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Abstract: In this paper, existence and unigueness of a global solutocontinuous, non-common and non-linear convection-
coagulation equations are investigated by means of vatemmiques. The method of characteristics (Mizohata, Jl $t®stochastic
methods and Kato-Voigt pertubation (Banasiak et al., 2606 exploited to show that the linear operator (transpoagalation ) is the
infinitesimal generator of a strongly continuous semigrolipen, uniqueness of the solution to the full nonlinear fobfollows by
showing that the coagulation term is globally Lipschitzidi®y addressing the problem of existence and uniquenessg@ombined
coagulation and transport processes.
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1 Motivation and introduction dissolution, cause the exposed surface of particles to
recede, resulting in the loss of mass of the system.
In many branches of natural sciences like biology, Simultaneously, they widen the surface pores of the
ecology, physics, chemistry, engineering, and numerougarticle, causing the loss of connectivity and thus
domains of applied sciences, it is possible to see clusterfragmentation, as the pores join each other, 4€e7[18,
undergoing coagulation (coalescence) process (or it20] and references therein.
inverse, the fragmentation se€lQ[11,15]). Among Various types of coagulation equations have been
concrete examples we count agglutination and splitting ofcomprehensively analyzed in numerous works: The
blood cells, formation and splitting of aerosol droplets, authors in 12,16] only considered growth processes
evolution of phytoplankton aggregates, depolymerization modeled by a first order partial differential operator and
rock fractures and breakage of droplets. The coagulatioshowed existence result for fragmentation-coagulation
kernel can be size and position dependent and newnodel with coagulation kernel taking into account that
particles resulting from the coagulation can be spatiallynot all particles in an aggregate have the same ability to
distributed across the space. Coagulation equations;ombine with particles of other aggregates which results
combined with transport terms (sometime combined within a damped coagulation process. 1, the authors used
fragmentation process), have been used to describe a widgmilar kernels to model the evolution of phytoplankton.
range of phenomena. For instance, in ecology orThe author in 17] exploited the contraction mapping
aquaculture, we have phytoplankton population evolvingprinciple to prove existence and uniqueness results for the
in flowing water. In chemical engineering, the process isnon-autonomous coagulation and multiple-fragmentation
often accompanied by growth or decay of aggregates e.cequation. But transport processes combined with
by surface deposition or dissolution, see, e.@},dr by coagulation or fragmentation in the same model are still
birth or division processes in biological considerations,barely touched in the domain of mathematical and
see, e.g.,, 4,19. We have applications describing abstract analysis. A special and non-common type of
polymerization and polymer degradation, solid drugstransport model is analyzed i®,[?] where the authors
break-up in organisms or in solutions. We also haveproved the existence of the smallest substochastic
external processes such as oxidation, melting, orsemigroup generated by the linear part, consisting of the
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transport operator combined to fragmentation termsthe beginningt(= 0). In the model 1), we assume that
Kinetic-type Models with diffusion were globally the quasi nonlocal coagulation process at a posikon
investigated in 4] and later extended in5], where the  occurs in the following way: Two clusters in a
author showed that the diffusive part does not affect theneighborhood ok coalesce to form a third group which
breach of the conservation laws and very recently3jn [ becomes located at The coefficiend characterizes the
the author investigated equations describingcompetence of aggregates to joint (also called coagulation
fragmentation and coagulation processes with growth opropensity). We define the other terms and elements in the
decay and proved an analogous result. following subsection.

In the present work the model we analyze is presented Because the space variaBlearies in the whole oR3
as follows: In social grouping population, if we define a (unbounded) and since the total number of individuals in a
spatial dynamical system in which locally group-size population is not modified by interactions among groups,
distribution can be estimated, but in which we also allow the following conservation law is supposed to be satisfied:
immigration and emigration from adjacent areas with
different distributions, we obtain the general model gf(t) -0 @)
consisting of transport, direction changing, fragmentati dt -
and coagulation processes describing the dynamics a .
population of, for example, phytoplankton which is a where 7 (t) = [ [ p(t,x,mmdmdx is the total number
spatially explicit group-size distribution model as Remy '
presented in §. We analyze the model consisting of of individuals in the space (or total mass of the ensemble)
transport and coagulation processes with the coagulatiowith the assumption thaty > 0 is the smallest mass/size
part different from the classical one where the kernela monomer can have in the system. Henceforth we assume
k(m,n) is defined as the rate at which particles of mass that for each > 0, the density of groups of siza at the
coalesce with particles of mass and is derived by positionx and timet is the function(x,m) — p(t,x,m)
assuming that the average number of coalescencesken from the Banach space
between particles having mass (im;m+ dm) and those
having mass ir{n;n+dn) is k(m,n) p(t,m)p(t, n)dmdndt
during the time interval(t;t + dt), where p is the
concentrationof particles. In our model, we assume that and‘bg 241. When any subspac®C 27, we will denote
any individual in the populations is viewed as a collectionby S, the subset oB defined asS, = {g € S;g(x,m) >
of joined cells. 0,meR,,xeR3}.

Working in the space.;(R® x R, mdmdy, we will In 27, we define from the right-hand side dff)( the
make use, as irf], of and Friedrichs lemmefl] to show  coagulation expression” given by
that the transport operator generates a stochastic

241 = L1(R® x R, ,mdmdx

dynamical system, with the assumption that the velocity [ pl(x,m) == [€p— Zp](x,m) (3)
field is globally Lipschitz continuous and divergence free.

where
2 Conservativenessin the coagulation process £ 1 ndlyn)plt.en) (m-mi(em-m)p(tym-m)ndy

[€p] (x,m) = Xy, (MX) =2
The model of coagulation dynamics occurring in a moving
process$,9,17] is given by 4)
foranype 21, \ {0},

)

m [ [ nd(y.n)p(ty.n)dndy
r3Mo

% p(t,x,m) = —div(cw(x,m)p(t,x,m)) — d(x, m)p(t,x,m)

m-mg —
f3 J nd(y,n)p(t.y,n)(m—n)d(y,m—n)p(t.,y,m—n)dndy (5(0) - O,
Xy, (M3 B0 -
m [ [ nd(y.n)p(ty.n)dndy and
®r3Mo

p(0,x,m) = p(x,m), ae (x,m eR3xR, [2p] (x,m) = d(x,m)p(x,m). (5)

(1)

where in terms of the mass simeand the positiorx, the
state of the system is characterized at any morhdyt
the particle-mass-position distributign= p(t,x,m), (pis

We assume that no particle of mass< 2my can emerge
as a result of coagulation, thep, is the characteristic

function of the setUp = R® x U = R3 x [2mg, ).

also called thelensityor concentratiorof particles), with  Following [1], we assume that only a part of the
p: R, xR3x (mg,0) — R, . the velocityw = w(x,m) of aggregates has the competence to join. This could for
the transport is supposed to be a known quantityexample be due to the fact that only cells of some species
depending on the size of aggregates and their position have the necessary devices to glue or to attach to others.
X, but independent of. The space variableis supposed The coefficient of competence is a functiaf{x, m)

to vary in the whole of R3. The function p(x,m) depending also on the position of the cluster. We assume
represents the density of groups of simat positionx at  thatd is a positive and bounded function in the sense that
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there are two constants<0 6; and 8, such that for every
x e RS,

610m <d(x,m) < 6ay and ess sup d(x,n) < oo

3% (mg,)
. | _— (6)
with am € R, independent ok and uniform inm.

Proposition 1.The coagulation model described (8) is

formally conservative.

ProofWe aim to show that(2) is satisfies, that is

d7t)=8 [ [ pt,x mmdmdx= [ [ m&p(t,x,m)dmdx= 0.
R3My R3 Mo

By assumption®), we just need to prove that

Sl fomaf 2

//md(xtm)p(t,x,m)dmdx»//nd(xn)p(t‘x.n)dndx
R3Mo R3Mo

p(t.x,n)(m— n)d(xtm—n)p(t,x.m—n)dndx) dmdx=

(7)
Making use of the Fubini integration theorem, we have

S o [ [
L
- fyranwxn L//

- [ [y tan//
_// s | [0

which ends the proof.

p(t,x,n) (mn)d(x,mn)p(t,x,mn)dndx} dmdx
d(x,m-n) p(t,x,mn)dmd% dndx

p(t,x,n dndx} dndx

p(t,x,n)dndx,

p(t,x,n)(m—n)d(x,m—n)p(t,x,m—n)dndx| dmd)\(/

2mp(t,x,m) = M() Xy, (MX) [ frg ™ f(t,y.m—n)f (t,y.n)dndx—md(y, m)p(t,y,m)dndy
which, after basic algebra, leads to:

%p(t,x,m)z[‘gp—gp] (t,x,m) (8)

with ¥ andZ given by @) and 6) respectively.

3 Cauchy problem for the transport operator
iNnA=R3xR,

A\ is endowed with the Lebesgue measdre= dumy =
dmdx Our primary objective in this section is to analyze
the solvability of the transport problem

i p(t,x,m) = —div(w(x,m) p(t,x,m)), 9)

ot

p(O,xm) =p(x,m), mMeR,, xeR?

in the space2.

Furthermore, to simplify the notation we put
= (x,m) € A. With the assumption thab is divergence
free and globally Lipschitz continuous, then
divw(v) := 0 w(v) = 0. To properly study the transport
operator, we consider the functian: A — R3 and 7
the expression appearing on the right-hand side of the
equation 9). Then

The total number of cells in all aggregates that, at timeForv € A andt € R, the Cauchy problem

t, are implicated in the coagulation process is given by:

) =//;nd(x,n)p(t,x,n>dndx,
]R?’

and
md(x, m) p(t,x, m)

M(t)
is the fraction of cells in sizea aggregates and position

f(t,x,m):=

F[p(t,v)] := ~div(w(v) p(t.v)) (10)
= (0 w(v))p(t,v) + w(v) - (Op(t,v)),
which becomes
Fp(t,v)] == w(v)- (Dp(t,v)). (11)
dv
ds= w(t), seR (12)
t(t) =v,

has an unique solution(s) with values inA. Let the
function @ : A x R2 — A be defined by the condition
that for(v,t) € A x R,

s— o(v,t,;s), seR

competent for the coagulation process with respect to the
total population of cells in aggregates prone to join. Inis the unique solution of the Cauchy probled®), We
terms of the quantities introduced so far, we can expressbtain the characteristics of” given by the integral
the time rate of cells forming aggregates of simeand  curves @-parameterized family (t)(p (- with
positionx: t(s) = @(v,t,9), s € R, the only solution of {2). The
Mo function @ possesses many desirable propertE3 44,
M(t,x)XUR(m,x)// f(t,y,m—n)f(t,y,n)dndy 25 that will be relevant for studying the transport
g T operator inZ7. We can take
If coagulation were the only process, the equation

Tp=.9p, with Tp represented byll)
would read: ’

D(7):= {pe 21, Tpe 2}, (13)
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Note that.7 p is understood in the sense of distribution. 4 Coagulation propensity in a moving process

Precisely speaking, if we takg}(A) as the set of the test

functions, eactp € D(.7) if and only if p€ L1(A) and  We consider the coalescence competence operator

there existg € Z7 such that (D,D(2)) defined in B), as a perturbation of the
transport system9j. We obtain the abstract Cauchy

/Egduzfpd-(fw)du:/pw-afdu, (14)  problem
! " " ap(t,v) = 7p(t,v) — Zp(t,v) = Fp(t,v)
p(O,v) = p(v), VEA,

3
w-9&(v) =5 wdi&(v) (15)  where
=

for all & € C3(A), where
(18)

F=7-D. (19)

with @ = ;(v), the j*" component of the velocitio(V).  Remark(F,D(F)) = (7 — 2,D(7)) is a well defined

The middle term in 14) exists asw is globally Lipschitz  gperator.
continuous, and the last equality follows as is

divergence-free. If this is the case, we defifip = g. Recall that7 is an unbounded operator then, to show the
Now we prove that the operatof is the generator of a remark, we need to characterize the domaif ef .7 — D,
stochastic semigroup ofi; so, let us prove thd(.7)ND(Z) = D(F). Firstly we note

thatD(.7)ND(2) = D(.7) sinceD(2) = 21.

Theorem 1. If the function w is globally Lipschitz (i): To prove D(2) 2 D(F), we are going to show

continuous and divergence-free, then the operatorthatthedomain of/ is at least that oF.

(D(7),.7) defined by 13) is the generator of a strongly ; e :
continuious stochastic semigro(.; (t) )=, given by Because.7 is conservative, mtsgrauon ofl®) over A

[G7(t)pl(V) = p(@(V;t,0)) (16)
for any pe 21 andt> 0.

gves bl = & [ [mptxmdmdx
R

[ fd(xmmpxmdmdx Hence 6) leads to

R30
ProofThe proof of this theorem is fully detailed i®,[ - J J6:cmmp(xmdmdxs - [/ d(xmmp(x mdmdxs — [ 6ommplx, mdmdx
Theorem 2]. for all p e (21); and using Gronwall’s inequality, we

RemarkThe previous theorem allows us show that the obtain

model Q) is conservative in the spac#i, that is, the law d
(2) is satisfied. In fact the semigroup generated by the —620m|[pll2 < aHleS —610m| pll1,
operator is stochastic, then we have
then
0= /9pdu, for all pe D(.7), then (17) ) )
A e % p|l < [|plls < & %™ p|a.

2 This inequality forp = Gg (t)p yields
0://m<7p(t,x,m)dmdx for allt > 0, a yiom FHPY
R3 0 e %M p|ly < Ge(t)pla <& % pl1  (20)

which leads to wherep € (C2(A)). C D(F).. If we take 0< § € 23

d d « then we can use approximations to the identity
d—f(t) T //mp(t,x,m)dmdx (mollifiers) we(v) = Cew(v/€) where w is a Cg(A)
t t 30 function defined by
o w(v) = { SXP(M%J :Z: m i 1 andC, are constants chosen so that. (v)dx= 1.
- //mdtp(t,x,m)dmdx Using the mollification ofp by taking the convolution
R3 0
7 3, 1= 0v—wd:/owv—d,21
[ 7ot momas B A/p( 91y = | Bl y)dby 21
R3 0
=0. we obtain p, in 21 (since p € 2i1) and

o} . 0 . o] .
This is an expected result since the flow process alone doe? = EL”E)+ Pe in 2. Moreover,p; are also nonnegative

not modify the total number of individuals in the system. py (21) since 0< r‘j and the fami|y(pog)£ CCE(A). This
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shows that any non-negative taken in 27 can be forpe 23iandt>0, where(Gz (t))i>o is defined by16).
approximated by a sequence of non-negative functions o
Cg(A). The inequality 20) is therefore valid for any
nonnegatlvep € Z1. Using the fact that any arbitrary
elementg of 271 (equipped with the pointwise order
almost everywhere) can be written in the form 5 Glgobal solution for the full model

g = g+ d_ ., where g+, g e (Z1)+, the positive

element approachg[26] allows us to extend the right The coagulation process appearing in a moving medium
inequality of @0) to all 27 so as to have mathematically reads as:

IGF (t)pllx < e[ p)|1. (22) ap(t,x;m) = .7 p(t,x,m) — Zp(t,x,m) + Zp(t,x,m)

Using the semigroup representation of the resolvent, we  p(0,x,m) = po(x, m), ae (xm ecR3xR,
obtain forA >0

fn the next section, we use the non-linear perturbation to
analyze the full modell).

where ¢, given by @), is defined on the set

[oe]

B 21+ ={g€ 27 : 9> 0}. We recall that¢'(0) = 0. We
[R(A,F)pll1 < /e A|Gr () p|dt need the following lemma:
Ow Lemma1.The operatoré satisfies a global Lipschitz
condition on the sef?7 . .
0 ProofWe set:
Wh(x,m) = md(x,mh(x,m) and a(h)= [ [ %¥h(x,m)dmdx
—= /\ +6 a Hle R3Mo
1¥m Thanks to 6) we also set
By the right inequality of §), we obtain that J = eSSSURS,, (o) d(X, 1) < 0.
6am 6, RemarkWe note that for every
I7RAF)plla < 5= Glam”pnl < g_alHl’ he 21, \{0} c 21, = D(2), the operator satisfies
sinceanm is uniform inm. This last relation means that the M =/ #ntcmdmedx= ' mdocmh(x m)dmdx= [ Zhls < [l < .

domain of7 is at least that oF and thenD(Z) 2D(F). | terms@ anda the operato#’ takes the expression
(i): Next we proveD(.7) 2 D(F).

Becaused- = .7 — 2 and 7 is bounded, we exploit the Zhix.m) — (WhxWh)(m)
following relation for resolvent in?7 : (x, )_XUR( /X) ma(h)

Al—F=A1—-7+9RA.F)(Al -F) whereh ¢ 27, \ {0} and
| = (Al = 7)R(A,F) + ZR(A,F) e
R(A,.7)=R(A,F)+R(A,.7)ZR(A,F) (WhxW¥h)(m // h(x, n)¥h(x,m—n)dndx
R(AF)=R(A, 7)1 — ZR(A,F))
for every m € R,. This leads toD(.7) D D(F) and L€t do be a function fixed in.2y; \ {0}. We set

thereforeD(F) € D(.7)ND(2). K = a(go)® 1. Let g be any function from27, \ {0}
such that|g—go||1 < k. Then
(III) Finally, we showD(ﬂ) N D(@) - D(F). a(g) _ a(go) + a(g— gO) < 20(90)' (24)

If pe D(7)ND(2) then||.7p|j1 < and||Zp||1 < .

Therefore Making use of the linearity otx and properties of the
convolutionx we have the following:
1 7p=2pl1< [T pl1+[Zpll1 < o, oxm —oglm
meaning thap € D(F) and thusD(7)ND(Z) C D(F). = g g IR0y g (PLWI oy (400 BN
Hence, D(7) N D(2) = D(F) and the remark is _ (“ovomioe-o . ¥orw ¥a slm
R ma(go)a(g) Ug ma(gdp)

completed.
The assumption 6) implies that the operatorz It follows that
generates &p-semigroup of contractiong§Gy (t))i>o,

00

which yields the following theoren®] Theorem 5]. Ol(lgo—g\)//(‘VQ* #g)(m)dmdx
Theorem 2.The operator(F,D(F)) is the infinitesimal ||¢g—%goll1 < oo
generator of a substochastic semigrouiGe (t))i=o ) a(go)a(g)
defined b
e ] [ [#(0+ 80« 9(0- go)l () dmax
Grp) = | m_ (65 (3)6s (3)] | ) @3 2 - @)
(@© 2015 NSP

Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

2738

E. F. D. Goufo, S. C. O. Noutchie: Global Solvability of a Gonbus and Restricted...

By the Remarls we have

//ﬂ?('-ﬂg*'-ﬂg)(m)dmdx:
Rr3 M

o 2
L/ / <WQ><m>dmdx} = (a(@)?< 9| <=,
3my

and

[ [ %(g+g0)+[%(g- go)l}(m)dmdx= a(lg— goa(go + ).
R3 Mo

Therefore using again the linearity afand applying 24)
yield

a(go+g)a(lg—gol)
a(go)

a(ga(lgo—9gl)
a(go)

<5a(|lgo—9|)

< 58]lg— goll1-

Next we prove that the later inequality is valid for all
h,g € 211\ {0}. Let us fixh,g in 27+ \ {0} and let
hh = (1 —-t)h+tg for t € [0,1]. Since the function
t — a(h) is continuous andr (h) > O for eacht € [0,1]
we have infa(h) > 0. Letk = 9 tinfya(hy). Then(26)
yields

| hs— €ht|l1 < 59||lhs—h||1 provided that |hs—h||1 <K.
Let n be an integer such that > ||h— g||1/K and let
ti=i/nfori=0,1,...,n Then|h, —h ,|l1 <k and
then:

69— %€goll1 <

(26)

n
[€h—2g|l1 < _le\cfhn —Chy 4l
i=

- (27)
<58 ) |y —hy_ ll1
2,/
=53||h—g|,
where we used the fact thag —h, , = M for any

i = 0,1,...,n. Furthermore by (7) and Remark5,
159~ 0] = [€gll < | | md(x,m)g(x,m)dmdx <
R3 Mo

9 1|g]|1 for anyg € £1.. This concludes that the operator
% is continuous at 0. Therefore inequalit®7) passes to
the limit ath = 0 org = 0, which concludes the proof.

Theorem 3.Let pc D(F)n 23, the Cauchy problem

du
S0 = i[p(t)] +€[p(t)] (28)
p‘tzo =p,

has a global unique solution.

ProofFirst we recall that the solutiop of (28) is the
unique solution of the integral equation

p) = e (Vpo+ [ Ge(t-5/%[p(s]ds 20, (29)

where (Ge(t) >0 is the semigroup generated by the
operatoiF given in 23). We consider

¥ =C([0,ta], 21+)
and its norm
19l :=max{[|g(t)[1: 0<t<ti}.
furthermore, we let
=:={ge# : g(t) € B(po,r1) N 21+ Yt € [0, 4]},

with r; € R;. Now we define# on = as the mapping
t
(G (t) = Ge(t)f + /0 Gr(t—9)%[g(s)]ds 0<t <t

Then.Z(Z) Cc % and(.#g)(t) € 21+ for all t € [0,t3].

The proof of the existence of a unique solutipre = to

the equationp = .# p follows in the standard way2p,
Theorem 6.1.2] sincé7, is a complete metric space as a
closed subspace of a Banach space. Consequently the
integral equation (29) has a unique solution

p € C([0,t1], 21+). The existence of a global strong
solution to problem(28) immediately follows from the

fact that% is globally Lipschitz, as shown in the Lemma

1

6 Concluding Remarks

In this article, we used the theory of strongly continuous

semigroups of operators 22] to analyze the
well-posedness and show existence result of an
integro-differential equation modelling

convection-coagulation processes. This work generalizes
the preceding ones with the inclusion of the spatial
transportation kernel which was not considered before.
We proved that the full model with combined
coagulation-transport operator has global unique saiutio
thereby addressing the problem of existence of solutions
for this model. This may help us analyze in the same way
a model with combined
coagulation-fragmentation-transport-direction  chaggi
whose the full identification of the generator and
characterization of its domain remain an open problem.
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