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1 Introduction This paper is organized as follows: It consists of seven
sections. Section 2 is devoted to some preliminaries. In
The homotopy theory of topological spaces attempts toSection 3, we start by giving the concepts of st-spaces and
classify weak homotopy types of spaces and homotopyt-maps in homotopy theory for topological semigroups.
classes of maps. The classification of maps within aSome properties for their are proved. In Section 4, we
homotopy is a central problem in topology and severaldefine anly-fibration and study some its basic properties.
authors contributed in this area, see for example thdn Section 5 we prove that the pullbacks Bf-fibrations
related works in§]. The concepts of Hurewicz fibrations, are Ty-fibrations. In Section 6, we give and prove the
[7], in this theory have played very important roles for covering homotopy theorem for st-maps into
investigating the mutual relations of among the objects.Ty-fibrations. In Section 7, we first define the
For this purpose Coram and Duval][introduced an Sy—approximate fibration property in homotopy theory
approximate fibration as a map having the approximatdor topological semigroups. Next we give and prove the
homotopy lifting property for every space, which is a relation between S,—approximate fibrations and
generalization of a Hurewicz fibration having valuable Ty-fibrations.
properties similar to the Hurewicz fibration and is widely
applicable to the maps whose fibers are nontrivial shapes.
A mapf : S— B of compact metrizable spac8andO is Lo
called anapproximate fibratiorif for every spaceZ and 2 Preliminaries
for given € > 0, there exist® > 0 such that whenever
g:Z — S and G: ZxI| — O are maps with Every topological space in this paper will be assumed
d[G(z0),(f o g)(2)] < 9, then there exists a homotopy Hausdorff space and most of the backgrounds here have
H:Zx| = Sof ZxI into Ssuch thatHy = g and  been worked out previously by Zvonk®&][
d[G(zt),(foH)(zt)] < eforallze Z,t 1. A topological semigroupr anS-spaces a pair(S,a)

The concept of homotopy theory for topological consisting a topological spac® and a map (i.e., a
semigroups and most of the backgrounds for this papecontinuous function : Sx S— Sfrom the product space
have been worked out previously by Zvonko in 20@}, [ Sx Sinto S such thata(x,a(y,z)) = a(a(x,y),z) for all
He introduced the concepts @—homotopy relation, Xx,y,z€ S Thatis, anS—space is a topological space with
pathwise S—connectednessS—homotopy domination, a continuous associative multiplication. We denote the
S—contractibility andS, —fibration. class of all S-spaces by.
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An S-spacéA, c) is called anS-subspacef (S a) if A
is a subspace db and the maga takes the produch x A
into A andc(x,y) = a(x,y) for all x,y € A. It is natural to

Theorem 2.7.The mapf : S— O s a Hurewicz fibration
if and only if the S—map f : (Sm) — (O,m) is an
S 4, —fibration.

denote the multiplication of an S-subspace with the samerpegrem 2.8.The composition oB,-fibrations is arf,-
symbol used for the multiplication on the S-space undefipration.

consideration.
For every spac&, the natural S-spacés an S-space
(S 1), whererg is a continuous associative multiplication 3 The st-spaces and st-maps

onSgiven by (x,y) = xandme(x,y) =yforall x,y € S
We denote the class of all natural S-spa®st) by .47,
whererm = 1, Tb.

By a pair of two S-spacesr anst-spaceve mean a triple
{(S1,a8),(S,c),y} consisting of two S-space$S;,a),

Let (Sa) and (O,e) be S-spaces. The function (S, c) and an S-mapy : (S$,c) — (S,a). The shorter

f:(Sa) — (O,e) is called shomomorphisnor an S-map

if f is a map of a spaceS into O and
f(a(x,y)) = e(f(x), f(y)) for all x,y € S. Recall B] that

notion for this st-space will b&(acy).
There are many ways in which an S-space can be
regarded as an st-space. In our work, we use an S-space

the usual composition and the usual product of two(Sa)as{(S a),(S a),id} whereid is the identity S-map

S-maps are S-maps and that the functfonS — O of a

natural S-spac€S, i) into (O, 1) is an S-map if and only

if it is continuous.

onS
For any two S-spaces, a) and(O,e), one can easily
to check that the product spa8e Ois an S-space with the

For every a spac8, by P(S) we mean the space of all usual multiplication produc x e of a ande. The product

paths from the unit closed interval= [0,1] into S with
the compact-open topology. Recaf] [that for every an
S-space (Sa), (P(S),a) is an
a: P(S x P(§ — P(9
a(a,pB)]t) =a(a(t),B(t)) forall a,B € P(S),t€l. The
shorter notion for this S-space will B¥S a).

Definition 2.1. The S-mapsf,g: (Sa) — (O,e) are

called S-homotopi@and writef ~¢ g provided there is an

S-mapH : (Sa) — P(O,e) called an S-homotopysuch
thatH(s)(0) = f(s) andH(s)(1) = g(s) forallse S.

Throughout this paper, for every an S-homotopy

H: (Sa) — P(O,e) and for evenyt € I, by H; (or [H])
we mean the S-mapg], H: : (S,a) — (O, e) which given
by Hi(s) = H(s)(t) for all s S Also for every an
S-homotopyH : (S,a) — P[P(O), gl and for every,t €I,
by Hit (or [H];1) we mean the S-mady : (S;a) — (O,e)
which given byH: (s) = [H(s)(r)](t) forallse S.
Theorem 2.2. The relation of S-homotopy~s is an

equivalence relation on the set of all S-map$®f) into
(O,e).

Theorem 2.3.1f the S-mapsf,g: (S a) — (O,e) are S-
homotopic then the relatiorfsh ~sgoh andko f ~skog
hold for all S-map# into (S,a) andk from (O, e).

Theorem 2.4.1f the S-mapsf,g: (S a) — (O,e) are S-
homotopic then the mapsg: S— O are homotopic.

Theorem 2.5. The S-mapsf,g: (Sm) — (O,m) are
S-homotopic if and only if the map$,g: S— O are
homotopic.

Definition 2.6. An S—mapf : (S a) — (O,e) is called an
Sy-fibration if for every an-spacgZ,u) € x, an S—map
g : (Zu — (Sa) and an S—homotopy
G : (Z,u) — P(O,e) with Gy = f og, there is an
S—homotopyH : (Z,u) — P(S,a) such thatH, = g and
foHi =G forallt el.

S-space where
is a map defined by

st-spaceS(acy) x Q(uvu) of two st-spaces
S(acy) = {(Slva)v (527 C)v V}

andQ(uvu) = {(Qx,u), (Qz,V), 1} can be defined by

S(acy) x Q(uvu) = {(S1 x Qr,ax u), (S x Qz,c x V),

yx H}.

For every an S-mag : (Sa) — (O,e), A function

g: P(Sa) — P(O,e) which is defined byg(a) = fo
for all o € P(S,a) is an S-map,§]. An S-mapg will be
called anS-map induced by &nd denoted by. Then for
an st-spac&(acy), the triple {P(S;,a),P(S,c¢),y} is an
st-space denoted BSacy).

Definition 3.1. An st-mapfrom an st-spac&(acy) into an
st-space(uvy) is a pair

h = {hay,hey} : S(acy) — Q(uvu)

of two S-mapshy, : (S1,a) — (Q1,u) andhey : (S,€) —
(QZ,V) such thahauo y>~sUo hcv.

In the last definition, ithgy oy = o hey, thenh will
be called art-map Trivially, if f = {fae, fce} : S(acy) —
(O,e) is an t-map therfzeo y = fee.

We say that the st-magdsg: S(acy) — Q(uvu) are
equivalent st-mapsve writeh = g, if hayo ¥y = gayo yand
U ohey = Uogey. By h=g we mean thah,, = gay and
Proposition 3.2.The product

hx g: S(acy) x Q(uvi) - S(acy) x Q UV

of two st-mapsh : S(acy) — S(a/c'y’) andg: Q(uvu) —
Q'(uv ') which is given by

hxg:{had X Quus Nee X Gw }

is an st-map.
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Proof. It's clear thath,y x g,y andh.y x g,y are S-maps.
Sinceh andg are st-maps, theh,y oy ~s y oh.¢ and

Ouu © U ~s MU' o gy . Hence
(haa X Quu) o (Yx ) = (haz oY) x
~s ()/ ohgy) x
= (Vxu)o
Thatis,h x gis an st-mapl]
Easily to check that the composition

(QuuoH’)
(U/O Ow)
(hcc’ X QV\/)'

QOD = {Gau© haa; 9o o Nee } - S(acy) — Q(uvp)

of two st-maps: S(acy) — S(a'c’y) andg: S(acy) —
Q(uvu) is an st-map. For every an st-space, the johir
{idaa,idcc} : S(acy) — S(acy) of the identity S-map&aa
andidcc is an st-map, will be called thidentity st-mapmn
S(acy).

For every an st-mabp: S(acy) — Q(uvu), the pair

{Rau: P(S1,@) — P(Q1,), Ney : P(S2,€) — P(Q2,V)}

is an st-map fromPSacy) into PQ(uvii). The shorter
notion for this st-map will bé.

Proposition 3.3.Let S(acy) andQ(uvu) be two st-spaces
andh : S(acy) — PQ(uvii) be an st-map. Then for every
t €1, the pair

[t = {[hault, [hey]t } : S(acy) — Q(uvu)

is an st-map.

Proof. Consider an S-malpy : (S;,a) — P(Qq,u). Recall
[8] that for everyt € 1, there is a natural evaluation S-map
P(Q1,u) — (Qq,u) given byéi(a) = a(t) forall o €
P(Q1). Then for every € |, the the compositiot; o hay is

an S-map; thus

[Naylt (X) = hua(X)(t) = (&t o hya) (X)

for everyx € Qq, that is, [ha )t is an S-map. Similarly, for
everyt € I, [het is an S-map.
Now sincehyyo y ~ [l o hey, then for every € 1,

[hadt oy = (&t ohya) oy =&t o (hyaoy) ~s & o (H o hey)
= Ho[he:.

That s, for everyt € I, [h]; is an st-maplJ

We shall say that an st-spac8(acy) is an
st-subspacef an st- spacéS(acy) provided(S,,d) is an
S-subspace aofS;,a), (S,,¢') is an S-subspace ¢&,c),
andy =y|S, Wherey|SZ the restriction S-majy on an
S-subspaceés,, )

Leth: S(acy) — Q(uvu) be an st-map. One easily to
check that for an st-subspagéa’c’y’) of S(acy), the pair

{hau/S 1 (S1,@) = (Q1,u),hev|S, 1 (S5,€) — (Q2,v) }

is an st-map fromS(a'c’y’) into Q(uvu). This pair is
called therestriction st-mapf honS(a'c’'y'), denoted by
hiS(@cy).

Theorem 3.4.Let f : S(acy) — (O,e) be an t-map and
(E,e) be an S-subspace @D, e). Then the triple

{(fae' (), ), (fee (), ). ¥ifee (E)}

is an st-subspace &acy) andj[‘l(E) is an t-map from
f71(E) into (E,e).
Proof. Note that for

4 E) =

X,y € fH(E), fag(xay) = fae(X)€faely) € E;

thusxaye fl(E). Hence( f3cl(E),a) is an S-subspace of
(S1,a). Slmllarly (ft(E), ) is an S-subspace ¢&,c¢).
Sincef is an t-map then fox € ft(E),

faelVI fee (E)(X)] = faelV(X)] = fee(X) € feel fee (E)] € E.

That is, y|fl(E)(X) € T (E). Then y|fel(E) takes
fl(E) into ficl(E) and sicey is an S-map, then
y|feel (E) is also an S-map. Hence The triple!(E) is an
st-space. B

Similarly, fae| f2et (E) and fee| foe' (E) are S-maps take
foer(E) and fl (E ) into E, respectively. Sincdaeoy =
fce, then

fael fag (E) o Vi fee' (E) =
Thatisf|f~*(E)} is an t-map fronmf ~

(faeo V)| fee™(E) = feel foe (E).
LE)into (E,e). O

4 Ty -fibrations

In this section, we introduce the conceptGf-fibration
and study some its basic properties.
Definition 4.1. An t-map f : S(acy) — (O,e) is called an
Ty-fibration if for every an S-spac€Z,u) € x, an S-map
g:(Z,u) = ($,c) and an S-homotopy: (Z,u) — P(O,e)
with Gg = fceog, there exists an S-homotopy: (Z,u) —
P(S1,a) such thaHy = yogandfaeoHy = G; forallt e 1.
For every two S-space$S a) and (O, e), throughout
this paper by%?; we mean the usual first projection map
of Sx O ontoSwhich is also S-map ofSx O,a x e) onto
(Sa). Similarly, we mean by% the usual second
projection map o5x O ontoO.

Example 4.2. For every an st-spac&acy) and an
S-space(O,e), the t-mapf : Sacy) x (O,e) — (0O,e)
which is given by -

f={f1:(Sx0,axe) —(Oe),

f2: (S x0,cxe)— (0,e)}
is anTy-fibration, wherefy(x,r) = r and fa(y,r) =r for
al xe S, ye S, r e O Note that If (Z,u) € x,
g: (Zu — (S x0O,cxe is an S-map, and
G: (Z,u) — P(O,e) is an S-homotopy wittGy = f, 0 g,
define the desired S-homotopy from (Z,u) into
P(S; x O,ax e) by

H(2)(t) = [Y[21(9(2))], G(2) (1)]
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forallze Z,tel.

Theorem 4.5.Let f : S(acy) — (O, e) be anTy-fibration

The following result shows that the the composition of and let (E,e) be an S-subspace qfO,e). Then the

anTy-fibration andSy-fibration will be anTy-fibration.

Theorem 4.3. The composition t-mapf o f of an
Ty-fibration f : S(acy) — (O,e) and an Sy-fibration
f:(0,e) » (O,€) is anTy-fibration.

Proof. Let (Z,u) € x, g: (Z,u) = (S,c) be an S-map
and G : (Z,u) — P(O,€) be an S-homotopy with
Gop = (fofee)og= fo(feeoq). Sincefeeogis an S-map
and f is an Sy-fibration, then there is an S-homotopy
F:(Z,u) — P(O,e) such thaty = fceogandf ok = G;
for all t € 1. Now sincef is anTy-fibration, then there is

an S-homotop¥ : (Z,u) — P(S;,a) such thatHg = yog
and fape o Hi R for all t € I. Then
(fofag)oHi = fo(faeoH) =foR =G foralltel.
Hencef o f : S(acy) — (O, €) is anTy-fibration.

Theorem 4.4.The product

fxf':Sacy) xS(acy)— (0OxO,ex¥)

of two Ty-fibrations f : Slacy) — (O,e)
f':S(acy)— (0,¢€) is anTy-fibration.

Proof. Let (Z,u) € x, 9: (Z,u) = (S x S,,cx /) be an
S-map, andG : (Z,u) — P(O x O,e x €) be an
S-homotopy with Gp = (fee x fly) o g. Define
S-homotopies G! : (Z,u) — P(O,e) and
G® : (Zu) — PO,€) by Gt = 2 0G and
G? = P0G forallt €1, respectively.

For an Ty-fibration f, consider an

P109: (Z,u) — (S,c) and an S-homotop@* with

and

S-map

Gy = 210Gy = P10 |(feex fbg)0g] = feeo (P100).

Then there is an S-homotopy: (Z,u) — P(S;,a) such
thatFy = yo (#104) and faeo R = Gf for all t € 1. For
an Ty-fibration f/, similarly, there is an S-homotogy :
(Z,u) — P(8,&) such thafj = yo (#,00) andfj.oF =
Geforalltel.

Define an S-homotopi : (Z,u) — P(S; x Sj,ax &)
by H =R x F/ for all t € I. Note that

Ho = [yo (Z100)] x [yo (F200)]
= yo[(P10Q) x (P200)] =Yyog
and

fae X f;’e/) 9} Ht = (fae X f;’e’) O (F‘[ X Ft/)
= (faeoR) x (fya oF)
=Gl x G =G
forallt € I. Hencef x f’is anTy-fibration.OJ
In the following theorem, we show that the restriction
t-mapf|f~1(E) of anyT-fibration f : S(acy) — (O,€) on
f~1(E) is anTy-fibration, for every S-subspadg, e) of

(O,e).

restriction t-map f|f~%(E) : f~1(E) — (E,e) is an
Ty -fibration.

Proof. Let (Z,u) € x, g: (Z,u) — (f&X(E),c) be an S-
map ands: (Z,u) — P(E,e) be an S-homotopy witlsg =
feeoQ. Leti: (f1(E),c) — (S,c) andj : (E,e) — (O,€)
be inclusion S-maps. Théfno Gjo = feeo (i0g). Sincef is
anTy-fibration, then there is an S-homotofly: (Z, u) —
P(S1,a) such thatHy = yo (iog) = y| &l (E) ogandfaeo
Hi=[joGi = joG; = G forallt € 1. By the last part, note
thatH (z)(t) € 3l (E) forallze Z,t € 1. That is, we can
consideH as S-homotopy(Z,u) — P(f;}(E),a). Hence
f|f~1(E) is anTy-fibration.OJ

Theorem 4.6.Let f : S(acy) — (O,e) be an t-map. If at
least one of the S-magfge and fce is anSy-fibration then
T is anTy-fibration.

Proof. Firstly, let fae: (S1,a) — (O, e) be anSy-fibration.
Let (Z,u) € x, g: (Z,u) = (S,c) be an S-map an@ :
(Z,u) — P(O,e) is an S-homotopy witlsg = feeog. Then
Gp = feeog = faeo (Yog). Sinceyogis an S-map from
(Z,u) into (St,a) and fae is anSy-fibration, then there is
an S-homotop¥ : (Z,u) — P(S,a) such thatHp = yog
andfaeoHy = Gy for allt € I. Thatisf is anTy-fibration.

The other case, letfee : (S,8) — (O,e) be an
Sy-fibration. Let (Z,u) € x, g: (Z,u) = ($,c) be an
S-map ands : (Z,u) — P(O,e) be an S-homotopy with
Gy = fece o g. Then there is an S-homotopy
F:(Z,u) — P(&,c) such thatp = g andfeeo i = G; for
all't € I. Define an S-homotoph : (Z,u) — P(S,a) by
H =yoF. ThenHy = yoFy = yogand

facoHt = faeo (Yo ) = feeoc R = G

forallt € 1.Thatisf is anTy-fibration.OJ

Let S(acy) be an st-space. If there exists an S-nyap
(S1,a) — (S, ¢) such thatyo y = id thenS(acy) will be
called arextendabldy an S-mayy'.

Theorem 4.7.Let S(acy) be an extendable by an S-map
y'. Then for everyTy-fibration f : S(acy) — (O,e), faeis
anSy-fibration. B

Proof. Let (Z,u) € x, 9: (Z,u) — (S1,a) be an S-map and
G: (Z,u) — P(O,e) be an S-homotopy witksy = faeo 0.
ThenGy = faeog = feeo (Y 0g). Sincey ogis an S-map
from (Z,u) into ($,c) andf is anTy-fibration, then there
is an S-homotop\H : (Z,u) — P(S,a) such thatHy =
yo (Y og) =gandfaeoH; =G forallt € 1. Thatisfaeis
anSy-fibration.O

5 Pullback t-maps

One notable exception is that the pullback of approximate
fibration need not be an approximate fibration. In this
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section, we show that the pullbacks Bf-fibrations are
Ty-fibrations.

Proposition 5.1Let f : S(acy) — (O,e) be an t-map and
k:(O,€)— (O,e)beanS- -map. Then the tripBéacy)x =
{(Sa1, € x @), (Se2, € x ¢), ¥} is an st-space such that

Sa = {(x,9) € O x Si[k(x) = fae(s)},
Se = {(x,5) € O’ x SIk(X) = fee(5)},
andyX(x,s) = (x,y(s)) for all (x,s) € Se.

Proof. Since the mapk and f4e are S-maps, then for all
(Xa S)a (X’,S/) € S(ly

K(x€X) = k(X)ek(X) = fae(S)efae(S) = fae(sas)

Hence (x,s)(€¢ x a)(X,s) = (x€X,sas) € Sq. That is,
(Sa,€ x a) is an S-subspace ofO x S,€ x a).
Similarly, (Se,€ x ¢) is an S-subspace
(0 x $,€ xc).

Note that for all(x, s) € Sc, fae(y(S)) = fee(s) = K(X),
thatis,(x, y(S)) € Sa. Hencey* is a function take§ into
Sq. SinceyX = id x y|Se, thenyX is an S-map. Hence the
triple S(acy)k is an st-spacel

In the last proposition, the st-spaBgacy)y is called a
pullback st-spacef S(acy) induced fromf by k.

of

Let f : S(acy) — (O,e) be an t-map and
k: (O0,) — (O,e) be an S-map. The t-map
K S(acy) — (O, €) which is given byfX = { X ¥} is

called a pullback t-map of f induced by k, where
fk(x,s) = x and f&(x,¢) = x for all (x,8) € S,
(x,9) € Se.
Theorem 5.2.Let f : S(acy) — (O, e) be anTy-fibration
andk: (O',€) — (O,e) be an S-map. Then the pullback
f¥of f induced byk is anTy-fibration.
Proof. Let (Z,u) € x, ¢ : (Z,u) — (Se.€¢ x c) be an
S-map and3' : (Z,u) — P(O/,€) be an S-homotopy with
G, = f&ogd. Define an S-mam : (Z,u) — (S,c) by
9(2) P5(d(2)) and an S-homotopy
G: (Z,u) — P(O,e) by G(z) = ko G/(z) for all z< Z.
Note that
G(2)(0) = (ko G'(2))(0) = k(G'(2)(0)) = K[f&(d(2))]

= k(21(d (7)) = fee( 22(d (7)) = fce(9(2)

for all z€ Z. That is, Gy = feeo g. Since f is an

Ty-fibration, then there is an  S-homotopy
H : (Z,u) — P(S,a) such thatHy = yog and
faeoHi = Gt forallt e1.

Define an S-homotopkl’ : (Z,u) — P(Sq,€ x a) by

( )() [ '(2)(t),H(z)(t)] forall ze Z,t € |. Note that
oH G’ and
H'(2)(0) = [G'(2)(0),H(2)(0)] = [f¢(d (). (9(2))]
= [21(d (), 1(22(9 (2)))]
=Wz ’(Z ), Z2(d(2))]
=Y(d(@)= (V92

for all ze Z. That is, Hy =
Ty-fibration]

y<ogd. Hence f¥ is an

6 Covering homotopy theorem

The main result of this section is a covering homotopy
theorem for st-maps int®y -fibrations. We first have need
of the following two results which are the corresponding
results for a covering homotopy theorem in Hurewicz
fibrations [7].

Theorem 6.1.Let f : S(acy) — (O,e) be anTy-fibration
and letk, K : (Z,u) — P(S,c) be two S-maps. Leiy ~s ky
andf/(;\eok:S fceo k' by S-homotopie§: (Z,u) — P($,¢)
andR: (Z,u) — P[P(O), €], respectively. IRy = feeo Gt
for all t € I, then there exists an S-homotopy (Z,u) —
P[P(S1),a] betweenyok andyo k' such thatry = yo G
andfaeo Rt =Rt forallritel.

Proof. Let

=(Ix{0Hu{o} xhHu(lx{1})clxlI.
For every(r,t) € A, define an S-magg (r,t) >: (Z,u) —

(S,¢) by

for all z € Z. Recall (§], P. 100) that there is a
homeomorphisnm: | x | — | x | taking A ontol x {0}.
By hypothesis, note that for eve(yt) € A,

(feeo < (1,1) >)(2) = Re(2) = (R(2)(N)(1)

for all z e Z. For everyr € I, define an S-map

g : (Zu — (S,c) and an S-homotopy
R :(Z,u) = P(O,e) by g'(z2) =< m~(r,0) > () and
R(2)(t) = (R@(24[m () (Z2[m (1)
forallze Z,t € 1. Note that for every € 1,
R (2)(0) = (R@)(24[m *(r,0)]))(Z2[m*(r,0)])
= (feeo < (21 [m (r,0)],
ZomH(r,0)]) >)(2)
= (feeo < M(r,0)>)(2) = (fee0 0') (2).

Thatis,R) = feeod'. Then for every €1, sincef is anTy-
fibration, there exists an S-homotdgy: (Z,u) — P(S;,a)
such thafy = yod' andfaeo ' = R forallt € 1. Define
an S-homotop¥ : (Z,u)) — P[P(S1),a] by

F Za[m(r

(F@()(1) = Y(2)(Z2[m(r,1)))
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forallze Z,r,t € 1. Note that

(F(2)(r))(0) = F71ImrOl(z) (2
= 710l (z)(0)
<yog”}’1 mrol) (z)
= (yo <m (24 [m(r,0)],
0)>)(2)
= (yo<m {(21[m(r,0)],
P2[m(r,0)]) >)(2)
= (yo <m {(m(r,0)) >
= (yo < (1,0))(2)
= (yok(2)(r)
= ((Yok)(2)(r)
and similarly, (F(2)(r))(1) = ((yoK)(2))(r) for all r €

I, z€ Z. That is,F is an S-homotopy betweepo k and
yok. Also note that

2[m(r,0)])

>)(2)

Fot(2) = (F(2)(0))(t) = F71MOYl(2) (22,[m(0,1)))
EZ1m(r,0)] (2)(0) = (yo g%[m(OI)])(Z)
= (yo <m (21[m(0,1)],0) >)(2)
= (vo <m Y(21[m(0,t)], Z5[m(0,1)]) >>)(2)
= (yo<m }(m(0,1)) >)(2)
= (yo < (0,t) >>)(2) = (yo G)(2)
and
(faeo Fit)(2) = (faeo R (2))(t) = (fanFyl[m(nt)] (2)
(Z2[m(r,t)])
= RNl (2) (25 ]m(r,)])
= {R@(21m {21 m(r,1),
Zam(r,)]}) }
(Z2lm™H{ 24 [m(r,t)], Z[m(r,t)]}])
= {R@(21[m H{m(r,t)}])}
(2 [ -H{m(r,1)}])
= {R(@2)(21[r]) }(P2[r1])
= ( ()())() Rt(2)

forallritel,ze Z. Thatis,Fy = yo Gy andfaeo Rt = Ryt
forallritel. O

Corollary 6.2. Let f : S(acy) — (O, e) be anTy-fibration.
Letk, K : (Z,u) — P(S,c) be S-maps such thks = k; and
feeok = feeoK'. Then there exists S-homotoBy (Z, u) —
P[P(S1),a] betweenyok andyok’ such thaty = yokg =
yokyandfaeo Rt = feeo ks forallrt €1.

Proof. Define an S-homotop : (Z,u) — P($,c) by
G(z)(t) = ko(zy) and define an S-homotopy
R:(Z,u)) — P[P(O),¢g by (R(2)(r))(t) = (feeo kr)(2)

forall r,t €1, z€ Z. Then by using the above theorem,
one can get the desired S-homotdply.

Definition 6.3.Let f : S(acy) — (O,e) andf’: Q(uvu) —
(O,€e) be two t-maps. An st-mag : Q(uvu) — S(acy) is
called an(f, f’)—preservingif faeodya = f/e and the S-
homotopy in the definition ad betweerdygo t andyody,
sayM, can be chosen such thiato M; = f/ forall t € I.

Theorem 6.4.Let f : S(acy) — (O,e) be anTy-fibration

and S(acy) be an extendable by an S-map. Let
d : Quwu) — Sacy) be an stmap and
D : Q(uvu) — P(O,e) be an t-map such tha is an

(f,[DJo)-preserving. Then there exists an st-map
H : Q(uwu) — PSacy) such that [H]p = d,
foH]y = [D], for all r €1, and H is an
(f,D)-preserving.

Proof. Let M : (Q2,v) — P(S,a) be an S-homotopy

between S-mapigly = yodyc andM1 = dygo U. Sinced is
an (f,[D]o)-preserving, thenfae o dya = [DugJo and
facoM; = [Dyelo forall t € I. Then

feeo Ove = faeo (Yo dyc) = faeo Mg = [Dvg]o

and
fceo ()/ o dua)

Since f is an Ty-fibration, then, for the part
[Dugo = feceo (Y o dua), there exists an S-homotopy
H’: (Q1,u) — P(S1,a) such thaHj = yo (Y o dya) = dua
and faeo H/ = [Dy¢r for all r € I. For the part
[Dvglo = feeo dye, similarly, there exists an S-homotopy
H” : (Q,v) — P(S;,a) such thatHj = yody, and
facoH; = [Dyely forallr 1.
First we show that the pair

= faeodya= [Du_e]O-

H = {Hua=H',Hyc =y o H"} : Q(uvi) — PSacy)

is an st-map. Consider the two S—homotop?@s(Hugo U,
Hve: (Q2,V) = P(S,c). We get that

[V o (Huao t)]o = [y o (H op)]o=y o (Hpo 1)

= Y o(duao )
>~ V (yodvc)
y o] HO = HVC

feeo [ © (Huao )]s = feeo (Vo (H{o p))

= (facoH)ou

= [Duglr o 4 = [Dyer

= faeo0 H//

= (faeoy)o Vo H//

= feeo [yoH//]r

= feeo [va]r
for all r € I. Then we can apply Theorem (6.1), take
Z=0Q, k= y (Huao u) andk’ = H\,C Note thalko ~s kg
by an S-homotopys = yoM and fceok— fceok here

(@© 2016 NSP
Natural Sciences Publishing Cor.



Sohag J. Math3, No. 2, 47-55 (2016) www.naturalspublishing.com/Journals.asp NS = 53
we can define an S-homotoBy. (Qz,v) = PIP(S1).al by Gi=y oE? =y o (ye[gudo) = ¥ o (vo [chdo) = Kb,
R =(f ! forallge Qp,r,t €1. Since
(R@M)®) = ( ceok»( ) q o R — [Rochoo 1 — (fewo ) (Gl o ) — ook
Rot(a) = (R(a)(0))(t) = (feeo ko) (a) = (fee© [Hualo)(q)
e (/oK) — (o ) R = [Rhoop = (feeo ) o (yo el = eece,
= [Duelo(q) = (faeoMo(g) and
= (feeo (Vo Mt))(a) = (feeo Gr)(q) Ros = [Rug]oooll = fae0 Eg = (fceo )/) ° Eg = feeo Gs
for all q € Qz,t € 1, then there is an S-homotopy )
F 1 (Q2.V) — P[P(S1), ] betweeryok andyo k' such that for all sr e I. Then there exists an S-homotopy
Fot = Yo Gt and faco Frt = Ry for all r € 1. Then F:(Q,v) = P[P(S),a] betweenyok = [dyg o 4 and
R Yok = yo[dy such thafgs = yo Gs = EQ and
Huao it = Yo (Y o (Huao H)) ~s Yo Hue.
facoFs = Ris = [Rug]roo H= [Rvg]ro
Thatis,H = {Hua, Hv¢} : Q(uvu) — PSacy) is an st-map.
Note thatiHyaloo 4 = duyao H, for al rs € |I. For every r € |, define
K™ (Q2,v) = P(S1),a) by K'(g)(s) = F(q) for all

yo[Hyo = yody, faeo [Hug]r = [Duelr

D] forall r 1. For a preservmg property we get that

faeo [Hua]r - [Du_e]r and

(faeo Frt)(q) = (faeo Frt)(q) =
= (feeo [Hvdr )( )
(fceO )/O (

(faeoH{')(q ): [Dvelr (q)

forallge Qz,r,t € 1. Thatis,H is an(f,D)-preserving]

Theorem 6.5.Let f : S(acy) — (O,e) be anTy-fibration
and S(acy) be an extendable by an S-mgp Letd,d’ :

(feeokr)(a)

Q(uvu) — PSacy) be two st-maps such that there exist an

st-mapg: Q(uvu) — PS(acy) and an t-maR: Q(uvi) —
P[P(0), & with
[glo=[dlo, [gl1=[do, [Rlo=fo

dlr, Ry = fold],

and[g] is an(f, [R]ot)-preserving for alt,t € 1. Then there
exists an st-mapl : Q(uvu) — PPSacy) such that

[Hlot = (gl [H]ro= [d]r, [H]r2 = [d]r,

forallr,t €1, andH is an(f,R)-preserving.

Proof. Since for every € I, [g]t is an(f, [Rot)-preserving,
then there exists an S-homotoRy : (Qo, ) P(S1),a)
between two S-mapE{ = [gual: o 4 and E} = yo [gud:
such thatfaeo EL = [R\,e]Ot and faeo [Qualt = [Ruelor for all
stel. -

First we show that for evenyc I, [d]; is an(f, [R]ro)-
preserving andd’]; is an (f,[Rlr1)-preserving. For an st-

map|[d], in Theorem (6.1), considdr=y’ o ([dug o ),

= (Y oy)o[dud, = (Y oEd)(q)

and(R(q)(r))(s) = ([Rug]ro op)(qg)forallsrel, ge Q.
Note that

Go = )/OEgz Y o ([gualoo 1) = ¥ o ([dualoo p) = ko,

s,r el, qe Qy; note thatk' is homotopy between two
S- mapsK0 = [dualr o 4 and K] = yo [dyr such that

E0 faco KE = [Rvg]ro and faeo [dualr = [Rug]ro for
aII sel.

For an st-mapd’], similarly, for everyr € I, there
exists an S-homotopi (" : (Qz,v) — P(S1),a) between
two S-mapK{ = [d4Jr o 4 andK{ = yo [d,]; such that
KO = ED, faeo Kl = [Reglr1, and faeo [dg)r = [Ruelr1 for
allsel.

LetA= (I x {0})U({0} x U (I x {1}) C I xI. For
every(r,t) € A define an st-majh] ) : Q(uvu) — S(acy)

and an S-homotopyl ™) : (Qz,v) — P(Sl a) by

[d]y t=0; KM t=0;
[gh r=0; and MM ={E' r=0;
[d/rt:]. K/rt:]-,
respectively. Note that for evefy,t) € A
faeo [hua] rt) [Rue]m faeo Mé - [Rvg]n,

for all sel, andM(rt is S-homotopy betweemfl(()”t> =

[Nugl (1) o U andM = Yo [ivf(ry)-

Recall (E], P. 100) that there is a homeomorphism
| x1 —1 x| takingAontol x {0}. For everyr €1, define
an st-maD’ : Q(uvu) — P(O, ) by [D']t = {[D{;g], [Dil}
where h h

[D{Jg]t = [RU:e]yl[m*l(r,t)]yz[mfl(r,t)]
and

[ ve]t

for all t € 1. Consider an st-map’ = [h],, 1,0 and an
S-homotopyN' = MM "(0) we get thatfaeo Nf = [Dilro

for all sel, faeo [hug]mf 1(1,0) = D u_do, and N is an
S-homotopy between Ny = [hualy140) © H  and
Ni = Yo [hvdm14,0)- Thatis, for every €1, an st-magh’
is an (f,[D"]o)-preserving. Then by the Theorem (6.4),
there exist an st-mapl” : Q(uvu) — PSacy) such that

[Rugl 221 m-1(r)) 2510
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HJo=h, fo[H|y = [D; foralltel, andH' is an
(f,D")-preserving.
Hence the desired an st-mbijp: Q(uvu) — PPS{a_c?)
is given by
21 [m(r,
[H]¢ =[H 1[m(rt)]]¢%[m<r’t)]

forallritel. O
Corollary 6.6. Let f : S(acy) — (O, €) be anTy-fibration
and S(acy) be an extendable by an S-map Let d,d’ :

Q(uvu) — PSacy) be two st-maps such that there exists

an st-magg : Q(uvu) — PSacy) with [glo = [d]o, [g]1 =
[d]o, fo[d]y = fo[d] forallr €I, andgis an(f,fo
d)-preserving. Then there exists an st-nkapQ(uvp) —

PPSacy) such that
[ﬂ]Ot = [g]tv [ﬂ]ro = [g]h [ﬂ]rl = [d_/]r

forallr,t €1, andH is an(f, f od)-preserving.
Proof. Define an t-mapR : Q(uvu) — P[P(O),€] by

forallze Z, t € I. Sincef’ is continuous and/2 > 0,
then there existd’ > 0 such that

d(xy) < & = d'(f'(x),f'(y)) < £/2 )
for all x,y € O. For & > 0, sinceFy = f og, then
d[F(2)(0),(fog)(z)] =0< o forall ze Z. And sincef is

an Sy-approximate fibration, then there is an S-homotopy

H : (Zu — P(Sa) such that Hp = g and

d[F(2)(t),(f oH(2))(t)] < &' forallze Z,t € |. From @),

we get

d[(f'oF)(@)(1).[(f'o F)oH(2)](1)] < /2 @)

forallze Z,t € 1. From @) and @), then
dG(@)(1),[(T"o F)oH(2)](1)]

< d[G@)(1),(f'oF)(2)(t)]

+ d[(f"oF(2))(1),[(f"o f) oH](2)(t)]

<g/2+e/2=¢

forallze Z,t € 1. Hencef’o f : (Sa) — (O/,¢) is an

Sy-approximate fibratiori.]
Let f: (S m) — (O,m) be an S-map with compact

[H]t = fo[d]; for all r,t € I. Then by using the above mMmetrizable spaceS and O. Let ds and d, be metric

theorem, one can get the desired st-rhafp]

7 Sy-approximate fibrations

functions onS and O, respectively. Le{Sx O, ) be the
product S-space ofS ) and (O, ). Define a metric
function d((X,y),(X’,y’)) = maX{dS(val)de(yay,)} on
Sx O. It is clear that(¥%(f),m) is an S-subspace of
(Sx O, m), where?(f) = {(s,f(s)) : s€ S} is the graph

In this section, we first give the notion of an approximate of f. For a positive integen > 0, let (4(f)n, M) be an
fibration in homotopy theory for topological semigroups. S-subspace of(S x O, m), where ¢(f), denotes the

Next, we give the relation between tfig. -fibration and
S 4, -approximate fibration.

Definition 7.1. Let (S,a) and (O,e) be S-spaces with
compact metrizable space$ and O. An S-map
f:(Sa)— (O,e) is called arS-approximate fibratiorif
for every S-spacé€Z,u) € x and givene > 0, there exists
0 > 0 such that wheneveg : (Z,u) — (S,a) and
G : (Zu — P(O,e are  S-maps  with

d[G(2)(0),(f 0 g)(2)] < 9, then there is an S-homotopy
H

: (Z,u) — P(Sa) such that Hy =
diG(2)(t),(foH(2))(t)] < eforallze Z,t €.

One easily check that the map: S— O is an
approximate fibration if and only
f: (S m — (O,m) is anS 4, -approximate fibration.
Theorem 7.2. The composition of Sy-approximate
fibrations is ar5,-approximate fibration.
Proof. Let f : (S.a) — (O,e) andf’: (O,e) — (O',¢) be
Sy-approximate fibrations. Let andd’ denote the metrics
on O andO/, respectively. LetZ,u) € x and lete > 0 be
given. Letg: (Z,u) — (S a) andG: (Z,u) — P(O/,€) be
S-maps. Sincé og: (Z,u) — (O,e) is an S-map and’ is
an Sy-approximate fibration, then there exigts> 0 such
that whenever

d'[G(2)(0),[f'o(foQ)|(2)] < &

for all ze Z, then there exists an S-homotdpy (Z,u) —
P(O,e) such thatp = f ogand

dG@(1). ("o F@)(1)] <&/2 1)

g and

if the S-map

(1/n)—neighborhood of%(f) in Sx O. For every
positive integersn > n > 0, define an st-spacé% (yhm)
and an t-magnm: % (Yam) — (O, 11) by

G (Ym) = {(g(f)na ), (4 (f)m, 1), Vnm}
and%:

{fn: (@ (f)n, 1) = (O,1), fm: (Z(f)m, 1) = (O, M)},

whereynm: 4 (f)m — ¢(f)n is an inclusion S-map ant
andfm are S-maps given bfp(s,x) = x and fm(s,X) = X
forall (s,x) € 4(f)n,(S,X) € 4(f)m.

Theorem 7.3.An S-mapf : (S;m) — (O,m) is anS 4 -
approximate fibration if and only if for every a positive
integem > 0, there exists a positive integar> n such that
the t-mapsnm: % (yam) — (O, 1) is anT 4, -fibration.

Proof. Suppose for every a positive integer- 0, there
exists a positive integem > n such that the t-map
Gtom: 95 (Yam) — (O, 1) is anT 4, -fibration. Lete > 0 be
given. Sincef is a continuous function, then I&¥ be
chosen such that i5s € S and ds(s,s) < &', then
do(f(s),f(s)) < €/2. Choose a positive integer > 0
such that ¥n < d&',¢/2. By hypothesis, there exists a
positive integem > n such that¢snm is anT 4, -fibration.

Let 6 = 1/m. Let (Z,m) € 47 be a natural S-space,
g:(Z,m — (S ) bean S-map, an@: (Z,m) — P(O, n)
be an S-homotopy with

do[G(2)(0),(fog)(2)] < &
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for all ze Z. Define an S-maw' : (Z,11) — (4 (f)m, ) [3] D. Coram and F. Duvall, Approximate fibrations and
by d'(2) = (9(2),G(2)(0)) for all ze Z. SinceGg = fmod amovability condition for maps, Pacific J. Maff2, 41-56
and¥;nmis anTy-fibration, there exists an S-homotopy (1977).

z n—) 5 P(%(f)n, ) such thaFo = yamo g = ¢ and fno [4] E.H. Spanier, Algebraic Topology, McGraw-Hill, New
_ ’ - York, (1966).
= G; for allt € . By the last part, we can define an S-
EtomoGt(opw (Z,7) —>yP(S, ) bsH(z) (t)= 21 F (2)(1)] [5] M. Lawson, J. Matthews and T. Porter, The homotopy theory
forallze Z t.e | ’ We getthaF (2)(t) = (H(2)(t) 1G(Z) ) of inverse semigroups, International Journal of Algebra an

. \ Computationl2,755-790 (2002).
SinceF (2)(t) € ¥(f)n, then there exists € S such that [6] R. C. Kirby and L. C. Siebenmann, Foundational Essays On
di(s, f(9)),F(2)(t)] < 1/n. Then

Topological Manifolds, Smoothings, And Triangulations.
Annals of Math. Studies 88, Princeton University Press,

ds(s,H(2)(t)) <1/n< ¥, do(f(5),G(2)(t)) <1/n< g/2, Princeton, NJ, (1977).

) [71W. Hurewicz, On the concept of fiber space, Proc. Nat.
anddo(f(s), f(H(2)(t))) <1/n<€/2;thus Acad. Sci. USA41, 956-961 (1955).
do(G(2)(t), F(H(2)(1)) < do(f(H(2)(1)), T(9)) [8]Z. Cerin, Homotopy theory of topological semigroup,

+ do(£(3),G(2)(1)) < & Topology and its Application$2357-68 (2002).
for all ze Z,t € 1. Hence f is an S -approximate
fibration.

Conversely, suppose thdt is an S 4 -approximate
fibration. Letn be a positive integer. Fae=1/n> 0, let
0 be given in the definition 0§ 4, -approximate fibration.
Sinced/2 > 0 andf is a continuous function, then I&t
be chosen such that §s € S andds(s,s) < &', then
do(f(s), f(s)) < €/2. Choose a positive integen > n,
such that Im< ¢’,8/2.

Now let (Z,m) € 47 be a natural S-space,
g : (Zm — (9(f)m,m be an S-map, and
G: (Z,n) — P(O, ) be an S-homotopy witlsg = fmog.
Define an S-mag' : (Z, ) — (S, M) by ¢'(2) = 21[9(2))
for all ze Z. We get thatg(z) = (g'(2),G(2)(0)) for all
ze Z. Sinceg(z) € 4(f)m, then there exists € S such
thatd((s, f(s)),9(z)] <1/m. Then
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References editor of mathematical journals.

anddy(f(s), f(d'(2))) < 1/m< 3/2; thus

do(f(9'(2)),G(2)(0)) < do(F(d'(2)), F(9))
+ do((9),G(2)(0)) < &

Hence, sincef is an S, -approximate fibration, there
exists an S-homotopy’ : (Z,m) — P(S m) such that
H{ =g andds(G(2)(t), (f oH'(2))(t)) < € forall ze Z,

t € |. Define an S-homotopM : (Z,11) — (¢ (f)n, M) by
H(z)(t) = (H'(2)(t),G(2)(t)) forall ze Z,t € |. Then we
getthatforze Z,t 1,
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