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Abstract: A new distribution is proposed by the use of some baselirtelalision. As an application part, it is derived for the blase

distribution as exponential distribution. The new digitibn, thus obtained have been shown to fit the bladder cgaténts data.
Further, maximum likelihood estimator (MLE) and Bayes restiors under general entropy loss function (GELF) and sgliarror

loss function (SELF) have been derived. The estimators bega compared through their Simulated risks.
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1 Introduction

In statistical literature, there are several method to psemew distribution by the use of some baseline distribufor
example, Gupta et al4] proposed the cumulative distribution function (c@)(x) of new distribution corresponding to
the cdfF (x) of baseline distribution as,

Ga1(x) = (F(x)%,
where,a > 0 is the shape parameter of the proposed one.

Another idea of generalizing a baseline distribution igégmsmute it by using quadratic rank transmutation map (QRTM
(see, Shaw and Buckleg]). If Gy(x) be the cdf of transmuted distribution corresponding to taseline distribution
having cdfF (x), then

Gz(x) = (1+A)F () —A{F(x)}?,
where|A| < 1.

Recently, various generalizations has been introduceedbas QRTM. For example, transmuted extreme value
distribution (see, Aryal and Tsokos$]], transmuted inverse Weibull distribution (see, Khan let[25]), transmuted
modified Weibull distribution (see, Khan and Kintd]), transmuted log-logistic distribution (see, Aryal]) and many
more.

In the present study, we propose another method to get ndvibdifon by the use of some baseline distribution. If
f(x) andF(x) be the probability density function (pdf) and cdf of someddme distribution, then the pdf(x) of new
distrbution is proposed by,

009 = 17 10 & @

We will call the transformationl) as DUS transformation for frequently used purpose in tiesgnmt article or elsewhere.
It is clearly a transformation, not a generalization, heitcwill produce a parsimonious distribution in terms of
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computation and interpretation as it never contain any remampeter other than the parameter(s) involved in the aseli
distribution.

The cdf and hazard rate function corresponding to thegpdfare given by,

1
— = |F™_
G() = =7 [ 1] 2)
and
h(x) = ! f(x) " (3)
e— e (¥
respectively.

The rest of the paper is organized as follows: In secZiome propose a new distribtion, as obtain by DUS transforonati
(2) by using Exp@)- distribution as the baseline distribution. Further,éction3, we have shown the applicability of the
new distribution obtained in the secti@nto the bladder cancer patients data in terms of assesifigiitg in comparison
to some available distributions. In sectiénwe have derived MLE and Bayes estimators of the paranfetdithis new
distribution under GELF and SELF. Finally, comparison aodatusion has been shown in secti&Gesnd6 respectively.

2 DUS transformation of Exp(0)- distribution
Let the baseline distribution is exponential distributiith pdf,
fx)=0e® ; x>0 4)

and the corresponding cdf is given by,
F(x)=1—e & (5)

Here,0 > 0 is the rate parameter or inverse scale parameter of thenerpial distribution.

Let g(x) be the pdf of the new distribution; obtained by DUS transfation (1), corresponding to the baseline pdj,(
then

g(x) = eT11 e el ™ . x>0 (6)

For simplicity in terms of use, we name/call the distribntibaving pdf 6) as DUS transformation of Exp
(8)-distribution and will write it as DUS(0)-distribution.

The cdf and hazard rate function of DU®)-distribution are given by,

G(X) = 51 [ 1] (7)

and L
h(x) = Be~ [ee"’* - 1} ) ®)

respectively.

The plots of pdf and hazard rate function of D&(8)-distribution for different values of are shown the Figurelsand2
respectively.
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Fig. 1: Plots of pdf of DUS(6)-distribution for different values of
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Fig. 2: Plots of hazard rate function of Dgg0)-distribution for different values of
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MGF and Raw Moments of DUSg(6)- distribution:
The momeng Generating Function (MGF) of D&{8)-distribution having pdf§) is obtained as follows,

Mx (t) = E[€”]

o _ 1)k -1
N e—el 2, ((k+1i)! {1_ (k+t1)6} ©)

providedt < 6.

The raw moments (i.e!" moment about origin) of DUS6)- distribution is obtained as follows,
" (9r|\/|x(t)
Tl oatt |

_ e e (af

e-16 kZO Kl (k4 1)r+1

(10)

The infinite series representation;a}’fis convergent for everg andr. Thus,ur’ exist for everyr and for all6.
Median of DUSg(6)- distribution:

The median of DU§(6)-distribution is the solution of the following,

1 e+1
5 (1—In (—2 )) (11)
M ode of DUSE(0)- distribution:

Differentiating @) with respect tok, we get

g(x) = eT61 g2efxege’" (e’ex—l) (12)

Clearlyg (X) < 0Vr, 6, this shows thag(x) is a decreasing function ofand hencex= 0 is the mode of DU§(0)-
distribution.

A comparison between mean, median and mode of {6 distribution is shown in Figur8 and it is clear that Mean
> Median> Mode, i.e. DUg(0)- distribution is positively skewed.

3 Estimation of the parameter 6 of DUSg(0)- distribution

3.1 Maximum Likelihood Estimator

Let n identical items are put on life testing experiment and ssppo= (X1, Xz,...,X%n) be their independent lives such
that eachX (Vi = 1[1]n) follow DUSg(6)-distribution having pdf). Then the likelihood function foX is given by,

Lx(0) = []9x) (13)
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Fig. 3: Comparative plots of mean, median and mode of B(#-distribution for different values of

Putting the value of atx; from (6) in (13), we get

n

0= e 0 e

= (eTel) ) e" eigiglxi eﬁigleieXi (14)
The log- likelihood function foiX is obtained as,
I =InLx(6)
d C X
:K+n|n6—9i;xi—i;e (15)
whereK = nin (%) is a constant.

Hence, the log- likelihood equation for estimatiéigs given by,

ol

%—0
n_g X + S xe ™ =0 (16)
0 |=I izi

Above is an implicit equation i), hence it can not be solved analytically #rWe propose Newton- Raphson method
for its numerical solution.

3.2 Bayes Estimators

An important element in Bayesian estimation problem is hecHication of the loss function. The choice is basically
depends on the problem in hand. For more discussion on theechioa suitable loss function, readers may refer to Singh
etal. [LO]. Another, important element is the choice of the apprdprpgior distribution that covers all the prior knowledge
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regarding the parameter of interest. For the criteria ofoshray an approprriate prior distribution, see Singh etHl]. [
With the above philosophical point of view, we are motivatetake the prior foi asG(a, 3)-distribution with the pdf

m(8) = I_—e““’eﬁ‘1 6>0 (17)

B) ;

wherea > 0 andf > 0 are the hyper- parameters. These can be obtained, if anntependent informations dhare
available, say prior mean and prior variance are known (Semh et al. 11]). The mean and variance of the prior
distribution L7) areg andﬁ2 respectively. Thus, we may také = g andV = % giving o = MVZ andp = % For any
finite value ofM andV to‘be sufficiently large,17) behaves as like as non-informative prior. For more apitioa
regarding the use of gamma prior, readers may refer to Singh[@6], Kundu [7] etc.

The posterior pdf 0B givenX corresponding to the considered prior ptB) of 6 is given by,

Lx(6) m(6)
Lx(6) m(8)a0

W(6[X) =

O—3g

- a+§x4)0 7§e*9Xi
e ( i£1 gb+n-1ga 5
= n n (18)
o — (a+ S X e 0%
e .

i£1 )9 ghin-1g %" 9@

0

Now, to have an idea about the shapes of the prior and comdsppposterior pdfs for different confidence levels in the
guessed value @ as its true value, we randomly generate a sample fromgi@)sdistribution for fixed values = 15,

6 =2,M =2,V =0.25 (showing a higher confidence in the guessed value)}andL000 (showing a weak confidence
in the guessed value). The sample thus generated is,

X =(0.062557010.099902780.117743340.129317990.183417110.262835750.348190870.45747237
0.516718560.636664720.898014641.358588561.451949631.633355312.11814344

The graphs are shown in Figurésnd5 respectively.
From the Figureg and5 of the prior and corresponding posterior pdfs, it is quiteaclthat the posterior is bell shaped
and showing concentration around the true value of the petear for whatever may be the nature of the prior

(informative/non-informative).

The loss functions considered here are general entropyfuossion (GELF) and squared error loss function (SELF),
which are defined by,
A\ O R
- 6 ]
Ls(6, 6) = <5> -0 1In <5> -1 (19)

Ls(6, 6) = (6—6)° (20)

and

respectively.

The Bayes estimators éfunder GELF 19) and SELF 20) are given by

=

b= [E{07°x}] (21)
and
bs=E|[6]X] (22)

respectively. It is easy to see that whén= —1, the Bayes estimator2{) under GELF reduces to the Bayes
estimator22) under SELF.
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Fig. 4: Prior and Posterior pdfs & for a randomly generated sample from D&(8)-distribution for fixedn = 15,0 =2, M = 2 and
V=0.25

It is name-worthy to note here that GELE9j was proposed by Calabria and Pulci8j §nd SELF 20) was proposed at
first by Legendre]] and Gaussd] when he was developing the least square theory.

Now, the Bayes estimator of the paramedesf DUSE (0)-distribution having pdf§) under GELF is obtained as follows

o~ o)

il

0 a . 9 B n 7e><i
fe <a+élX|) gb—o+n-1 ¢ éle 20
| (23)

n n

0 _ v _ — 0%
Je (a—s—i:zl)(.) gb+n-1 g izle 00
0

Further, if6s denotes the Bayes estimatortbfinder SELF, then it can be obtained by puttthg —1 in (23) and therefore
the same is given by,

0 _ a . _ n — 0%
Je (500 gone 5 99
bs= 2 (24)

n n
0 _ ar:] _ — 0X;
fe (aJrile') gb+n-1 g izle Iae
0
The integral involved in Bayes estimators do not solvedyditallly, therefore we propose Gauss - Lagurre’s quadeatur
method for their numerical evaluation.

4 Bladder Cancer Data Application

To assess the applicability of D@@)-distribution, as obtained by DUS transformatiol),(by using Exp@)-
distribution as baseline distribution; in the real sitaas, we have considered a real data of the remission time28f 1
bladder cancer patients. The data is extracted from Lee amd)\B].
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Fig. 5: Prior and Posterior pdfs @ for a randomly generated sample from D{8)-distribution for fixedn= 15,0 =2, M = 2 and
V=1000

Khan et al. L5] showed the applicability of transmuted inverse WeibullWYJ distribution on this data by the fitting
criteria in terms of Akaike information criteria (AIC), Bagian information criteria (BIC), mean square error (MSkt) a
the associated Kolmogorov-Smirnov (KS) test value. Thepmared some life time distributions namely transmuted
inverse Rayleigh (TIR) distribution, transmuted invertexpponential (TIE) distribution and inverse Weibull (IW)
distribution in terms of their AIC, BIC, MSE and KS test valaied found that the TIW distribution has the lowest AIC,

BIC, MSE and KS test value, indicating that TIW distributigmnovides a better fit than the other three lifetime
distributions.

We compute MLE of the parametérof DUSE(6)- distribution having pdf§) for the above data set and found it as
0.1341665. The AIC, BIC and KS test value for D&[8B)- distribution are calculated and we get their values asainld

1. We have extracted the values of AIC, BIC and KS test valumfihan et al. 15 and present their values in the
following comparative Tablé.

Table 1. AIC, BIC and KS test value for DUS 0), TIW, TIR, TIE and IW distributions

Distributions AIC BIC KS test value
DUS:(6) 834.044 | 836.896| 0.0812871
TIW 879.4 879.7 0.119
TIR 1424.4 | 1424.6 0.676
TIE 889.6 889.8 0.155
W 892.0 892.2 0.131

The plots of empirical cdF, and fitted cdiG(x) of DUSg(8)- distribution for the data of remission times of 128 bladde
cancer patients are shown in Figie
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Fig. 6: Plots of empirical cdf, and fitted cdfG(x) of DUSE(6)- distribution for remission times of 128 bladder cancetigygs data

DUSE(6)- distribution having pdf§) has the lowest AIC, BIC and KS test value in comparison te¢hof TIW, TIR,
TIE and IW distributions (see, Tabg, indicating that DUg(6)- distribution having pdf§) provides a better fit than the
other four lifetime distributions namely TIW, TIR, TIE aniMdistributions.

5 Comparison of the estimators

In this section, we compare the considered estimatoréy.efs, 6 of the paramete of DUSg(6)- distribution having

pdf (6) in terms of simulated risks (average loss over sample 3pamber GELF. It is clear that the expressions for the
risks cannot be obtained in nice closed form. So, the riskb®festimators are estimated on the basis of Monte Carlo
simulation study of 5000 samples from DE®)- distribution. It may be noted that the risks of the estionatwill be a
function of number of items put on test parameter® of the model, the hyper- parametewsand 3 of the prior
distribution and the GELF paramet&rin order to consider the variation of these values, we obththe simulated risks
forn=15,0=2,0=4+3,M=1,2,3andV =0.25,0.5,1,2,5,10,50,100 500, 1000.

From Tables 2-4, we observed that when over estimation ig senious than under estimation, the estimé@)performs
better (in the sense of having smallest risk) in comparisofistand 6y for whatever confidence in the guessed value
of 6 as its true value. But if guessed valuefis either more/less than its true value, the estimé&pperforms well

for lower confidence in such guessed valu@pbtherwisedy performs better (when guessed valuedat less than its
true value) orfs performs better (when guessed valuedaé more than its true value). Further, when under estimation
is more serious than over estimation, for whatever be thédemce in the guessed value@fs less than its true value,
the estimatonéG performs better than the estimatd}§and éM But when guessed value 6fis same as its true value,
the estimatofg performs better for lower confidence; otherwégaperforms better and when guessed valué & more
than its true value, the estimatéy performs well for higher confidencés, performs batter for moderate confidence and
for lower confidence value, the estimatiy performs better.

6 Conclusion

From the simulation study, it is clear that the estimatorthefparametf of DUSg (6)-distribution having pdf§) may

be recommended for their use as per confidence level in thesgdevalue o as discussed in the previous section.
Further, DUS transformatiori) is full proof and by its use, the distribution, thus foundynise appropriate for real life
applications.
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Table 2: Risks of the estimators @& under GELF for fixech= 15,0 =2, M = 2 andd = £3

v o0=-3 o=+3
Ro(bw) | Ro(0s | Ro(Ba) | Ro(Bw) | Re(Bs) | Rolfo)

0.25 | 0.2351636| 0.06202027| 0.06927877| 0.3087537| 0.07142656| 0.0544449
0.5 | 0.2397189| 0.1000382 | 0.1040788 | 0.3150407| 0.1249022 | 0.09999029

1 0.2366851| 0.1456719 | 0.1444334 | 0.3316343| 0.1887194 | 0.1573959

2 0.2295538| 0.1735211 | 0.1710193 | 0.3040177| 0.2228011 | 0.1879228

5 0.2404001| 0.2159851 | 0.2039743 | 0.3353221| 0.2863789 | 0.2327622
10 0.2383025| 0.221264 0.2089175 | 0.3086364| 0.281521 0.2308405
50 0.234083 | 0.2244676 | 0.2126007 | 0.3082911| 0.2957092 | 0.2423513
100 | 0.2362913| 0.2351454 | 0.2189663 | 0.305154 | 0.2935311 | 0.2382354
500 | 0.2373673| 0.232264 0.2194286 | 0.3119443| 0.3024726 | 0.2479735
1000 | 0.2320711| 0.2264668 | 0.2143033 | 0.3217059| 0.3127855 | 0.2530239

Table 3: Risks of the estimators df under GELF

for fixech= 15,0 = 2,M =3 andd = +3

v 0=-3 0=+3
Rs(Bv) | Ro(Bs) | Ro(fc) | Ro(bw) | Ro(fs) | Ro(bo)

0.25 | 0.235754 | 0.3115501| 0.3346941| 0.33283 | 0.6272944| 0.500172
0.5 | 0.2341955| 0.2059068| 0.2373002| 0.3183992| 0.4035556| 0.2596403
1 0.2351689| 0.1609973| 0.1911085| 0.3214862| 0.3170205| 0.1888534
2 0.2386029| 0.1682289| 0.1876279| 0.3133841| 0.2853366| 0.1845553
5 0.2434708| 0.1968458| 0.1988416| 0.3321115| 0.3067552| 0.2198998
10 | 0.2365215| 0.2080114| 0.2068211| 0.3116328| 0.2924269| 0.2274174
50 0.2406898| 0.2303895| 0.219138 | 0.3079512| 0.2969715| 0.2395872
100 | 0.233762 | 0.227768 | 0.2148671| 0.3180754| 0.3079815| 0.2461364
500 | 0.2413626| 0.2377536| 0.2248168| 0.3177417| 0.3084341| 0.2519462
1000 | 0.2337319| 0.2276503| 0.2157224| 0.3085333| 0.299275 | 0.2428255

Table 4: Risks of the estimators @& under GELF for fixech= 15,0 =2,M =1 andd = £3

v 0=-3 0=+3
Ro(Bv) | Ro(Bs) | Re(fc) | Ro(Bw) | Re(ds) | Ro(Bo)

0.25 | 0.2339297| 0.2674495| 0.1838584| 0.3240526| 0.1325739] 0.2429661
0.5 | 0.2353244| 0.2165249| 0.1653133| 0.3000199| 0.1422199| 0.2037649
1 0.2349803| 0.2136408| 0.1824916| 0.3341071| 0.2056473| 0.2145189
2 0.2307363| 0.2117091| 0.1908071| 0.3238041| 0.2456588| 0.2272738
5 0.2397174| 0.227333 | 0.2108287| 0.3192615| 0.2800625| 0.2351175
10 | 0.2354567| 0.2274237| 0.2157414| 0.3197352| 0.2936598| 0.2400396
50 0.238165 | 0.2335541| 0.2171508| 0.3302061| 0.3181408| 0.2533666
100 | 0.2445772| 0.2413426| 0.2231899| 0.3223506| 0.3108457| 0.2510558
500 | 0.2344324| 0.2279256| 0.2144232| 0.3154657| 0.3052996| 0.2479147
1000 | 0.2286325| 0.2244536| 0.2124129| 0.3182051| 0.3090924| 0.2542603
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