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Abstract: The concept ofTχ -fibration map is introduced which generalized the notion ofSχ -fibrations in homotopy theory for
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1 Introduction

The homotopy theory of topological spaces attempts to
classify weak homotopy types of spaces and homotopy
classes of maps. The classification of maps within a
homotopy is a central problem in topology and several
authors contributed in this area, see for example the
related works in [6]. The concepts of Hurewicz fibrations,
[7], in this theory have played very important roles for
investigating the mutual relations of among the objects.
For this purpose Coram and Duvall [3] introduced an
approximate fibration as a map having the approximate
homotopy lifting property for every space, which is a
generalization of a Hurewicz fibration having valuable
properties similar to the Hurewicz fibration and is widely
applicable to the maps whose fibers are nontrivial shapes.
A map f : S→ B of compact metrizable spacesSandO is
called anapproximate fibrationif for every spaceZ and
for given ε > 0, there existsδ > 0 such that whenever
g : Z → S and G : Z × I → O are maps with
d[G(z,0),( f ◦ g)(z)] < δ , then there exists a homotopy
H : Z × I → S of Z × I into S such thatH0 = g and
d[G(z, t),( f ◦H)(z, t)]< ε for all z∈ Z, t ∈ I .

The concept of homotopy theory for topological
semigroups and most of the backgrounds for this paper
have been worked out previously by Zvonko in 2002, [8].
He introduced the concepts ofS−homotopy relation,
pathwise S−connectedness,S−homotopy domination,
S−contractibility andSχ−fibration.

This paper is organized as follows: It consists of seven
sections. Section 2 is devoted to some preliminaries. In
Section 3, we start by giving the concepts of st-spaces and
st-maps in homotopy theory for topological semigroups.
Some properties for their are proved. In Section 4, we
define anTχ -fibration and study some its basic properties.
In Section 5 we prove that the pullbacks ofTχ-fibrations
are Tχ-fibrations. In Section 6, we give and prove the
covering homotopy theorem for st-maps into
Tχ-fibrations. In Section 7, we first define the
Sχ−approximate fibration property in homotopy theory
for topological semigroups. Next we give and prove the
relation between Sχ−approximate fibrations and
Tχ-fibrations.

2 Preliminaries

Every topological space in this paper will be assumed
Hausdorff space and most of the backgrounds here have
been worked out previously by Zvonko, [8].

A topological semigroupor anS-spaceis a pair(S,a)
consisting a topological spaceS and a map (i.e., a
continuous function)a : S×S→ S from the product space
S× S into S such thata(x,a(y,z)) = a(a(x,y),z) for all
x,y,z∈ S. That is, anS−space is a topological space with
a continuous associative multiplication. We denote the
class of all S-spaces byχ .
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An S-space(A,c) is called anS-subspaceof (S,a) if A
is a subspace ofS and the mapa takes the productA×A
into A andc(x,y) = a(x,y) for all x,y ∈ A. It is natural to
denote the multiplication of an S-subspace with the same
symbol used for the multiplication on the S-space under
consideration.

For every spaceS, the natural S-spaceis an S-space
(S,πi), whereπi is a continuous associative multiplication
on Sgiven byπ1(x,y) = x andπ2(x,y) = y for all x,y∈ S.
We denote the class of all natural S-spaces(S,π) by Nπ ,
whereπ = π1,π2.

Let (S,a) and (O,e) be S-spaces. The function
f : (S,a)→ (O,e) is called ahomomorphismor an S-map
if f is a map of a spaceS into O and
f (a(x,y)) = e( f (x), f (y)) for all x,y ∈ S. Recall [8] that
the usual composition and the usual product of two
S-maps are S-maps and that the functionf : S→ O of a
natural S-space(S,π) into (O,π) is an S-map if and only
if it is continuous.

For every a spaceS, by P(S) we mean the space of all
paths from the unit closed intervalI = [0,1] into S with
the compact-open topology. Recall [8] that for every an
S-space (S,a), (P(S),a) is an S-space where
a : P(S) × P(S) → P(S) is a map defined by
a(α,β )](t) = a(α(t),β (t)) for all α,β ∈ P(S), t ∈ I . The
shorter notion for this S-space will beP(S,a).

Definition 2.1. The S-mapsf ,g : (S,a) → (O,e) are
called S-homotopicand write f ≃s g provided there is an
S-mapH : (S,a) → P(O,e) called an S-homotopysuch
thatH(s)(0) = f (s) andH(s)(1) = g(s) for all s∈ S.

Throughout this paper, for every an S-homotopy
H : (S,a) → P(O,e) and for everyt ∈ I , by Ht (or [H]t)
we mean the S-map, [8], Ht : (S,a)→ (O,e) which given
by Ht(s) = H(s)(t) for all s ∈ S. Also for every an
S-homotopyH : (S,a)→ P[P(O),e] and for everyr, t ∈ I ,
by Hrt (or [H]rt ) we mean the S-mapHrt : (S,a)→ (O,e)
which given byHrt (s) = [H(s)(r)](t) for all s∈ S.
Theorem 2.2. The relation of S-homotopy≃s is an

equivalence relation on the set of all S-maps of(S,a) into
(O,e).

Theorem 2.3.If the S-mapsf ,g : (S,a) → (O,e) are S-
homotopic then the relationsf ◦h≃s g◦h andk◦ f ≃s k◦g
hold for all S-mapsh into (S,a) andk from (O,e).

Theorem 2.4.If the S-mapsf ,g : (S,a) → (O,e) are S-
homotopic then the mapsf ,g : S→ O are homotopic.

Theorem 2.5. The S-maps f ,g : (S,π) → (O,π) are
S-homotopic if and only if the mapsf ,g : S→ O are
homotopic.

Definition 2.6. An S−map f : (S,a)→ (O,e) is called an
Sχ-fibration if for every an-space(Z,u) ∈ χ , an S−map
g : (Z,u) → (S,a) and an S−homotopy
G : (Z,u) → P(O,e) with G0 = f ◦ g, there is an
S−homotopyH : (Z,u) → P(S,a) such thatH0 = g and
f ◦Ht = Gt for all t ∈ I .

Theorem 2.7.The mapf : S→ O is a Hurewicz fibration
if and only if the S−map f : (S,π) → (O,π) is an
SNπ−fibration.

Theorem 2.8.The composition ofSχ-fibrations is anSχ-
fibration.

3 The st-spaces and st-maps

By a pair of two S-spacesor anst-spacewe mean a triple
{(S1,a),(S2,c),γ} consisting of two S-spaces(S1,a),
(S2,c) and an S-mapγ : (S2,c) → (S1,a). The shorter
notion for this st-space will beS(acγ).

There are many ways in which an S-space can be
regarded as an st-space. In our work, we use an S-space
(S,a) as{(S,a),(S,a), id} whereid is the identity S-map
onS.

For any two S-spaces(S,a) and(O,e), one can easily
to check that the product spaceS×O is an S-space with the
usual multiplication producta×eof a ande. The product
st-spaceS(acγ)×Q(uvµ) of two st-spaces

S(acγ) = {(S1,a),(S2,c),γ}

andQ(uvµ) = {(Q1,u),(Q2,v),µ} can be defined by

S(acγ)×Q(uvµ) = {(S1×Q1,a×u),(S2×Q2,c× v),

γ × µ}.
For every an S-mapf : (S,a) → (O,e), A function

g : P(S,a) → P(O,e) which is defined byg(α) = f ◦α
for all α ∈ P(S,a) is an S-map, [8]. An S-mapg will be
called anS-map induced by fand denoted bŷf . Then for
an st-spaceS(acγ), the triple{P(S1,a),P(S2,c), γ̂} is an
st-space denoted byPS(acγ̂).
Definition 3.1.An st-mapfrom an st-spaceS(acγ) into an
st-spaceQ(uvµ) is a pair

h= {hau,hcv} : S(acγ)→ Q(uvµ)

of two S-mapshau : (S1,a) → (Q1,u) andhcv : (S2,c) →
(Q2,v) such thathau◦ γ ≃s µ ◦hcv.

In the last definition, ifhau◦ γ = µ ◦ hcv, thenh will
be called ant-map. Trivially, if f = { fae, fce} : S(acγ)→
(O,e) is an t-map thenfae◦ γ = fce.

We say that the st-mapsh,g : S(acγ) → Q(uvµ) are
equivalent st-maps, we writeh≡ g, if hau◦ γ = gau◦ γ and
µ ◦ hcv = µ ◦ gcv. By h = g we mean thathau = gau and
hcv = gcv. Trivially, if h= g thenh≡ g.

Proposition 3.2.The product

h×g : S(acγ)×Q(uvµ)→ S′(a′c′γ ′)×Q′(u′v′µ ′)

of two st-mapsh : S(acγ)→ S′(a′c′γ ′) andg : Q(uvµ)→
Q′(u′v′µ ′) which is given by

h×g= {haa′ ×guu′,hcc′ ×gvv′}

is an st-map.

c© 2016 NSP
Natural Sciences Publishing Cor.



Sohag J. Math.3, No. 2, 47-55 (2016) /www.naturalspublishing.com/Journals.asp 49

Proof. It’s clear thathaa′ ×guu′ andhcc′ ×gvv′ are S-maps.
Sinceh and g are st-maps, thenhaa′ ◦ γ ≃s γ ′ ◦ hcc′ and
guu′ ◦ µ ≃s µ ′ ◦gvv′ . Hence

(haa′ ×guu′)◦ (γ × µ) = (haa′ ◦ γ)× (guu′ ◦ µ ′)

≃s (γ ′ ◦hcc′)× (µ ′ ◦gvv′)

= (γ ′× µ ′)◦ (hcc′ ×gvv′).

That is,h×g is an st-map.�
Easily to check that the composition

g◦h= {ga′u ◦haa′,gc′v◦hcc′} : S(acγ)→ Q(uvµ)

of two st-mapsh : S(acγ)→ S′(a′c′γ ′) andg : S′(a′c′γ ′)→
Q(uvµ) is an st-map. For every an st-space, the pairid =
{idaa, idcc} : S(acγ)→ S(acγ) of the identity S-mapsidaa
andidcc is an st-map, will be called theidentity st-mapon
S(acγ).

For every an st-maph : S(acγ)→ Q(uvµ), the pair

{ĥau : P(S1,a)→ P(Q1,u), ĥcv : P(S2,c)→ P(Q2,v)}

is an st-map fromPS(acγ̂) into PQ(uvµ̂). The shorter
notion for this st-map will bêh.

Proposition 3.3.Let S(acγ) andQ(uvµ) be two st-spaces
andh : S(acγ) → PQ(uvµ̂) be an st-map. Then for every
t ∈ I , the pair

[h]t = {[hau]t , [hcv]t} : S(acγ)→ Q(uvµ)

is an st-map.

Proof. Consider an S-maphau : (S1,a)→ P(Q1,u). Recall
[8] that for everyt ∈ I , there is a natural evaluation S-map
Et : P(Q1,u)→ (Q1,u) given byEt(α) = α(t) for all α ∈
P(Q1). Then for everyt ∈ I , the the compositionEt ◦hau is
an S-map; thus

[hau]t(x) = hua(x)(t) = (Et ◦hua)(x)

for everyx∈ Q1, that is,[hau]t is an S-map. Similarly, for
everyt ∈ I , [hcv]t is an S-map.

Now sincehau◦ γ ≃s µ̂ ◦hcv, then for everyt ∈ I ,

[hau]t ◦ γ = (Et ◦hua)◦ γ = Et ◦ (hua◦ γ)≃s Et ◦ (µ̂ ◦hcv)

= µ ◦ [hcv]t .

That is, for everyt ∈ I , [h]t is an st-map.�
We shall say that an st-spaceS′(a′c′γ ′) is an

st-subspaceof an st-spaceS(acγ) provided(S′1,a
′) is an

S-subspace of(S1,a), (S′2,c
′) is an S-subspace of(S2,c),

and γ ′ = γ|S′2 whereγ|S′2 the restriction S-mapγ on an
S-subspace(S′2,c

′).
Let h : S(acγ)→ Q(uvµ) be an st-map. One easily to

check that for an st-subspaceS′(a′c′γ ′) of S(acγ), the pair

{hau|S
′
1 : (S′1,a

′)→ (Q1,u),hcv|S
′
2 : (S′2,c

′)→ (Q2,v)}

is an st-map fromS′(a′c′γ ′) into Q(uvµ). This pair is
called therestriction st-mapof h onS′(a′c′γ ′), denoted by
h|S′(a′c′γ ′).

Theorem 3.4.Let f : S(acγ) → (O,e) be an t-map and
(E,e) be an S-subspace of(O,e). Then the triple

f−1(E) = {( f−1
ae (E),a),( f−1

ce (E),c),γ| f−1
ce (E)}

is an st-subspace ofS(acγ) and f | f−1(E) is an t-map from

f−1(E) into (E,e).
Proof. Note that for

x,y∈ f−1
ae (E), fae(xay) = fae(x)e fae(y) ∈ E;

thusxay∈ f−1
ae (E). Hence( f−1

ae (E),a) is an S-subspace of
(S1,a). Similarly, ( f−1

ce (E),c) is an S-subspace of(S2,c).
Since f is an t-map then forx∈ f−1

ce (E),

fae[γ| f−1
ce (E)(x)] = fae[γ(x)] = fce(x) ∈ fce[ f

−1
ce (E)]⊆ E.

That is, γ| f−1
ce (E)(x) ∈ f−1

ae (E). Then γ| f−1
ce (E) takes

f−1
ce (E) into f−1

ae (E) and sice γ is an S-map, then
γ| f−1

ce (E) is also an S-map. Hence The triplef−1(E) is an
st-space.

Similarly, fae| f−1
ae (E) and fce| f−1

ce (E) are S-maps take
f−1
ae (E) and f−1

ce (E) into E, respectively. Sincefae◦ γ =
fce, then

fae| f
−1
ae (E)◦ γ| f−1

ce (E) = ( fae◦ γ)| f−1
ce (E) = fce| f

−1
ce (E).

That is,f | f−1(E)} is an t-map fromf−1(E) into (E,e). �

4 Tχ -fibrations

In this section, we introduce the concept ofTχ -fibration
and study some its basic properties.

Definition 4.1. An t-map f : S(acγ)→ (O,e) is called an
Tχ-fibration if for every an S-space(Z,u) ∈ χ , an S-map
g : (Z,u)→ (S2,c) and an S-homotopyG : (Z,u)→P(O,e)
with G0 = fce◦g, there exists an S-homotopyH : (Z,u)→
P(S1,a) such thatH0 = γ ◦g and fae◦Ht = Gt for all t ∈ I .

For every two S-spaces(S,a) and (O,e), throughout
this paper byP1 we mean the usual first projection map
of S×O ontoSwhich is also S-map of(S×O,a×e) onto
(S,a). Similarly, we mean byP2 the usual second
projection map ofS×O ontoO.
Example 4.2. For every an st-spaceS(acγ) and an
S-space(O,e), the t-map f : S(acγ)× (O,e) → (O,e)
which is given by

f = { f1 : (S1×O,a×e)→ (O,e),

f2 : (S2×O,c×e)→ (O,e)}

is anTχ-fibration, wheref1(x, r) = r and f2(y, r) = r for
all x ∈ S1, y ∈ S2, r ∈ O. Note that If (Z,u) ∈ χ ,
g : (Z,u) → (S2 × O,c × e) is an S-map, and
G : (Z,u) → P(O,e) is an S-homotopy withG0 = f2 ◦g,
define the desired S-homotopyH from (Z,u) into
P(S1×O,a×e) by

H(z)(t) = [γ[P1(g(z))],G(z)(t)]
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for all z∈ Z, t ∈ I .
The following result shows that the the composition of

anTχ-fibration andSχ-fibration will be anTχ-fibration.

Theorem 4.3. The composition t-mapf ◦ f of an
Tχ-fibration f : S(acγ) → (O,e) and an Sχ-fibration
f : (O,e)→ (O′,e′) is anTχ -fibration.

Proof. Let (Z,u) ∈ χ , g : (Z,u) → (S2,c) be an S-map
and G : (Z,u) → P(O′,e′) be an S-homotopy with
G0 = ( f ◦ fce)◦g= f ◦ ( fce◦g). Since fce◦g is an S-map
and f is an Sχ-fibration, then there is an S-homotopy
F : (Z,u)→ P(O,e) such thatF0 = fce◦g and f ◦Ft = Gt
for all t ∈ I . Now since f is anTχ-fibration, then there is
an S-homotopyH : (Z,u)→ P(S1,a) such thatH0 = γ ◦g
and fae ◦ Ht = Ft for all t ∈ I . Then
( f ◦ fae) ◦Ht = f ◦ ( fae◦Ht) = f ◦ Ft = Gt for all t ∈ I .
Hencef ◦ f : S(acγ)→ (O′,e′) is anTχ-fibration.�

Theorem 4.4.The product

f × f ′ : S(acγ)×S′(a′c′γ ′)→ (O×O′,e×e′)

of two Tχ-fibrations f : S(acγ) → (O,e) and
f ′ : S′(a′c′γ ′)→ (O′,e′) is anTχ -fibration.

Proof. Let (Z,u) ∈ χ , g : (Z,u)→ (S2×S′2,c× c′) be an
S-map, and G : (Z,u) → P(O × O′,e × e′) be an
S-homotopy with G0 = ( fce × f ′c′e′) ◦ g. Define
S-homotopies G1 : (Z,u) → P(O,e) and
G2 : (Z,u) → P(O′,e′) by G1

t = P1 ◦ Gt and
G2

t = P2 ◦Gt for all t ∈ I , respectively.
For an Tχ-fibration f , consider an S-map

P1◦g : (Z,u)→ (S2,c) and an S-homotopyG1 with

G1
0 = P1◦G0 = P1◦ [( fce× f ′c′e′)◦g] = fce◦ (P1◦g).

Then there is an S-homotopyF : (Z,u) → P(S1,a) such
that F0 = γ ◦ (P1 ◦ g) and fae◦Ft = G1

t for all t ∈ I . For
an Tχ -fibration f ′, similarly, there is an S-homotopyF ′ :
(Z,u)→P(S′1,a

′) such thatF ′
0 = γ ◦(P2◦g) and f ′ae◦F ′

t =

G2
t for all t ∈ I .

Define an S-homotopyH : (Z,u)→ P(S1×S′1,a×a′)
by Ht = Ft ×F ′

t for all t ∈ I . Note that

H0 = [γ ◦ (P1◦g)]× [γ ◦ (P2◦g)]

= γ ◦ [(P1◦g)× (P2◦g)] = γ ◦g

and

fae× f ′a′e′)◦Ht = ( fae× f ′a′e′)◦ (Ft ×F ′
t )

= ( fae◦Ft)× ( f ′a′e′ ◦F ′
t )

= G1
t ×G2

t = Gt

for all t ∈ I . Hencef × f ′ is anTχ -fibration.�
In the following theorem, we show that the restriction

t-map f | f−1(E) of anyTχ-fibration f : S(acγ)→ (O,e) on
f−1(E) is anTχ-fibration, for every S-subspace(E,e) of
(O,e).

Theorem 4.5.Let f : S(acγ) → (O,e) be anTχ -fibration
and let (E,e) be an S-subspace of(O,e). Then the
restriction t-map f | f−1(E) : f−1(E) → (E,e) is an
Tχ-fibration.

Proof. Let (Z,u) ∈ χ , g : (Z,u) → ( f−1
ce (E),c) be an S-

map andG : (Z,u)→P(E,e) be an S-homotopy withG0 =
fce◦g. Let i : ( f−1

ce (E),c)→ (S2,c) and j : (E,e)→ (O,e)
be inclusion S-maps. Then[ ĵ ◦G]0 = fce◦(i ◦g). Sincef is
anTχ -fibration, then there is an S-homotopyH : (Z,u) →
P(S1,a) such thatH0 = γ ◦ (i ◦g) = γ| f−1

ce (E)◦g and fae◦

Ht = [ ĵ ◦G]t = j ◦Gt =Gt for all t ∈ I . By the last part, note
thatH(z)(t) ∈ f−1

ae (E) for all z∈ Z, t ∈ I . That is, we can
considerH as S-homotopy :(Z,u)→ P( f−1

ae (E),a). Hence
f | f−1(E) is anTχ-fibration.�

Theorem 4.6.Let f : S(acγ) → (O,e) be an t-map. If at
least one of the S-mapsfae and fce is anSχ-fibration then
f is anTχ -fibration.

Proof. Firstly, let fae : (S1,a)→ (O,e) be anSχ-fibration.
Let (Z,u) ∈ χ , g : (Z,u) → (S2,c) be an S-map andG :
(Z,u)→P(O,e) is an S-homotopy withG0 = fce◦g. Then
G0 = fce◦ g= fae◦ (γ ◦ g). Sinceγ ◦ g is an S-map from
(Z,u) into (S1,a) and fae is anSχ-fibration, then there is
an S-homotopyH : (Z,u) → P(S1,a) such thatH0 = γ ◦g
and fae◦Ht = Gt for all t ∈ I . That is f is anTχ-fibration.

The other case, letfce : (S2,a) → (O,e) be an
Sχ-fibration. Let (Z,u) ∈ χ , g : (Z,u) → (S2,c) be an
S-map andG : (Z,u) → P(O,e) be an S-homotopy with
G0 = fce ◦ g. Then there is an S-homotopy
F : (Z,u)→ P(S2,c) such thatF0 = g and fce◦Ft = Gt for
all t ∈ I . Define an S-homotopyH : (Z,u) → P(S1,a) by
H = γ̂ ◦F. ThenH0 = γ ◦F0 = γ ◦g and

fae◦Ht = fae◦ (γ ◦Ft) = fce◦Ft = Gt

for all t ∈ I .That is f is anTχ -fibration.�
Let S(acγ) be an st-space. If there exists an S-mapγ ′ :

(S1,a) → (S2,c) such thatγ ◦ γ ′ = id thenS(acγ) will be
called anextendableby an S-mapγ ′.
Theorem 4.7.Let S(acγ) be an extendable by an S-map
γ ′. Then for everyTχ -fibration f : S(acγ)→ (O,e), fae is
anSχ-fibration.

Proof. Let (Z,u) ∈ χ , g : (Z,u)→ (S1,a) be an S-map and
G : (Z,u)→ P(O,e) be an S-homotopy withG0 = fae◦g.
ThenG0 = fae◦g= fce◦ (γ ′ ◦g). Sinceγ ′ ◦g is an S-map
from (Z,u) into (S2,c) and f is anTχ-fibration, then there
is an S-homotopyH : (Z,u) → P(S1,a) such thatH0 =
γ ◦ (γ ′ ◦g) = g and fae◦Ht = Gt for all t ∈ I . That is fae is
anSχ-fibration.�

5 Pullback t-maps

One notable exception is that the pullback of approximate
fibration need not be an approximate fibration. In this
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section, we show that the pullbacks ofTχ -fibrations are
Tχ-fibrations.
Proposition 5.1Let f : S(acγ)→ (O,e) be an t-map and
k : (O′,e′)→ (O,e) be an S-map. Then the tripleS(acγ)k =
{(Sk1,e′×a),(Sk2,e′× c),γk} is an st-space such that

Sk1 = {(x,s) ∈ O′×S1|k(x) = fae(s)},

Sk2 = {(x,s) ∈ O′×S2|k(x) = fce(s)},

andγk(x,s) = (x,γ(s)) for all (x,s) ∈ Sk2.
Proof. Since the mapsk and fae are S-maps, then for all
(x,s),(x′,s′) ∈ Sk1,

k(xe′x′) = k(x)ek(x′) = fae(s)e fae(s
′) = fae(sas′)

Hence(x,s)(e′ × a)(x′,s′) = (xe′x′,sas′) ∈ Sk1. That is,
(Sk1,e′ × a) is an S-subspace of(O′ × S1,e′ × a).
Similarly, (Sk2,e′ × c) is an S-subspace of
(O′×S2,e′× c).

Note that for all(x,s) ∈ Sk2, fae(γ(s)) = fce(s) = k(x),
that is,(x,γ(s)) ∈ Sk1. Henceγk is a function takesSk2 into
Sk1. Sinceγk = id × γ|Sk2, thenγk is an S-map. Hence the
triple S(acγ)k is an st-space.�

In the last proposition, the st-spaceS(acγ)k is called a
pullback st-spaceof S(acγ) induced fromf by k.

Let f : S(acγ) → (O,e) be an t-map and
k : (O′,e′) → (O,e) be an S-map. The t-map
f k : S(acγ)k → (O′,e′) which is given byf k = { f k

a , f k
c } is

called a pullback t-map of f induced by k, where
f k
a(x,s) = x and f k

c (x,s
′) = x for all (x,s) ∈ Sk1,

(x,s′) ∈ Sk2.
Theorem 5.2.Let f : S(acγ) → (O,e) be anTχ -fibration
andk : (O′,e′) → (O,e) be an S-map. Then the pullback
f k of f induced byk is anTχ-fibration.

Proof. Let (Z,u) ∈ χ , g′ : (Z,u) → (Sk2,e′ × c) be an
S-map andG′ : (Z,u)→ P(O′,e′) be an S-homotopy with
G′

0 = f k
c ◦ g′. Define an S-mapg : (Z,u) → (S2,c) by

g(z) = P2(g′(z)) and an S-homotopy
G : (Z,u) → P(O,e) by G(z) = k ◦ G′(z) for all z ∈ Z.
Note that

G(z)(0) = (k◦G′(z))(0) = k(G′(z)(0)) = k[ f k
c (g

′(z))]

= k(P1(g
′(z))) = fce(P2(g

′(z))) = fce(g(z))

for all z ∈ Z. That is, G0 = fce ◦ g. Since f is an
Tχ-fibration, then there is an S-homotopy
H : (Z,u) → P(S1,a) such that H0 = γ ◦ g and
fae◦Ht = Gt for all t ∈ I .

Define an S-homotopyH ′ : (Z,u) → P(Sk1,e′ ×a) by
H ′(z)(t) = [G′(z)(t),H(z)(t)] for all z∈ Z, t ∈ I . Note that
f k
a ◦H ′ = G′ and

H ′(z)(0) = [G′(z)(0),H(z)(0)] = [ f k
c (g

′(z)),γ(g(z))]
= [P1(g

′(z)),γ(P2(g
′(z)))]

= γk[P1(g
′(z)),P2(g

′(z))]

= γk(g′(z)) = (γk ◦g′)(z)

for all z ∈ Z. That is, H ′
0 = γk ◦ g′. Hence f k is an

Tχ-fibration.�

6 Covering homotopy theorem

The main result of this section is a covering homotopy
theorem for st-maps intoTχ -fibrations. We first have need
of the following two results which are the corresponding
results for a covering homotopy theorem in Hurewicz
fibrations [7].

Theorem 6.1.Let f : S(acγ) → (O,e) be anTχ -fibration
and letk,k′ : (Z,u)→P(S2,c) be two S-maps. Letk0 ≃s k′0
and f̂ce◦k≃s f̂ce◦k′ by S-homotopiesG : (Z,u)→P(S2,c)
andR : (Z,u)→ P[P(O),e], respectively. IfR0t = fce◦Gt
for all t ∈ I , then there exists an S-homotopyF : (Z,u)→
P[P(S1),a] between̂γ ◦ k and γ̂ ◦ k′ such thatF0t = γ ◦Gt
and fae◦Frt = Rrt for all r, t ∈ I .

Proof. Let

A= (I ×{0})∪ ({0}× I)∪ (I×{1})⊂ I × I .

For every(r, t) ∈ A, define an S-map≪ (r, t)≫: (Z,u)→
(S2,c) by

≪ (r, t)≫ (z) =





k(z)(r), t = 0;
G(z)(t), r = 0;
k′(z)(z), t = 1

for all z ∈ Z. Recall ([4], P. 100) that there is a
homeomorphismm : I × I → I × I takingA onto I ×{0}.
By hypothesis, note that for every(r, t) ∈ A,

( fce◦≪ (r, t)≫)(z) = Rrt (z) = (R(z)(r))(t)

for all z ∈ Z. For every r ∈ I , define an S-map
gr : (Z,u) → (S2,c) and an S-homotopy
Rr : (Z,u)→ P(O,e) by gr(z) =≪ m−1(r,0)≫ (z) and

Rr(z)(t) = (R(z)(P1[m
−1(r, t)]))(P2[m

−1(r, t)])

for all z∈ Z, t ∈ I . Note that for everyr ∈ I ,

Rr(z)(0) = (R(z)(P1[m
−1(r,0)]))(P2[m

−1(r,0)])

= ( fce◦≪ (P1[m
−1(r,0)],

P2[m
−1(r,0)])≫)(z)

= ( fce◦≪ m−1(r,0)≫)(z) = ( fce◦gr)(z).

That is,Rr
0 = fce◦gr . Then for everyr ∈ I , sincef is anTχ-

fibration, there exists an S-homotopyF r : (Z,u)→P(S1,a)
such thatF r

0 = γ ◦gr and fae◦F r
t = Rr

t for all t ∈ I . Define
an S-homotopyF : (Z,u))→ P[P(S1),a] by

(F(z)(r))(t) = FP1[m(r,t)](z)(P2[m(r, t)])
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for all z∈ Z, r, t ∈ I . Note that

(F(z)(r))(0) = FP1[m(r,0)](z)(P2[m(r,0)])

= FP1[m(r,0)](z)(0)

= (γ ◦gP1[m(r,0)])(z)

= (γ◦≪ m−1(P1[m(r,0)],

0)≫)(z)

= (γ◦≪ m−1(P1[m(r,0)],

P2[m(r,0)])≫)(z)

= (γ◦≪ m−1(m(r,0))≫)(z)

= (γ◦≪ (r,0)≫)(z)

= (γ ◦ k(z))(r)

= ((γ̂ ◦ k)(z))(r)

and similarly,(F(z)(r))(1) = ((γ̂ ◦ k′)(z))(r) for all r ∈
I ,z∈ Z. That is,F is an S-homotopy between̂γ ◦ k and
γ̂ ◦ k′. Also note that

Fot(z) = (F(z)(0))(t) = FP1[m(0,t)](z)(P2[m(0, t)])

= FP1[m(r,0)](z)(0) = (γ ◦gP1[m(0,t)])(z)

= (γ◦≪ m−1(P1[m(0, t)],0)≫)(z)

= (γ◦≪ m−1(P1[m(0, t)],P2[m(0, t)])≫)(z)

= (γ◦≪ m−1(m(0, t))≫)(z)

= (γ◦≪ (0, t)≫)(z) = (γ ◦Gt)(z)

and

( fae◦Frt )(z) = ( fae◦Fr(z))(t) = ( fae◦FP1[m(r,t)](z))

(P2[m(r, t)])

= RP1[m(r,t)](z)(P2[m(r, t)])

=
{

R(z)(P1[m
−1{P1[m(r, t)],

P2[m(r, t)]}])
}

(P2[m
−1{P1[m(r, t)],P2[m(r, t)]}])

=
{

R(z)(P1[m
−1{m(r, t)}])

}

(P2[m
−1{m(r, t)}])

=
{

R(z)(P1[r, t])
}
(P2[r, t])

= (R(z)(r))(t) = Rrt (z)

for all r, t ∈ I , z∈ Z. That is,F0t = γ ◦Gt and fae◦Frt = Rrt
for all r, t ∈ I . �

Corollary 6.2. Let f : S(acγ)→ (O,e) be anTχ-fibration.
Letk,k′ : (Z,u)→P(S2,c) be S-maps such thatk0 = k′0 and

f̂ce◦k= f̂ce◦k′. Then there exists S-homotopyF : (Z,u)→
P[P(S1),a] between̂γ ◦k andγ̂ ◦k′ such thatF0t = γ ◦k0 =
γ ◦ k′0 and fae◦Frt = fce◦ kr for all r, t ∈ I .

Proof. Define an S-homotopyG : (Z,u) → P(S2,c) by
G(z)(t) = k0(z) and define an S-homotopy
R : (Z,u)) → P[P(O),e] by ((R(z)(r))(t) = ( fce◦ kr)(z)
for all r, t ∈ I , z∈ Z. Then by using the above theorem,
one can get the desired S-homotopy.�

Definition 6.3.Let f : S(acγ)→ (O,e) and f ′ : Q(uvµ)→
(O,e) be two t-maps. An st-mapd : Q(uvµ)→ S(acγ) is
called an( f , f ′)−preservingif fae◦dua = f ′ue and the S-
homotopy in the definition ofd betweendua◦µ andγ ◦dvc,
sayM, can be chosen such thatfae◦Mt = f ′ve for all t ∈ I .

Theorem 6.4.Let f : S(acγ) → (O,e) be anTχ -fibration
and S(acγ) be an extendable by an S-mapγ ′. Let
d : Q(uvµ) → S(acγ) be an st-map and
D : Q(uvµ) → P(O,e) be an t-map such thatd is an
( f , [D]0)-preserving. Then there exists an st-map
H : Q(uvµ) → PS(acγ̂) such that [H]0 ≡ d,
f ◦ [H]r = [D]r , for all r ∈ I , and H is an
( f ,D)-preserving.

Proof. Let M : (Q2,v) → P(S1,a) be an S-homotopy
between S-mapsM0 = γ ◦dvc andM1 = dua◦µ . Sinced is
an ( f , [D]0)-preserving, then fae ◦ dua = [Due]0 and
fae◦Mt = [Dve]0 for all t ∈ I . Then

fce◦dvc= fae◦ (γ ◦dvc) = fae◦M0 = [Dve]0

and
fce◦ (γ ′ ◦dua) = fae◦dua= [Due]0.

Since f is an Tχ-fibration, then, for the part
[Due]0 = fce ◦ (γ ′ ◦ dua), there exists an S-homotopy
H ′ : (Q1,u)→ P(S1,a) such thatH ′

0 = γ ◦ (γ ′ ◦dua) = dua
and fae ◦ H ′

r = [Due]r for all r ∈ I . For the part
[Dve]0 = fce◦ dvc, similarly, there exists an S-homotopy
H ′′ : (Q2,v) → P(S1,a) such that H ′′

0 = γ ◦ dvc and
fae◦H ′′

r = [Dve]r for all r ∈ I .
First we show that the pair

H = {Hua= H ′,Hvc = γ̂ ′ ◦H ′′} : Q(uvµ)→ PS(acγ̂)

is an st-map. Consider the two S-homotopiesγ̂ ′◦(Hua◦µ),
Hvc : (Q2,v)→ P(S2,c). We get that

[γ̂ ′ ◦ (Hua◦ µ)]0 = [γ̂ ′ ◦ (H ′ ◦ µ)]0 = γ ′ ◦ (H ′
0◦ µ)

= γ ′ ◦ (dua◦ µ)
≃s γ ′ ◦ (γ ◦dvc)

= γ ′ ◦H ′′
0 = [Hvc]0

fce◦ [γ̂ ′ ◦ (Hua◦ µ)]r = fce◦ (γ ′ ◦ (H ′
r ◦ µ))

= ( fae◦H ′
r)◦ µ

= [Due]r ◦ µ = [Dve]r

= fae◦H ′′
r

= ( fae◦ γ)◦ (γ ′ ◦H ′′
r )

= fce◦ [γ̂ ′ ◦H ′′]r

= fce◦ [Hvc]r

for all r ∈ I . Then we can apply Theorem (6.1), take
Z = Q2, k= γ̂ ′ ◦ (Hua◦µ) andk′ = Hvc. Note thatk0 ≃s k′0
by an S-homotopyG = γ̂ ′ ◦M and f̂ce◦ k = f̂ce◦ k′, here
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we can define an S-homotopyR : (Q2,v)→ P[P(S1),a] by
(R(q)(r))(t) = ( fce◦ k′r)(q) for all q∈ Q2, r, t ∈ I . Since

R0t(q) = (R(q)(0))(t) = ( fce◦ k′0)(q) = ( fce◦ [Hua]0)(q)

= ( fce◦ (γ ′ ◦H ′′
0 ))(q) = ( fae◦H ′′

0 )(q)

= [Dve]0(q) = ( fae◦Mt)(g)

= ( fce◦ (γ ′ ◦Mt))(q) = ( fce◦Gt)(q)

for all q ∈ Q2, t ∈ I , then there is an S-homotopy
F : (Q2,v)→ P[P(S1),a] between̂γ ◦k andγ̂ ◦k′ such that
F0t = γ ◦Gt and fae◦Frt = Rrt for all r ∈ I . Then

Hua◦ µ = γ̂ ◦ (γ̂ ′ ◦ (Hua◦ µ))≃s γ̂ ◦Hvc.

That is,H = {Hua,Hvc} : Q(uvµ)→PS(acγ̂) is an st-map.
Note that[Hua]0◦ µ = dua◦ µ ,

γ ◦ [Hvc]0 = γ ◦dvc, fae◦ [Hua]r = [Due]r

and fce◦ [Hvc]r = [Dve]r . That is,[H]0 ≡ d and f ◦ [H]r =

[D]r for all r ∈ I . For a preserving property, we get that
fae◦ [Hua]r = [Due]r and

( fae◦Frt )(q) = ( fae◦Frt )(q) = ( fce◦ k′r)(q)

= ( fce◦ [Hvc]r)(q)

= ( fce◦ (γ ′ ◦H ′′
r )(q)

= ( fae◦H ′′
r )(q) = [Dve]r(q)

for all q∈ Q2, r, t ∈ I . That is,H is an( f ,D)-preserving.�

Theorem 6.5.Let f : S(acγ) → (O,e) be anTχ -fibration
andS(acγ) be an extendable by an S-mapγ ′. Let d,d′ :
Q(uvµ)→PS(acγ̂) be two st-maps such that there exist an
st-mapg : Q(uvµ)→PS(acγ̂) and an t-mapR : Q(uvµ)→
P[P(O),e] with

[g]0 ≡ [d]0, [g]1 ≡ [d′]0, [R]r0 = f ◦ [d]r , [R]r1 = f ◦ [d′]r ,

and[g]t is an( f , [R]0t)-preserving for allr, t ∈ I . Then there

exists an st-mapH : Q(uvµ)→ PPS(aĉγ̂) such that

[H]0t ≡ [g]t , [H]r0 ≡ [d]r , [H]r1 ≡ [d′]r ,

for all r, t ∈ I , andH is an( f ,R)-preserving.

Proof. Since for everyt ∈ I , [g]t is an( f , [R]0t)-preserving,
then there exists an S-homotopyEt : (Q2,v) → P(S1),a)
between two S-mapsEt

0 = [gua]t ◦ µ and Et
1 = γ ◦ [gvc]t

such thatfae◦Et
s = [Rve]0t and fae◦ [gua]t = [Rue]0t for all

s, t ∈ I .
First we show that for everyr ∈ I , [d]r is an( f , [R]r0)-

preserving and[d′]r is an( f , [R]r1)-preserving. For an st-

map[d], in Theorem (6.1), considerk= γ̂ ′ ◦ ([dua]◦ µ),

k′ = (γ̂ ′ ◦ γ̂)◦ [dvc], G(q)(s) = (γ ′ ◦E0
s)(q),

and(R(q)(r))(s) = ([Rue]r0 ◦ µ)(q) for all s, r ∈ I , q∈ Q2.
Note that

G0 = γ ′ ◦E0
0 = γ ′ ◦ ([gua]0◦ µ) = γ ′ ◦ ([dua]0 ◦ µ) = k0,

G1 = γ ′ ◦E0
1 = γ ′ ◦ (γ ◦ [gvc]0) = γ ′ ◦ (γ ◦ [dvc]0) = k′0,

Rr0 = [Rue]r0 ◦ µ = ( fce◦ γ ′)◦ ([dua]r ◦ µ) = fce◦ kr ,

Rr1 = [Rue]r0 ◦ µ = ( fce◦ γ ′)◦ (γ ◦ [dvc]r) = fce◦ k′r ,

and

R0s = [Rue]00◦ µ = fae◦E0
s = ( fce◦ γ ′)◦E0

s = fce◦Gs

for all s, r ∈ I . Then there exists an S-homotopy
F : (Q2,v) → P[P(S1),a] betweenγ̂ ◦ k = [dua] ◦ µ and
γ̂ ◦ k′ = γ̂ ◦ [dvc] such thatF0s = γ ◦Gs= E0

s and

fae◦Frs = Rrs = [Rue]r0 ◦ µ = [Rve]r0

for all r,s ∈ I . For every r ∈ I , define
Kr : (Q2,v) → P(S1),a) by Kr(q)(s) = Frt (q) for all
s, r ∈ I , q ∈ Q2; note thatKr is homotopy between two
S-mapsKr

0 = [dua]r ◦ µ and Kr
1 = γ ◦ [dvc]r such that

K0
s = E0

s , fae◦Kr
s = [Rve]r0, and fae◦ [dua]r = [Rue]r0 for

all s∈ I .
For an st-map[d′], similarly, for every r ∈ I , there

exists an S-homotopyK′r : (Q2,v) → P(S1),a) between
two S-mapsK′r

0 = [d′
ua]r ◦ µ andK′r

1 = γ ◦ [d′
vc]r such that

K′0
s = E0

s , fae◦K′r
s = [Rve]r1, and fae◦ [d′

ua]r = [Rue]r1 for
all s∈ I .

Let A= (I ×{0})∪ ({0}× I)∪ (I ×{1})⊂ I × I . For
every(r, t)∈A, define an st-map[h](r,t) : Q(uvµ)→S(acγ)
and an S-homotopyM(r,t) : (Q2,v)→ P(S1,a) by

[h](r,t) =





[d]r t = 0;
[g]t r = 0;
[d′]r t = 1

and M(r,t) =





Kr t = 0;
Et r = 0;
K′r t = 1,

respectively. Note that for every(r, t) ∈ A,

fae◦ [hua](r,t) = [Rue]rt , fae◦M(r,t)
s = [Rve]rt ,

for all s∈ I , andM(r,t)
0 is S-homotopy betweenM(r,t)

0 =

[hua](r,t) ◦ µ andM(r,t)
1 = γ ◦ [hvc](r,t).

Recall ([4], P. 100) that there is a homeomorphismm :
I × I → I × I takingA ontoI ×{0}. For everyr ∈ I , define
an st-mapDr : Q(uvµ)→P(O,e) by [Dr ]t = {[Dr

ue], [D
r
ve]}

where
[Dr

ue]t = [Rue]P1[m−1(r,t)]P2[m−1(r,t)]

and
[Dr

ve]t = [Rve]P1[m−1(r,t)]P2[m−1(r,t)]

for all t ∈ I . Consider an st-maphr = [h]m−1(r,0) and an

S-homotopyNr = Mm−1(r,0), we get thatfae◦Nr
s = [Dr

ve]r0
for all s ∈ I , fae ◦ [hua]m−1(r,0) = [Dr

ue]0, and Nr is an

S-homotopy between Nr
0 = [hua]m−1(r,0) ◦ µ and

Nr
1 = γ ◦ [hvc]m−1(r,0). That is, for everyr ∈ I , an st-maphr

is an ( f , [Dr ]0)-preserving. Then by the Theorem (6.4),
there exist an st-mapHr : Q(uvµ) → PS(acγ̂) such that
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[Hr ]0 ≡ hr , f ◦ [Hr ]t = [Dr ]t for all t ∈ I , and Hr is an
( f ,Dr)-preserving.

Hence the desired an st-mapH : Q(uvµ)→ PPS(aĉγ̂)
is given by

[H]rt = [HP1[m(r,t)]]P2[m(r,t)]

for all r, t ∈ I . �
Corollary 6.6. Let f : S(acγ)→ (O,e) be anTχ -fibration
andS(acγ) be an extendable by an S-mapγ ′. Let d,d′ :
Q(uvµ)→ PS(acγ̂) be two st-maps such that there exists
an st-mapg : Q(uvµ)→ PS(acγ̂) with [g]0 ≡ [d]0, [g]1 ≡
[d′]0, f ◦ [d]r = f ◦ [d′]r for all r ∈ I , andg is an ( f , f ◦
d)-preserving. Then there exists an st-mapH : Q(uvµ)→
PPS(aĉγ̂) such that

[H]0t ≡ [g]t , [H]r0 ≡ [d]r , [H]r1 ≡ [d′]r

for all r, t ∈ I , andH is an( f , f ◦d)-preserving.

Proof. Define an t-mapR : Q(uvµ) → P[P(O),e] by
[H]rt = f ◦ [d]r for all r, t ∈ I . Then by using the above
theorem, one can get the desired st-mapH. �

7 Sχ -approximate fibrations

In this section, we first give the notion of an approximate
fibration in homotopy theory for topological semigroups.
Next, we give the relation between theTNπ -fibration and
SNπ -approximate fibration.
Definition 7.1. Let (S,a) and (O,e) be S-spaces with
compact metrizable spacesS and O. An S-map
f : (S,a)→ (O,e) is called anSχ-approximate fibrationif
for every S-space(Z,u) ∈ χ and givenε > 0, there exists
δ > 0 such that wheneverg : (Z,u) → (S,a) and
G : (Z,u) → P(O,e) are S-maps with
d[G(z)(0),( f ◦ g)(z)] < δ , then there is an S-homotopy
H : (Z,u) → P(S,a) such that H0 = g and
d[G(z)(t),( f ◦H(z))(t)]< ε for all z∈ Z, t ∈ I .

One easily check that the mapf : S → O is an
approximate fibration if and only if the S-map
f : (S,π)→ (O,π) is anSNπ -approximate fibration.
Theorem 7.2. The composition of Sχ-approximate
fibrations is anSχ-approximate fibration.
Proof. Let f : (S,a)→ (O,e) and f ′ : (O,e)→ (O′,e′) be
Sχ-approximate fibrations. Letd andd′ denote the metrics
on O andO′, respectively. Let(Z,u) ∈ χ and letε > 0 be
given. Letg : (Z,u)→ (S,a) andG : (Z,u)→ P(O′,e′) be
S-maps. Sincef ◦g : (Z,u)→ (O,e) is an S-map andf ′ is
anSχ-approximate fibration, then there existsδ > 0 such
that whenever

d′[G(z)(0), [ f ′ ◦ ( f ◦g)](z)]< δ

for all z∈ Z, then there exists an S-homotopyF : (Z,u)→
P(O,e) such thatF0 = f ◦g and

d′[G(z)(t),( f ′ ◦F(z))(t)]< ε/2 (1)

for all z∈ Z, t ∈ I . Since f ′ is continuous andε/2 > 0,
then there existsδ ′ > 0 such that

d(x,y)< δ ′ =⇒ d′( f ′(x), f ′(y))< ε/2 (2)

for all x,y ∈ O. For δ ′ > 0, since F0 = f ◦ g, then
d[F(z)(0),( f ◦g)(z)] = 0< δ for all z∈ Z. And sincef is
anSχ-approximate fibration, then there is an S-homotopy
H : (Z,u) → P(S,a) such that H0 = g and
d[F(z)(t),( f ◦H(z))(t)]< δ ′ for all z∈ Z, t ∈ I . From (2),
we get

d′[( f ′ ◦F)(z)(t), [( f ′ ◦ f )◦H(z)](t)]< ε/2 (3)

for all z∈ Z, t ∈ I . From (1) and (3), then

d′[G(z)(t), [( f ′ ◦ f )◦H(z)](t)]

≤ d′[G(z)(t),( f ′ ◦F)(z)(t)]

+ d′[( f ′ ◦F(z))(t), [( f ′ ◦ f )◦H](z)(t)]

< ε/2+ ε/2= ε
for all z∈ Z, t ∈ I . Hence f ′ ◦ f : (S,a) → (O′,e′) is an
Sχ-approximate fibration.�

Let f : (S,π) → (O,π) be an S-map with compact
metrizable spacesS and O. Let ds and do be metric
functions onS andO, respectively. Let(S×O,π) be the
product S-space of(S,π) and (O,π). Define a metric
function d((x,y),(x′,y′)) = max{ds(x,x′),do(y,y′)} on
S× O. It is clear that(G ( f ),π) is an S-subspace of
(S×O,π), whereG ( f ) = {(s, f (s)) : s∈ S} is the graph
of f . For a positive integern > 0, let (G ( f )n,π) be an
S-subspace of(S× O,π), where G ( f )n denotes the
(1/n)−neighborhood of G ( f ) in S× O. For every
positive integersm≥ n > 0, define an st-spacesG f (γnm)
and an t-mapG f nm : G f (γnm)→ (O,π) by

G f (γnm) = {(G ( f )n,π),(G ( f )m,π),γnm}

andG f =

{ fn : (G ( f )n,π)→ (O,π), fm : (G ( f )m,π)→ (O,π)},

whereγnm : G ( f )m → G ( f )n is an inclusion S-map andfn
and fm are S-maps given byfn(s,x) = x and fm(s′,x′) = x′

for all (s,x) ∈ G ( f )n,(s′,x′) ∈ G ( f )m.
Theorem 7.3.An S-map f : (S,π) → (O,π) is an SNπ -
approximate fibration if and only if for every a positive
integern> 0, there exists a positive integerm≥ n such that
the t-mapG f nm : G f (γnm)→ (O,π) is anTNπ -fibration.

Proof. Suppose for every a positive integern > 0, there
exists a positive integerm ≥ n such that the t-map
G f nm : G f (γnm)→ (O,π) is anTNπ -fibration. Letε > 0 be
given. Since f is a continuous function, then letδ ′ be
chosen such that ifs,s′ ∈ S and ds(s,s′) < δ ′, then
do( f (s), f (s′)) < ε/2. Choose a positive integern > 0
such that 1/n ≤ δ ′,ε/2. By hypothesis, there exists a
positive integerm≥ n such thatG f nm is anTNπ -fibration.

Let δ = 1/m. Let (Z,π) ∈ Nπ be a natural S-space,
g : (Z,π)→ (S,π) be an S-map, andG : (Z,π)→ P(O,π)
be an S-homotopy with

do[G(z)(0),( f ◦g)(z)]< δ
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for all z∈ Z. Define an S-mapg′ : (Z,π) → (G ( f )m,π)
by g′(z) = (g(z),G(z)(0)) for all z∈ Z. SinceG0 = fm◦g′

andG f nm is anTχ -fibration, there exists an S-homotopyF :
(Z,π)→ P(G ( f )n,π) such thatF0 = γnm◦g′ = g′ and fn◦
Ft = Gt for all t ∈ I . By the last part, we can define an S-
homotopyH : (Z,π)→P(S,π)) by H(z)(t) =P1[F(z)(t)]
for all z∈Z, t ∈ I . We get thatF(z)(t) = (H(z)(t),G(z)(t)).
SinceF(z)(t) ∈ G ( f )n, then there existss∈ S such that
d[(s, f (s)),F(z)(t)]< 1/n. Then

ds(s,H(z)(t))< 1/n6 δ ′, do( f (s),G(z)(t))< 1/n6 ε/2,

anddo( f (s), f (H(z)(t))) < 1/n6 ε/2; thus

do(G(z)(t), f (H(z)(t))) 6 do( f (H(z)(t)), f (s))

+ do( f (s),G(z)(t)) < ε

for all z ∈ Z, t ∈ I . Hence f is an SNπ -approximate
fibration.

Conversely, suppose thatf is an SNπ -approximate
fibration. Letn be a positive integer. Forε = 1/n> 0, let
δ be given in the definition ofSNπ -approximate fibration.
Sinceδ/2> 0 and f is a continuous function, then letδ ′

be chosen such that ifs,s′ ∈ S and ds(s,s′) < δ ′, then
do( f (s), f (s′)) < ε/2. Choose a positive integerm> n,
such that 1/m≤ δ ′,δ/2.

Now let (Z,π) ∈ Nπ be a natural S-space,
g : (Z,π) → (G ( f )m,π) be an S-map, and
G : (Z,π)→ P(O,π) be an S-homotopy withG0 = fm◦g.
Define an S-mapg′ : (Z,π) → (S,π) by g′(z) = P1[g(z)]
for all z∈ Z. We get thatg(z) = (g′(z),G(z)(0)) for all
z∈ Z. Sinceg(z) ∈ G ( f )m, then there existss∈ S such
thatd[(s, f (s)),g(z)] < 1/m. Then

ds(s,g
′(z))< 1/m6 δ ′, do( f (s),G(z)(0)) < 1/m6 δ/2,

anddo( f (s), f (g′(z))) < 1/m6 δ/2; thus

do( f (g′(z)),G(z)(0)) 6 do( f (g′(z)), f (s))

+ do( f (s),G(z)(0)) < ε

Hence, sincef is an SNπ -approximate fibration, there
exists an S-homotopyH ′ : (Z,π) → P(S,π) such that
H ′

0 = g′ andds(G(z)(t),( f ◦H ′(z))(t)) < ε for all z∈ Z,
t ∈ I . Define an S-homotopyH : (Z,π) → (G ( f )n,π) by
H(z)(t) = (H ′(z)(t),G(z)(t)) for all z∈ Z, t ∈ I . Then we
get that forz∈ Z, t ∈ I ,

H(z)(0) = (H ′(z)(0),G(z)(0)) = (g′(z),G(z)(0))

= g(z) = (γnm◦g)(z)

and fn ◦Ht = Gt . HenceG f nm is anTχ-fibration.�
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