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Abstract: A new distribution is proposed by the use of some baseline distribution. As an application part, it is derived for the baseline
distribution as exponential distribution. The new distribution, thus obtained have been shown to fit the bladder cancerpatients data.
Further, maximum likelihood estimator (MLE) and Bayes estimators under general entropy loss function (GELF) and squared error
loss function (SELF) have been derived. The estimators havebeen compared through their Simulated risks.
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1 Introduction

In statistical literature, there are several method to propose new distribution by the use of some baseline distribution. For
example, Gupta et al. [4] proposed the cumulative distribution function (cdf)G1(x) of new distribution corresponding to
the cdfF(x) of baseline distribution as,

G1(x) = (F(x))α ,

where,α > 0 is the shape parameter of the proposed one.

Another idea of generalizing a baseline distribution is to transmute it by using quadratic rank transmutation map (QRTM)
(see, Shaw and Buckley [6]). If G2(x) be the cdf of transmuted distribution corresponding to the baseline distribution
having cdfF(x), then

G2(x) = (1+λ )F(x)−λ{F(x)}2,

where|λ | ≤ 1.

Recently, various generalizations has been introduced based on QRTM. For example, transmuted extreme value
distribution (see, Aryal and Tsokos [8]), transmuted inverse Weibull distribution (see, Khan et al. [15]), transmuted
modified Weibull distribution (see, Khan and King [14]), transmuted log-logistic distribution (see, Aryal [12]) and many
more.

In the present study, we propose another method to get new distribution by the use of some baseline distribution. If
f (x) andF(x) be the probability density function (pdf) and cdf of some baseline distribution, then the pdfg(x) of new
distrbution is proposed by,

g(x) =
1

e−1
f (x) eF(x) (1)

We will call the transformation (1) as DUS transformation for frequently used purpose in the present article or elsewhere.
It is clearly a transformation, not a generalization, henceit will produce a parsimonious distribution in terms of
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computation and interpretation as it never contain any new parameter other than the parameter(s) involved in the baseline
distribution.

The cdf and hazard rate function corresponding to the pdfg(x) are given by,

G(x) =
1

e−1

[

eF(x)−1
]

(2)

and

h(x) =
1

e−eF(x)
f (x) eF(x) (3)

respectively.

The rest of the paper is organized as follows: In section2, we propose a new distribtion, as obtain by DUS transformation
(1) by using Exp(θ )- distribution as the baseline distribution. Further, in section3, we have shown the applicability of the
new distribution obtained in the section2, to the bladder cancer patients data in terms of assesing itsfitting in comparison
to some available distributions. In section4, we have derived MLE and Bayes estimators of the parameterθ of this new
distribution under GELF and SELF. Finally, comparison and conclusion has been shown in sections5 and6 respectively.

2 DUS transformation of Exp(θ )- distribution

Let the baseline distribution is exponential distributionwith pdf,

f (x) = θ e−θx ; x> 0 (4)

and the corresponding cdf is given by,
F(x) = 1−e−θx (5)

Here,θ > 0 is the rate parameter or inverse scale parameter of the exponential distribution.

Let g(x) be the pdf of the new distribution; obtained by DUS transformation (1), corresponding to the baseline pdf (4),
then

g(x) =
1

e−1
θ e−θx e1−e−θx

; x> 0 (6)

For simplicity in terms of use, we name/call the distribution having pdf (6) as DUS transformation of Exp
(θ )-distribution and will write it as DUSE(θ )-distribution.

The cdf and hazard rate function of DUSE(θ )-distribution are given by,

G(x) =
1

e−1

[

e1−e−θx
−1
]

(7)

and

h(x) = θe−θx
[

ee−θx
−1
]−1

(8)

respectively.

The plots of pdf and hazard rate function of DUSE(θ )-distribution for different values ofθ are shown the Figures1 and2
respectively.
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Fig. 1: Plots of pdf of DUSE(θ )-distribution for different values ofθ

Fig. 2: Plots of hazard rate function of DUSE(θ )-distribution for different values ofθ
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MGF and Raw Moments of DUSE(θ )- distribution:

The momeng Generating Function (MGF) of DUSE(θ )-distribution having pdf (6) is obtained as follows,

MX(t) = E[etX ]

=
e

e−1

∞

∑
k=0

(−1)k

(k+1)!

{

1−
t

(k+1)θ

}−1

(9)

providedt < θ .

The raw moments (i.e.rth moment about origin) of DUSE(θ )- distribution is obtained as follows,

µ
′

r =

[

∂ rMX(t)
∂ tr

]

t=0

=
e

e−1
r!
θ r

∞

∑
k=0

(−1)k

k!(k+1)r+1 (10)

The infinite series representation ofµ ′

r is convergent for everyθ andr. Thus,µ ′

r exist for everyr and for allθ .

Median of DUSE(θ )- distribution:

The median of DUSE(θ )-distribution is the solution of the following,

G(M) =
1
2

for M and the same is obtained as follows,

M =−
1
θ

ln

(

1− ln

(

e+1
2

))

(11)

Mode of DUSE(θ )- distribution:

Differentiating (6) with respect tox, we get

g
′
(x) =

e
e−1

θ 2 e−θ x e−e−θ x
(

e−θ x−1
)

(12)

Clearlyg
′
(x) < 0 ∀ r, θ , this shows thatg(x) is a decreasing function ofx and hencex = 0 is the mode of DUSE(θ )-

distribution.

A comparison between mean, median and mode of DUSE(θ )- distribution is shown in Figure3 and it is clear that Mean
> Median> Mode, i.e. DUSE(θ )- distribution is positively skewed.

3 Estimation of the parameter θ of DUSE(θ )- distribution

3.1 Maximum Likelihood Estimator

Let n identical items are put on life testing experiment and supposeX = (X1,X2, . . . ,Xn) be their independent lives such
that eachXi (∀ i = 1[1]n) follow DUSE(θ )-distribution having pdf (6). Then the likelihood function forX is given by,

LX(θ ) =
n

∏
i=1

g(xi) (13)
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Fig. 3: Comparative plots of mean, median and mode of DUSE(θ )-distribution for different values ofθ

Putting the value ofg atxi from (6) in (13), we get

LX(θ ) =
n

∏
i=1

[

1
e−1

θ e−θxi e1−e−θxi

]

=

(

e
e−1

)n

θ n e
−θ

n
∑

i=1
xi

e
−

n
∑

i=1
e−θxi

(14)

The log- likelihood function forX is obtained as,

l = lnLX(θ )

= K+nlnθ −θ
n

∑
i=1

xi −
n

∑
i=1

e−θxi (15)

whereK = nln
(

e
e−1

)

is a constant.

Hence, the log- likelihood equation for estimatingθ is given by,

∂ l
∂θ

= 0

n
θ
−

n

∑
i=1

xi +
n

∑
i=1

xie
−θxi = 0 (16)

Above is an implicit equation inθ , hence it can not be solved analytically forθ . We propose Newton- Raphson method
for its numerical solution.

3.2 Bayes Estimators

An important element in Bayesian estimation problem is the specification of the loss function. The choice is basically
depends on the problem in hand. For more discussion on the choice of a suitable loss function, readers may refer to Singh
et al. [10]. Another, important element is the choice of the appropriate prior distribution that covers all the prior knowledge
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regarding the parameter of interest. For the criteria of choosing an approprriate prior distribution, see Singh et al. [11].
With the above philosophical point of view, we are motivatedto take the prior forθ asG(α,β )-distribution with the pdf

π(θ ) =
αβ

Γ (β )
e−αθ θ β−1 ; θ > 0 (17)

whereα > 0 andβ > 0 are the hyper- parameters. These can be obtained, if any twoindependent informations onθ are
available, say prior mean and prior variance are known (see,Singh et al. [11]). The mean and variance of the prior
distribution (17) are β

α and β
α2 respectively. Thus, we may takeM = β

α andV = β
α2 , giving α = M2

V andβ = M
V . For any

finite value ofM andV to be sufficiently large, (17) behaves as like as non-informative prior. For more applications
regarding the use of gamma prior, readers may refer to Singh et al. [16], Kundu [7] etc.

The posterior pdf ofθ givenX corresponding to the considered prior pdfπ(θ ) of θ is given by,

ψ(θ |X) =
LX(θ ) π(θ )

∞
∫

0
LX(θ ) π(θ )∂θ

=
e
−

(

a+
n
∑

i=1
xi

)

θ
θ b+n−1 e

−
n
∑

i=1
e−θxi

∞
∫

0
e
−

(

a+
n
∑

i=1
xi

)

θ
θ b+n−1 e

−
n
∑

i=1
e−θxi

∂θ

(18)

Now, to have an idea about the shapes of the prior and corresponding posterior pdfs for different confidence levels in the
guessed value ofθ as its true value, we randomly generate a sample from DUSE(θ )-distribution for fixed valuesn= 15,
θ = 2, M = 2, V = 0.25 (showing a higher confidence in the guessed value) andV = 1000 (showing a weak confidence
in the guessed value). The sample thus generated is,

X = (0.06255701,0.09990278,0.11774334,0.12931799,0.18341711,0.26283575,0.34819087,0.45747237,
0.51671856,0.63666472,0.89801464,1.35858856,1.45194963,1.63335531,2.11814344)

The graphs are shown in Figures4 and5 respectively.

From the Figures4 and5 of the prior and corresponding posterior pdfs, it is quite clear that the posterior is bell shaped
and showing concentration around the true value of the parameter θ for whatever may be the nature of the prior
(informative/non-informative).

The loss functions considered here are general entropy lossfunction (GELF) and squared error loss function (SELF),
which are defined by,

LG(θ̂ , θ ) =

(

θ̂
θ

)δ

− δ ln

(

θ̂
θ

)

−1 (19)

and
LS(θ̂ , θ ) = (θ̂ −θ )2 (20)

respectively.

The Bayes estimators ofθ under GELF (19) and SELF (20) are given by

θ̂G =
[

E
{

θ−δ |X
}]− 1

δ (21)

and
θ̂S= E [θ |X] (22)

respectively. It is easy to see that whenδ = −1, the Bayes estimator (21) under GELF reduces to the Bayes
estimator(22) under SELF.
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Fig. 4: Prior and Posterior pdfs ofθ for a randomly generated sample from DUSE(θ )-distribution for fixedn= 15,θ = 2, M = 2 and
V=0.25

It is name-worthy to note here that GELF (19) was proposed by Calabria and Pulcini [3] and SELF (20) was proposed at
first by Legendre [1] and Gauss [2] when he was developing the least square theory.

Now, the Bayes estimator of the parameterθ of DUSE(θ )-distribution having pdf (6) under GELF is obtained as follows’

θ̂G =
[

E
{

θ−δ |X
}]− 1

δ

=













∞
∫

0
e
−

(

a+
n
∑

i=1
xi

)

θ
θ b−δ+n−1 e

−
n
∑

i=1
e−θxi

∂θ

∞
∫

0
e
−

(

a+
n
∑

i=1
xi

)

θ
θ b+n−1 e

−
n
∑

i=1
e−θxi

∂θ













− 1
δ

(23)

Further, ifθ̂S denotes the Bayes estimator ofθ under SELF, then it can be obtained by puttingδ =−1 in (23) and therefore
the same is given by,

θ̂S=

∞
∫

0
e
−

(

a+
n
∑

i=1
xi

)

θ
θ b+n e

−
n
∑

i=1
e−θxi

∂θ

∞
∫

0
e
−

(

a+
n
∑

i=1
xi

)

θ
θ b+n−1 e

−
n
∑

i=1
e−θxi

∂θ

(24)

The integral involved in Bayes estimators do not solved analytically, therefore we propose Gauss - Lagurre’s quadrature
method for their numerical evaluation.

4 Bladder Cancer Data Application

To assess the applicability of DUSE(θ )-distribution, as obtained by DUS transformation (1), by using Exp(θ )-
distribution as baseline distribution; in the real situations, we have considered a real data of the remission times of 128
bladder cancer patients. The data is extracted from Lee and Wang [5].
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Fig. 5: Prior and Posterior pdfs ofθ for a randomly generated sample from DUSE(θ )-distribution for fixedn= 15,θ = 2, M = 2 and
V=1000

Khan et al. [15] showed the applicability of transmuted inverse Weibull (TIW) distribution on this data by the fitting
criteria in terms of Akaike information criteria (AIC), Bayesian information criteria (BIC), mean square error (MSE) and
the associated Kolmogorov-Smirnov (KS) test value. They compared some life time distributions namely transmuted
inverse Rayleigh (TIR) distribution, transmuted invertedexponential (TIE) distribution and inverse Weibull (IW)
distribution in terms of their AIC, BIC, MSE and KS test valueand found that the TIW distribution has the lowest AIC,
BIC, MSE and KS test value, indicating that TIW distributionprovides a better fit than the other three lifetime
distributions.

We compute MLE of the parameterθ of DUSE(θ )- distribution having pdf (6) for the above data set and found it as
0.1341665. The AIC, BIC and KS test value for DUSE(θ )- distribution are calculated and we get their values as in Table
1. We have extracted the values of AIC, BIC and KS test value from Khan et al. [15] and present their values in the
following comparative Table1.

Table 1: AIC, BIC and KS test value for DUSE(θ ), TIW, TIR, TIE and IW distributions
Distributions AIC BIC KS test value

DUSE(θ ) 834.044 836.896 0.0812871
TIW 879.4 879.7 0.119
TIR 1424.4 1424.6 0.676
TIE 889.6 889.8 0.155
IW 892.0 892.2 0.131

The plots of empirical cdfFn and fitted cdfG(x) of DUSE(θ )- distribution for the data of remission times of 128 bladder
cancer patients are shown in Figure6.
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Fig. 6: Plots of empirical cdfFn and fitted cdfG(x) of DUSE(θ )- distribution for remission times of 128 bladder cancer patients data

DUSE(θ )- distribution having pdf (6) has the lowest AIC, BIC and KS test value in comparison to those of TIW, TIR,
TIE and IW distributions (see, Table1), indicating that DUSE(θ )- distribution having pdf (6) provides a better fit than the
other four lifetime distributions namely TIW, TIR, TIE and IW distributions.

5 Comparison of the estimators

In this section, we compare the considered estimators i.e.θ̂M, θ̂S, θ̂G of the parameterθ of DUSE(θ )- distribution having
pdf (6) in terms of simulated risks (average loss over sample space) under GELF. It is clear that the expressions for the
risks cannot be obtained in nice closed form. So, the risks ofthe estimators are estimated on the basis of Monte Carlo
simulation study of 5000 samples from DUSE(θ )- distribution. It may be noted that the risks of the estimators will be a
function of number of items put on testn, parameterθ of the model, the hyper- parametersα and β of the prior
distribution and the GELF parameterδ . In order to consider the variation of these values, we obtained the simulated risks
for n= 15,θ = 2, δ =±3, M = 1,2,3 andV = 0.25,0.5,1,2,5,10,50,100,500,1000.

From Tables 2-4, we observed that when over estimation is more serious than under estimation, the estimatorθ̂G performs
better (in the sense of having smallest risk) in comparison to θ̂S and θ̂M for whatever confidence in the guessed value
of θ as its true value. But if guessed value ofθ is either more/less than its true value, the estimatorθ̂G performs well
for lower confidence in such guessed value ofθ , otherwiseθ̂M performs better (when guessed value ofθ is less than its
true value) orθ̂S performs better (when guessed value ofθ is more than its true value). Further, when under estimation
is more serious than over estimation, for whatever be the confidence in the guessed value ofθ as less than its true value,
the estimator̂θG performs better than the estimatorsθ̂S and θ̂M. But when guessed value ofθ is same as its true value,
the estimator̂θG performs better for lower confidence; otherwiseθ̂S performs better and when guessed value ofθ is more
than its true value, the estimatorθ̂M performs well for higher confidence;θ̂S, performs batter for moderate confidence and
for lower confidence value, the estimatorθ̂G performs better.

6 Conclusion

From the simulation study, it is clear that the estimators ofthe parametrθ of DUSE(θ )-distribution having pdf (6) may
be recommended for their use as per confidence level in the guessed value ofθ as discussed in the previous section.
Further, DUS transformation (1) is full proof and by its use, the distribution, thus found may be appropriate for real life
applications.
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Table 2: Risks of the estimators ofθ under GELF for fixedn= 15,θ = 2, M = 2 andδ =±3

V
δ =−3 δ =+3

RG(θ̂M) RG(θ̂S) RG(θ̂G) RG(θ̂M) RG(θ̂S) RG(θ̂G)
0.25 0.2351636 0.06202027 0.06927877 0.3087537 0.07142656 0.0544449
0.5 0.2397189 0.1000382 0.1040788 0.3150407 0.1249022 0.09999029
1 0.2366851 0.1456719 0.1444334 0.3316343 0.1887194 0.1573959
2 0.2295538 0.1735211 0.1710193 0.3040177 0.2228011 0.1879228
5 0.2404001 0.2159851 0.2039743 0.3353221 0.2863789 0.2327622
10 0.2383025 0.221264 0.2089175 0.3086364 0.281521 0.2308405
50 0.234083 0.2244676 0.2126007 0.3082911 0.2957092 0.2423513
100 0.2362913 0.2351454 0.2189663 0.305154 0.2935311 0.2382354
500 0.2373673 0.232264 0.2194286 0.3119443 0.3024726 0.2479735
1000 0.2320711 0.2264668 0.2143033 0.3217059 0.3127855 0.2530239

Table 3: Risks of the estimators ofθ under GELF for fixedn= 15,θ = 2, M = 3 andδ =±3

V
δ =−3 δ =+3

RG(θ̂M) RG(θ̂S) RG(θ̂G) RG(θ̂M) RG(θ̂S) RG(θ̂G)
0.25 0.235754 0.3115501 0.3346941 0.33283 0.6272944 0.500172
0.5 0.2341955 0.2059068 0.2373002 0.3183992 0.4035556 0.2596403
1 0.2351689 0.1609973 0.1911085 0.3214862 0.3170205 0.1888534
2 0.2386029 0.1682289 0.1876279 0.3133841 0.2853366 0.1845553
5 0.2434708 0.1968458 0.1988416 0.3321115 0.3067552 0.2198998
10 0.2365215 0.2080114 0.2068211 0.3116328 0.2924269 0.2274174
50 0.2406898 0.2303895 0.219138 0.3079512 0.2969715 0.2395872
100 0.233762 0.227768 0.2148671 0.3180754 0.3079815 0.2461364
500 0.2413626 0.2377536 0.2248168 0.3177417 0.3084341 0.2519462
1000 0.2337319 0.2276503 0.2157224 0.3085333 0.299275 0.2428255

Table 4: Risks of the estimators ofθ under GELF for fixedn= 15,θ = 2, M = 1 andδ =±3

V
δ =−3 δ =+3

RG(θ̂M) RG(θ̂S) RG(θ̂G) RG(θ̂M) RG(θ̂S) RG(θ̂G)
0.25 0.2339297 0.2674495 0.1838584 0.3240526 0.1325739 0.2429661
0.5 0.2353244 0.2165249 0.1653133 0.3000199 0.1422199 0.2037649
1 0.2349803 0.2136408 0.1824916 0.3341071 0.2056473 0.2145189
2 0.2307363 0.2117091 0.1908071 0.3238041 0.2456588 0.2272738
5 0.2397174 0.227333 0.2108287 0.3192615 0.2800625 0.2351175
10 0.2354567 0.2274237 0.2157414 0.3197352 0.2936598 0.2400396
50 0.238165 0.2335541 0.2171508 0.3302061 0.3181408 0.2533666
100 0.2445772 0.2413426 0.2231899 0.3223506 0.3108457 0.2510558
500 0.2344324 0.2279256 0.2144232 0.3154657 0.3052996 0.2479147
1000 0.2286325 0.2244536 0.2124129 0.3182051 0.3090924 0.2542603
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