q and F 2n
[n,kz,d; > &]q BCH codes respectively, such that <

O <&H<d,andk+ky>n lfSU...US; 1 #SU
...USs,_1, then there exists an asymmetric

[[n7 k1+ k2 —n, > dz/dx]]q
quantum code with |

0, =WH(CI\CL) = & > ch = WH(CA\CL) = &1, ¥ vellow ¥ Green
Detectable errors Undetectable errors

This theorem can be used to construct any asymmetric
cyclic quantum codes. Also, one can construct k=dimC,-dimC, r=dimC,-dimCa
asymmetric quantum codes using codes &ygr
Fig. 2: A quantum code Q is decomposed into two subsystem A
(info) and B (gauge)
3.2 RS Codes

In this section we construct a family of asymmetric

quantum codes based on classical Reed-Solomon codes.

Recall that a RS code with length= q— 1 and designed Definition 2( Subsystem Codes). An [[nk,r,d]|q
distanced over Fq is an[[n,n— &+ 1,d]]q cyclic code  subsystem code is a subspace Q that a) can be

with the generator polynomial represented as a tensor product of subspaces A and B,
d—1 such that @= A® B, withdimA = k anddimB =r, and

g(x) = rl(x_ai), (13)  b) all errors of weight less than d on subsystem A are
i= detectable.

We use RS codes to construct an asymmetric quantum

code as follows. Subsystem codes can be constructed from the classical

codes oveFq andF .. The classical codes do not need to
'{hdeorem g Let nd: q—lldandR% ang G be [n,nt_— d|1 +L ¢ be self-orthogonal (or dual-containing) as shown in the
,0allq and[n,n — N +1,dz]q RS codes respectively. L€l eyclidean construction below. General constructions of
furtherdy <d, <di- =n—dy. Thenthereexists dn,n—  gypsystem codes, known as the subsystem CSS and
di —d1+2,dz/dy]]q, AQEC code withg=di <d;=do.  Hermitian constructions, were proposed &. Below we
Proof. Sinced; < dy < di-, thenn—di +1<n—dy+1< consider a special case of the subsystem CSS

n—d+1 andki < kp < ky. HenceC; c C; andc; ¢ construction.
_ 1y — _ 1y
% Le]E de _hWt(CZ\Cl )= dZAanggx » r:Vt(Cl\CZ )=di |emma 3(SSC Based CSS Euclidean Construction)lf
erefore there must exist AQEC with parametgsn — C1 is a K-dimensionaFg-linear code of length n that has

dy — 1+ 2,0,/ . a K’-dimensional subcode,G= C; NCi- and K + K’ < n,
It is obvious that the constructed code is a pure code. Onghen there exist
can also derive asymmetric quantum RS codes based on

RS codes oveFgp. Also, generalized RS codes can be [[n,n— (K +K"),K — K’ wt(C5 \ C1)]lq
used to derive similar results. In fact, one can derive
AQEC from any two classical cyclic codes obeying the ([nK—K' n— (k’+k”),wt(C2l\C1)]]q

pair-nested structure oveg.
subsystem codes.

4 AQEC and Connection with Subsystem Proof. We remind that ify, b, ¢, d € Ff then the symplectic

Codes inner product between vectofa,b) and(c,d) is defined
by

In this section we consider a large class of quantum codes (a,b) * (c,d) = (a]d) + (b|c)

called asymmetric subsystem codes (ASSs). In particular, ) ) . ]
we construct families of subsystem BCH codes andFurther, the symplectic weight of a vect@;b) is defined
subsystem cyclic codes ovigg In [2,3, 7] we constructed by
other families of subsystem cyclic, BCH, RS and MDS swi((a,b)) = [{(ai,bi) # (0,0)}].
codes oveF .
Subsystem quantum codes are a special class
quantum codes in which errors can be corrected as well as .
avoided (isolated). swi(C) = aerg'af;oSWt(a)

0l%or alinear cod€ C Fé” we define
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The symplectic dual of is defined by
Cs={beFg" :bxsa=0YacC}.

Let us now define the codX = C; x C; C F3",
therefore X's = (C; x C;)'s = C{® x .. Hence
Y = XNX+s = (Cp x C1) N (C;® x ;%) = Cp x Cy. Thus,
dime,Y = 2k". Hence [X|IY| = ¢?¥*K) and
IX|/|Y| = q?K-K"). By Theorem §, Theorem 1], there
exists a subsystem cod® = A® B with parameters
[[n,log, dimA, log, dimB, d]]q such that

) dimA = q/(IX|[Y[)¥/2 = g K"

i) dim B = (|X|/|Y|)¥2 = g ¥,
i) d = swt(Y-s\X) =wt(Cy \ C1).
Exchanging the roles o€, andCj-, we obtain the other
subsystem code.

Lemma4. Let m be an odd positive integer such that
qlm/2 < n < qgn - 1L Let
2<0 < Omax= qm'll(q[m/z] —1—(g—2)). Then there
exists an [[n,n —2m[(5 — 1)(1 — 1/q)] —r,r,> J]]q
subsystem BCH code with
0<r<n-2m[(6—-1)(1-1/q)].

Proof. We know that if

2 <8 < Omax= gig(d™? —1- (g 2)), then the
classical BCH codes contain their Euclidean dual
codes, #, Theorem 3.]. Therefore using,[Theorem 19.],
we obtain an[n,n — 2m[(d — 1)(1 — 1/q9)],> d]q
stabilizer code.

According to Theoren® any stabilizer code can be
reduced to a subsystem code. Therefore for iy the
range 0<r < n-—2m[(d — 1)(1—1/q)] there exists
subsystem BCH code with parameters
[[n? n— Zm((é_ 1)(1_ 1/q)—| —-nr= 6]]q

Some particular construction of subsystem codes

(SSC) requires thaC, be self-orthogonalC, C C2L

see [O. However, both AQEC and SSC can be
constructed from the pair-nested classical codes. Henc

classical codesC; and C, with the property that

C, =C1NC{ C Cy, can be used to construct a subsystem

code and an asymmetric quantum code.

The construction in Lemma& can be generalized to
asymmetric subsystem codes (ASSC) CSS construction in
a similar way. This means that we can consider an

[[n,k.dz;/dx]]q AQEC as a][[n,k,0,d,/dy]]q subsystem
code. Therefore all results obtained i& B, 5] directly

follow from this construction, by just fixing the minimum

distance condition.

We have shown inZ, 3] that all stabilizer codes (pure 2 < < dmax= [n(q™ —

We can also construct subsystem BCH codes from
stabilizer codes using the Hermitian constructions where
the classical BCH codes are defined olvgr.

Lemma5. Let m= ordy(g?). For any § in the range
2< 8 < dmax= |N(@"—1)/(¢°™ - 1)], there exists a
subsystem

[[n,n—2m[ (86— 1)(1-1/6%)] —r,r,dg > &]lq

code that is pure up to J, where
o<r<n-2m[(6—1)(1-1/¢%].
Proof. According to B, Theorem 14.] Iif

1)/(g?™—1)], then there exists

and impure) can be reduced to subsystem codes. We sayclassicaln,n—m[(d —1)(1—1/q?)],> 8]q BCH code
that a code is Co-SSC if it can be produced from SSC bythat contains its Hermitian dual code. Hence, according
reducing the dimension and increasing the minimumto [4, Theorem 21.], the existence of a classical codes

distance, as it is done in the following Theorem.

Theorem 6( Trading Dimensions of SSC and Co-SSC).

containing its Hermtian codes guarantees the existence of
corresponding quantum codes. Now fro8) Theorem 2]
we get that there exists an

If there exists anFg-linear [[n.k r.d]|q subsystem code [inn—2m[(5—1)(1—1/¢®)]—r.r, dg > 3]]q subsystem

with k > 1 that is pure up to @ then there exists an ¢gde

that is pure up to o, for any

Fg-linear [[n,k—1,r +1,> dJq subsystem code thatis o< <n—2m[(5—1)(1—1/¢9)].

pure up tomin{d,d’}. If a pure Eqg-linear) [[n,k,r,d]|q
subsystem code exists, then a pur&g-lfnear)
[[n,k+r,d]]q stabilizer code exists.

Instead of constructing subsystem codes from
stabilizer BCH codes as shown in Lemn¥asb, we can
also construct subsystem codes from classical BCH codes

We have shown in4, 6] that narrow sense BCH codes, overFq andF. under some restrictions on the designed

primitive and non-primitive, with lengtim and designed

distanced are Euclidean dual-containing codes if and only

if

n
256 < dna= 7 (@"*1-1-(0-2)), (14)

weremis odd.
We use this result and3] Theorem 2] to obtain

distanced. Let S be a cyclotomic coset defined i
modn | j € Z}. We will construct only SSC from
nonprimitive BCH codes ovefq (for codes ovefF ;. and
further details se€?]).

Lemma 6. Let m= ordy(q) be an odd integer, and
2<0 < Omax= qm",l(q[m/z] —1-(q—2). Let G be a

nonprimitive subsystem BCH codes from classical BCHBCH code with length §/2) < n< g™ —1,gcdn,q) = 1,
codes oveFq andFg [5,6]. In [2] subsystem codes from and the generator polynomial with roots from the set

primitive BCH codes were obtained.

To, = {S0.S1.--.Sh-o). Let TC {0} U{Ss..... S 5}
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Table 2: subsystem BCH codes using the Euclidean Construction 3 From step (i) and (ii), and for @ r < n— 2k, and by

Subsystem Code Parent Designed
BCH Code | distance
[[15,4,3,3]]2 [15,7,5]» 4
[[15,6,1,3]]2 [15,5,7]2 6
[[31,10,1,5]]2 [31,11,11], 8
[[34,20,1,3]]2 [31,6,15» 12
[[63,6,21,7]]2 [63,39,9]» 8
[[63,6,15,7]]2 [63,36,11], 10
[[63,6,3,7]]2 [63,30,13]2 12
[[63,18,3,7]]2 [63,24,15], 14
[[63,30,3,5]]2 [63,18,21], 16
[[63,32,1,5]]2 [63,16,23)> 22
[[63,44,1,3]]2 [63,10,27)» 24
[[63,50,1, 3]]2 [63,7,31]» 28
[[15,2,5,3]]4 [15,9,5]4 4
[[15,2,3,3]]4 [15,8,6]4 6
[[15,4,1,3]]4 [15,6,7]4 7
[[15,8,1,3]]4 [15,4,104 8
[[31,10,1,5]]4 [31,11,11]4 8
[[31,20,1,3]]4 [31,6,154 12
[[63,12,9,7]]4 [63,30,15]4 15
[[63,18,9,7]]4 [63,27,21]4 16
[[63,18,7,7]]4 [63,26,22)4 22

Let further G C Fn be a BCH code with generator

polynomial roots from the set
T, = {SS...Sst \ (T U T*h  where
T~1={-tmodn |t € T}. Then there exists a subsystem

* punctured code
+ Extended code

BCH code with the parametefgn,n— 2k —

where

k =

m@ - 1)

0<r=|TuT ! <n-2k
Proof. The proof can be divided into the following parts:
ey Shs}t and

1.We
TC
Te,

is

know

odd,

that Tc,
{0} U {Ss, ...
{(Sw....
2 < o < 6max: qmn_
then

= {S.S

,S5-1}-
1(q[m/2] —1—

c G

G

- 1/(1)1

r.r,> dllq
and

,Sv_s} are nonempty sets. Hence

Further, if

(g—2)), wherem

Now, if

=m[(d—1)(1—1/q)], then dinCy = n—k and
dimC2 =k

2.We know thatC; € Fg is a BCH code with generator

polynomial roots fromTe, = T, \ (TUT 1) =

{%.S1,...,S-5 \ (T u T where
Tt ={-tmodn |t € T}. Thus the generator
polynomial roots of the dual cod®- belong to the set
Tcil:{Sl,...,sé_l}uTqulzTchuT uT—1 We
can compute the union set T, as
Te, U TCLl = {%,S1.....S 5} = Tc,. Therefore,
GG N G = G Furthermore, if

0<r=|TUT ! <n-2kthendinC; =k+r.

Lemma 3,
parameters
[[n,dimCy — dimC;,dimC; — dimCy,d]]q
[[n,n—2k—r,r,d]]g, d = minwt(Cy —Cy) > .

there exits a subsystem code with

One can also construct asymmetric subsystem BCH
codes by using the distancdg and d, as shown in the
AQEC definition. In other words one can obtain ASSCs
with  parameters [[n,n — 2k — r,rd;/dy]lq and
[[n,r,n—2k—r,d;/dx]]q. The extension to ASSCs based
on RS codes is straightforward and similar to our
constructions inZ, 3.

5 Cyclic Subsystem Codes

Now, we will give a general construction of subsystem
cyclic codes. Any cyclic codes, including BCH, RS, RM
and duadic code, can be used in this construction. We
show that if a classical cyclic code, sa{, is
self-orthogonal, i.e.C; C Cy, then one can us€; to
construct cyclic subsystem codes. We will consider only
codes oveFgq, and the case d¥, is considered inZ].

Theorem 7. Let G be a k-dimensional self-orthogonal
cyclic code of length n ovef,. Let sets of rootsc and

Te, define codes £and C; respectively. Let further T be
a subset of d, \TCZL and G be a cyclic code of length n

over Fq with generator polynomial roots frome= Te, \
(TUT Y. 1fr =|TUT Y| isinthe ranged <r < n— 2k,
and d=minwt(Cy- \ C), then there exists a subsystem code
with parameterg[n,n — 2k —r,r,d]]q.

Proof. See P] and S.Aly, 2008 Thesis, for detalils.

Now, using TheorenT, we can construct asymmetric

cyclic subsystem codes with parameters
[[n,n—2k—r,r.d;/dy]]q for all 0 <r < n— 2k where
d = min{wt(C;\Cy).Wt(C5\Cl)} and

d, = max{wt(C{ \Cy), wt(C{-\Cy) }.

6 lllustrative Example

In Section 3, we constructed a family of asymmetric
quantum codes with large minimum distance for given
length and code dimension. Below we present a simple
example of the construction.

Let C; be the[15,11,3], BCH code with generator
matrix
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RemarkA natural question is to ask how we should choose

r10000000000110 distanced, anddy. A possible answer follows from real
0100000000001 1 physical systems. Often, the time needed for a phase-shift
00100000000001 error to occur is much less than the time needed for a qubit-
00010000000110 flip error. Hence one has to design codes wiithnddy that
00001000000101 fit a particular physical model.
0000010000001001. (15)
00000010000111
00000001000011 7 Bounds on Asymmetric QEC and
00000000100111 Subsystem Codes
00000000010101

100000000001100 In this section we generalize the Singleton bound for the

ThenC{ is the[15,4,8], code with generator matrix ~ a@Symmetric codes and asymmetric subsystem codes. We

_ show in the asymmetric case dimensions and minimum
10001001101011 distances can be trade off in a similar manner as shown
01001101011110 (16) in[2.3]
00100110101111 T

100010011010111

generator matrix

Theorem 8. An [[n,k,d;/dx]]q asymmetric pure quantum

r10000001000101 code must have
01000001100111

00100000110011 dx < (n—k+2)/2,
000100010111000. (17)

00001000101110 and the bound

00000100010111 Ox+d; < (N—k+2). (29)
100000010001011

ThenC; is the[15,8, 4] code with generator matrix ~ F10of- Existence of an{[n.k,dz/dylq asymmetric code

_ implies existence of two code€; and C, such that
10000000110100 C4 C Cy andCy C C,. furthermoredy = wt(C;\Cy) and
8(1)28 8 8 8 8 8 é 1 (1) é (1’ d, = Wt(C2\C{ ). Hence we havel, < (n—k; + 1) and
00010000000110 d, g'(n—k2+1), and by adding these two terms we
00001000110111 (18) obtaindx+d, <n— (kj+ky—n)+2=n—k+2.
00000100011011 One can also show that asymmetric subsystem codes

00000010111001 obey the Singleton bound
100000001101000

Lemma 7. Asymmetric subsystem codes with parameters

AQEC. We assume that the co® corrects the bit-flip [N KT,dz/0x]]q for 0 <r < k satisfy

errors such thaC, C Cy. FurthermoreC;- € Co. Further 4 < n_q ¢, 12 (20)

dx = wt(C;\Cy) = 3 andd, = wt(C,\Ci") = 5. Hence,

there must exist asymmetric quantum error control codefRemarkin fact, the AQEC RS codes obtained in Sectdon
(AQEC) with parameters are optimal in a sense that they meet the asymmetric
[[n.ky + ko — n,dz/d]]2 = [[15,3,5/3]]2. This quantum  Singleton bound with equality. Codes that meet Singleton
code can detect 4 phase-shift errors and 2 bit-flip errorsbound are called maximum distance separable (MDS)
Fault tolerant circuits for this code can be constructedcodes. The conclusion is that MDS QECs are also MDS
similarly to the circuit presented fof[9,1,3]] and  AQEC. Furthermore, MDS SSC are also MDS ASSC.
[[7,1,3]]2 codes.

SSC.We can also construct a subsystem code based on

the codes C; and C,. First, we notice that 7.2 Asymmetric Hamming Bound

Ci =CnNCy #£0, C; C C and Cy C C;. Next,

k =dimC; —dimC, = 4 andr = dimC;, — dimCll =3, Based on the discussion presented in the previous
and d = wt(C;\Cz) = 3. Therefore, there exists a sections, we can treat subsystem code constructions as a
subsystem code (SSC) with parame{§t§,4,3,3]],, and  special class of asymmetric quantum codes where
an asymmetric subsystem code (ASSC) code withC- C Cy mod 2, fori € {1,2} andC; = CiNC{. We
parameter§15,4,3,5/3]]2. use this observation in the following theorem.
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