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Abstract: In this paper, existence and uniqueness of a global solutionto continuous, non-common and non-linear convection-
coagulation equations are investigated by means of varioustechniques. The method of characteristics (Mizohata, 1973), substochastic
methods and Kato-Voigt pertubation (Banasiak et al., 2006)are exploited to show that the linear operator (transport-coagulation ) is the
infinitesimal generator of a strongly continuous semigroup. Then, uniqueness of the solution to the full nonlinear problem follows by
showing that the coagulation term is globally Lipschitz, hereby addressing the problem of existence and uniqueness forthe combined
coagulation and transport processes.
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1 Motivation and introduction

In many branches of natural sciences like biology,
ecology, physics, chemistry, engineering, and numerous
domains of applied sciences, it is possible to see clusters
undergoing coagulation (coalescence) process (or its
inverse, the fragmentation see [10,11,15]). Among
concrete examples we count agglutination and splitting of
blood cells, formation and splitting of aerosol droplets,
evolution of phytoplankton aggregates, depolymerization,
rock fractures and breakage of droplets. The coagulation
kernel can be size and position dependent and new
particles resulting from the coagulation can be spatially
distributed across the space. Coagulation equations,
combined with transport terms (sometime combined with
fragmentation process), have been used to describe a wide
range of phenomena. For instance, in ecology or
aquaculture, we have phytoplankton population evolving
in flowing water. In chemical engineering, the process is
often accompanied by growth or decay of aggregates e.g.
by surface deposition or dissolution, see, e.g., [7] or by
birth or division processes in biological considerations,
see, e.g., [2,19]. We have applications describing
polymerization and polymer degradation, solid drugs
break-up in organisms or in solutions. We also have
external processes such as oxidation, melting, or

dissolution, cause the exposed surface of particles to
recede, resulting in the loss of mass of the system.
Simultaneously, they widen the surface pores of the
particle, causing the loss of connectivity and thus
fragmentation, as the pores join each other, see [14,7,18,
20] and references therein.

Various types of coagulation equations have been
comprehensively analyzed in numerous works: The
authors in [12,16] only considered growth processes
modeled by a first order partial differential operator and
showed existence result for fragmentation-coagulation
model with coagulation kernel taking into account that
not all particles in an aggregate have the same ability to
combine with particles of other aggregates which results
in a damped coagulation process. In [1], the authors used
similar kernels to model the evolution of phytoplankton.
The author in [17] exploited the contraction mapping
principle to prove existence and uniqueness results for the
non-autonomous coagulation and multiple-fragmentation
equation. But transport processes combined with
coagulation or fragmentation in the same model are still
barely touched in the domain of mathematical and
abstract analysis. A special and non-common type of
transport model is analyzed in [9,?] where the authors
proved the existence of the smallest substochastic
semigroup generated by the linear part, consisting of the
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transport operator combined to fragmentation terms.
Kinetic-type Models with diffusion were globally
investigated in [4] and later extended in [5], where the
author showed that the diffusive part does not affect the
breach of the conservation laws and very recently, in [3],
the author investigated equations describing
fragmentation and coagulation processes with growth or
decay and proved an analogous result.

In the present work the model we analyze is presented
as follows: In social grouping population, if we define a
spatial dynamical system in which locally group-size
distribution can be estimated, but in which we also allow
immigration and emigration from adjacent areas with
different distributions, we obtain the general model
consisting of transport, direction changing, fragmentation
and coagulation processes describing the dynamics a
population of, for example, phytoplankton which is a
spatially explicit group-size distribution model as
presented in [8]. We analyze the model consisting of
transport and coagulation processes with the coagulation
part different from the classical one where the kernel
k(m,n) is defined as the rate at which particles of massm
coalesce with particles of massn and is derived by
assuming that the average number of coalescences
between particles having mass in(m;m+ dm) and those
having mass in(n;n+dn) is k(m,n)p(t,m)p(t,n)dmdndt
during the time interval(t; t + dt), where p is the
concentrationof particles. In our model, we assume that
any individual in the populations is viewed as a collection
of joined cells.

Working in the spaceL1(R
3 ×R+,mdmdx), we will

make use, as in [9], of and Friedrichs lemma [21] to show
that the transport operator generates a stochastic
dynamical system, with the assumption that the velocity
field is globally Lipschitz continuous and divergence free.

2 Conservativeness in the coagulation process

The model of coagulation dynamics occurring in a moving
process [8,9,12] is given by



























∂
∂ t p(t,x,m) =−div(ω(x,m)p(t,x,m))−d(x,m)p(t,x,m)

+χUR
(m,x)

∫

R3

m−m0
∫

m0
nd(y,n)p(t,y,n)(m−n)d(y,m−n)p(t,y,m−n)dndy

m
∫

R3

∞
∫

m0
ηd(y,η)p(t,y,η)dηdy

p(0,x,m) = p
o
(x,m), a.e. (x,m) ∈ R

3×R+

(1)
where in terms of the mass sizem and the positionx, the
state of the system is characterized at any momentt by
the particle-mass-position distributionp= p(t,x,m), (p is
also called thedensityor concentrationof particles), with
p : R+×R

3× (m0,∞)→R+. the velocityω = ω(x,m) of
the transport is supposed to be a known quantity,
depending on the sizem of aggregates and their position
x, but independent oft. The space variablex is supposed
to vary in the whole ofR3. The function p

o
(x,m)

represents the density of groups of sizem at positionx at

the beginning (t = 0). In the model (1), we assume that
the quasi nonlocal coagulation process at a positionx
occurs in the following way: Two clusters in a
neighborhood ofx coalesce to form a third group which
becomes located atx. The coefficientd characterizes the
competence of aggregates to joint (also called coagulation
propensity). We define the other terms and elements in the
following subsection.

Because the space variablex varies in the whole ofR3

(unbounded) and since the total number of individuals in a
population is not modified by interactions among groups,
the following conservation law is supposed to be satisfied:

d
dt

I (t) = 0, (2)

whereI (t) =
∫

R3

∞
∫

m0

p(t,x,m)mdmdx, is the total number

of individuals in the space (or total mass of the ensemble)
with the assumption thatm0 > 0 is the smallest mass/size
a monomer can have in the system. Henceforth we assume
that for eacht > 0, the density of groups of sizem at the
positionx and timet is the function(x,m) −→ p(t,x,m)
taken from the Banach space

X1 := L1(R
3×R+,mdmdx)

andp
o
∈ X1. When any subspaceS⊆ X1, we will denote

by S+ the subset ofS defined asS+ = {g ∈ S;g(x,m) ≥
0,m∈ R+,x∈ R

3}.
In X1, we define from the right-hand side of (1), the

coagulation expressionN given by

[N p](x,m) := [C p−D p](x,m) (3)

where

[C p] (x,m) = χUR
(m,x)

∫

R3

m−m0
∫

m0
nd(y,n)p(t,y,n)(m−n)d(y,m−n)p(t,y,m−n)dndy

m
∫

R3

∞
∫

m0
ηd(y,η)p(t,y,η)dηdy

,

(4)
for any p∈ X1+ \ {0},

C (0) = 0,

and
[D p] (x,m) = d(x,m)p(x,m). (5)

We assume that no particle of massm< 2m0 can emerge
as a result of coagulation, thenχUR

is the characteristic

function of the setUR = R
3 × U = R

3 × [2m0,∞).
Following [1], we assume that only a part of the
aggregates has the competence to join. This could for
example be due to the fact that only cells of some species
have the necessary devices to glue or to attach to others.
The coefficient of competence is a functiond(x,m)
depending also on the position of the cluster. We assume
thatd is a positive and bounded function in the sense that
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there are two constants 0< θ1 andθ2 such that for every
x∈R

3,

θ1αm ≤ d(x,m)≤ θ2αm and ess sup
R3×(m0,∞)

d(x,n)< ∞,

(6)
with αm ∈R+, independent ofx and uniform inm.

Proposition 1.The coagulation model described by(3) is
formally conservative.

Proof.We aim to show that(2) is satisfies, that is
d
dt I (t) = d

dt

∫

R3

∞
∫

m0

p(t,x,m)mdmdx=
∫

R3

∞
∫

m0

m ∂
∂ t p(t,x,m)dmdx= 0.

By assumption (6), we just need to prove that

∫

R3

∫ ∞

m0



χUR
(m,x)

∫

R3

∫ m−m0

m0

nd(x,n)p(t,x,n)(m−n)d(x,m−n)p(t,x,m−n)dndx



dmdx=

∫

R3

∞
∫

m0

md(x,m)p(t,x,m)dmdx·
∫

R3

∞
∫

m0

ηd(x,η)p(t,x,η)dηdx.

(7)
Making use of the Fubini integration theorem, we have

∫

R3

∫ ∞

m0



χUR
(m,x)

∫

R3

∫ m−m0

m0

nd(x,n)p(t,x,n)(m−n)d(x,m−n)p(t,x,m−n)dndx



dmdx

=

∫

R3

∫ ∞

2m0





∫

R3

∫ m−m0

m0

nd(x,n)p(t,x,n)(m−n)d(x,m−n)p(t,x,m−n)dndx



dmdx

=

∫

R3

∫ ∞

m0

nd(x,n)p(t,x,n)





∫

R3

∫ ∞

n+m0

(m−n)d(x,m−n)p(t,x,m−n)dmdx



dndx

=

∫

R3

∫ ∞

m0

nd(x,n)p(t,x,n)





∫

R3

∫ ∞

m0

(η)d(x,η)p(t,x,η)dηdx



dndx

=
∫

R3

∫ ∞

m0

nd(x,n)p(t,x,n)dndx×
∫

R3

∫ ∞

m0

(η)d(x,η)p(t,x,η)dηdx,

which ends the proof.

The total number of cells in all aggregates that, at time
t, are implicated in the coagulation process is given by:

M(t) :=
∫

R3

∫ ∞

m0

ηd(x,η)p(t,x,η)dηdx,

and

f (t,x,m) :=
md(x,m)p(t,x,m)

M(t)

is the fraction of cells in size-m aggregates and positionx
competent for the coagulation process with respect to the
total population of cells in aggregates prone to join. In
terms of the quantities introduced so far, we can express
the time rate of cells forming aggregates of sizem and
positionx:

M(t,x)χU
R
(m,x)

∫

R3

∫ m−m0

m0

f (t,y,m−n) f (t,y,n)dndy,

If coagulation were the only process, the equation
would read:

∂
∂ t mp(t,x,m) = M(t)χUR

(m,x)
∫

R3

∫ m−m0
m0

f (t,y,m−n) f (t,y,n)dndx−md(y,m)p(t,y,m)dndy,

which, after basic algebra, leads to:

∂
∂ t

p(t,x,m) = [C p−D p](t,x,m) (8)

with C andD given by (4) and (5) respectively.

3 Cauchy problem for the transport operator
in Λ = R

3×R+

Λ is endowed with the Lebesgue measuredµ = dµm,x =
dmdx. Our primary objective in this section is to analyze
the solvability of the transport problem

∂
∂ t

p(t,x,m) =−div(ω(x,m) p(t,x,m)), (9)

p(0,x,m) = p
o
(x,m), m∈R+, x∈ R

3

in the spaceX1.
Furthermore, to simplify the notation we put

v = (x,m) ∈ Λ . With the assumption thatω is divergence
free and globally Lipschitz continuous, then
divω(v) := ∇ ·ω(v) = 0. To properly study the transport
operator, we consider the functionω : Λ −→ R

3 and T̃

the expression appearing on the right-hand side of the
equation (9). Then

T̃ [p(t,v)] :=−div(ω(v) p(t,v))
= (∇ ·ω(v))p(t,v)+ω(v) · (∇p(t,v)),

(10)

which becomes

T̃ [p(t,v)] := ω(v) · (∇p(t,v)). (11)

For v ∈ Λ andt ∈ R, the Cauchy problem

dr
ds

= ω(r), s∈ R

r(t) = v,
(12)

has an unique solutionr(s) with values inΛ . Let the
function φ : Λ ×R

2 −→ Λ be defined by the condition
that for(v, t) ∈ Λ ×R,

s−→ φ(v, t,s), s∈ R

is the unique solution of the Cauchy problem (12). We
obtain the characteristics ofT̃ given by the integral
curves φ -parameterized family (r)φ ( with
r(s) = φ(v, t,s), s ∈ R, the only solution of (12)). The
function φ possesses many desirable properties [13,24,
25] that will be relevant for studying the transport
operator inX1. We can take

T p= T̃ p, with T̃ p represented by(11)

D(T ) := {p∈ X1, T p∈ X1},
. (13)
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Note thatT p is understood in the sense of distribution.
Precisely speaking, if we takeC1

0(Λ) as the set of the test
functions, eachp ∈ D(T ) if and only if p ∈ L1(Λ) and
there existsg∈ X1 such that

∫

Λ

ξ gdµ =
∫

Λ

p∂ · (ξ ω)dµ =
∫

Λ

pω ·∂ ξ dµ , (14)

for all ξ ∈C1
0(Λ), where

ω ·∂ξ (v) :=
3

∑
j=1

ω j∂ jξ (v) (15)

with ω j = ω j(v), the j th component of the velocityω(v).
The middle term in (14) exists asω is globally Lipschitz
continuous, and the last equality follows asω is
divergence-free. If this is the case, we defineT p= g.
Now we prove that the operatorT is the generator of a
stochastic semigroup onX1

Theorem 1. If the function ω is globally Lipschitz
continuous and divergence-free, then the operator
(D(T ),T ) defined by (13) is the generator of a strongly
continuous stochastic semigroup(GT (t))t≥0, given by

[GT (t)p] (v) = p(φ(v, t,0)) (16)

for any p∈ X1 and t> 0.

Proof.The proof of this theorem is fully detailed in [9,
Theorem 2].

Remark.The previous theorem allows us show that the
model (9) is conservative in the spaceX1, that is, the law
(2) is satisfied. In fact the semigroup generated by the
operatorT is stochastic, then we have

0 =
∫

Λ

T pdµ , for all p∈ D(T ), then (17)

0 =

∫

R3

∞
∫

0

mT p(t,x,m)dmdx, for all t ≥ 0,

which leads to

d
dt

I (t) =
d
dt





∫

R3

∞
∫

0

mp(t,x,m)dmdx





=

∫

R3

∞
∫

0

m∂t p(t,x,m)dmdx

=

∫

R3

∞
∫

0

mT p(t,x,m)dmdx

= 0.

This is an expected result since the flow process alone does
not modify the total number of individuals in the system.

4 Coagulation propensity in a moving process

We consider the coalescence competence operator
(D,D(D)) defined in (5), as a perturbation of the
transport system (9). We obtain the abstract Cauchy
problem

∂t p(t,v) = T p(t,v)−D p(t,v) = F p(t,v)

p(0,v) = p
o
(v), v ∈ Λ ,

(18)
where

F = T −D. (19)

Remark.(F,D(F)) = (T − D ,D(T )) is a well defined
operator.

Recall thatT is an unbounded operator then, to show the
remark, we need to characterize the domain ofF =T −D,
so, let us prove thatD(T )∩D(D) =D(F). Firstly we note
thatD(T )∩D(D) = D(T ) sinceD(D) = X1.

(i): To prove D(D) ⊇ D(F), we are going to show
that the domain ofD is at least that ofF.
BecauseT is conservative, integration of (18) over Λ

gives d
dt‖p‖1 = d

dt

∫

R3

∞
∫

0
mp(t,x,m)dmdx =

−
∫

R3

∞
∫

0
d(x,m)mp(x,m)dmdx. Hence (6) leads to

−
∫

R3

∞
∫

0
θ2αmmp(x,m)dmdx≤−

∫

R3

∞
∫

0
d(x,m)mp(x,m)dmdx≤−

∫

R3

∞
∫

0
θ1αmmp(x,m)dmdx

for all p ∈ (X1)+ and using Gronwall’s inequality, we
obtain

−θ2αm‖p‖1 ≤
d
dt
‖p‖1 ≤−θ1αm‖p‖1,

then

e−θ2αmt‖p
o
‖1 ≤ ‖p‖1 ≤ e−θ1αmt‖p

o
‖1.

This inequality forp= GF(t)p
o

yields

e−θ2αmt‖p
o
‖1 ≤ ‖GF(t)p

o
‖1 ≤ e−θ1αmt‖p

o
‖1 (20)

wherep
o
∈ (C∞

0 (Λ))+ ⊆ D(F)+. If we take 0≤ p
o
∈ X1

then we can use approximations to the identity
(mollifiers) ϖε(v) = Cε ϖ(v/ε) where ϖ is a C∞

0 (Λ)
function defined by

ϖ(v) =

{

exp
(

1
|v|2−1

)

for |v|< 1

0 for |v| ≥ 1
andCε are constants chosen so that

∫

Λ
ϖε (v)dx= 1.

Using the mollification ofp
o

by taking the convolution

p
o

ε :=
∫

Λ

p
o
(v−y)ϖε(y)dµy =

∫

Λ

p
o
(y)ϖε(v−y)dµy, (21)

we obtain p
o

ε in X1 (since p
o

∈ X1) and
p
o
= lim

ε−→0+
p
o

ε in X1. Moreover,p
o

ε are also nonnegative

by (21) since 0≤ p
o
, and the family(p

o

ε)ε ⊆C∞
0 (Λ). This
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shows that any non-negativep
o

taken in X1 can be
approximated by a sequence of non-negative functions of
C∞

0 (Λ). The inequality (20) is therefore valid for any
nonnegativep

o
∈ X1. Using the fact that any arbitrary

elementg
o

of X1 (equipped with the pointwise order
almost everywhere) can be written in the form
g
o
= g

o

+ − g
o

−, where g
o

+, g
o

− ∈ (X1)+, the positive
element approach, [6,26] allows us to extend the right
inequality of (20) to all X1 so as to have

‖GF(t)p‖1 ≤ e−θ1αmt‖p‖1. (22)

Using the semigroup representation of the resolvent, we
obtain forλ > 0

‖R(λ ,F)p‖1 ≤

∞
∫

0

e−λ t‖GF(t)p‖1dt

≤

∞
∫

0

e−λ te−θ1αmt‖p‖1dt

≤
1

λ +θ1αm
‖p‖1.

By the right inequality of (6), we obtain that

‖DR(λ ,F)p‖1 ≤
θ2αm

λ +θ1αm
‖p‖1 ≤

θ2

θ1
‖p‖1,

sinceαm is uniform inm. This last relation means that the
domain ofD is at least that ofF and then,D(D)⊇ D(F).

(ii): Next we proveD(T )⊇ D(F).
BecauseF = T −D andD is bounded, we exploit the
following relation for resolvent inX1 :

λ I −F = λ I −T +DR(λ ,F)(λ I −F)

I = (λ I −T )R(λ ,F)+DR(λ ,F)
R(λ ,T ) = R(λ ,F)+R(λ ,T )DR(λ ,F)

R(λ ,F) = R(λ ,T )(I −DR(λ ,F))

for every m ∈ R+. This leads toD(T ) ⊇ D(F) and
thereforeD(F)⊆ D(T )∩D(D).

(iii): Finally, we showD(T )∩D(D)⊆ D(F).
If p ∈ D(T )∩D(D) then‖T p‖1 < ∞ and‖D p‖1 < ∞.
Therefore

‖T p−D p‖1 ≤ ‖T p‖1+ ‖D p‖1 < ∞,

meaning thatp ∈ D(F) and thusD(T )∩D(D) ⊆ D(F).
Hence, D(T ) ∩ D(D) = D(F) and the remark is
completed.

The assumption (6) implies that the operatorD
generates aC0-semigroup of contractions(GD (t))t≥0,
which yields the following theorem [9, Theorem 5].

Theorem 2.The operator(F,D(F)) is the infinitesimal
generator of a substochastic semigroup(GF(t))t≥0
defined by

[GF(t)p] (v) =
[

lim
v−→∞

[

GT

( t
v

)

GD

( t
v

)]v
p

]

(v) (23)

for p∈X1 and t> 0, where(GT (t))t≥0 is defined by (16).

In the next section, we use the non-linear perturbation to
analyze the full model (1).

5 Global solution for the full model

The coagulation process appearing in a moving medium
mathematically reads as:

∂t p(t,x,m) = T p(t,x,m)−D p(t,x,m)+C p(t,x,m)

p(0,x,m) = p
o
(x,m), a.e. (x,m) ∈ R

3×R+

where C , given by (4), is defined on the set
X1+ = {g ∈ X1 : g ≥ 0}. We recall thatC (0) = 0. We
need the following lemma:

Lemma 1.The operatorC satisfies a global Lipschitz
condition on the setX1+.

Proof.We set:

Ψh(x,m) = md(x,m)h(x,m) and α(h) =
∫

R3

∞
∫

m0

Ψh(x,m)dmdx.

Thanks to (6) we also set
ϑ = esssup

R3×(m0,∞)d(x,n)< ∞.

Remark.We note that for every
h ∈ X1+ \ {0} ⊂ X1+ = D(D), the operatorα satisfies
α(h) =

∫

R3

∞
∫

m0

Ψh(x,m)dmdx=
∫

R3

∞
∫

m0

md(x,m)h(x,m)dmdx= ‖Dh‖1 ≤ ϑ‖h‖1 < ∞.

In termsΨ andα the operatorC takes the expression

C h(x,m) = χUR
(m,x)

(Ψh∗Ψh)(m)

mα(h)
,

whereh∈ X1+ \ {0} and

(Ψh∗Ψh)(m) :=
∫

R3

∫ m−m0

m0

Ψh(x,n)Ψh(x,m−n)dndx.

Let g0 be a function fixed inX1+ \ {0}. We set
κ := α(g0)ϑ−1. Let g be any function fromX1+ \ {0}
such that‖g−g0‖1 ≤ κ . Then

α(g) = α(g0)+α(g−g0)≤ 2α(g0). (24)

Making use of the linearity ofα and properties of the
convolution∗ we have the following:

C g(x,m)−C g0(x,m)

= χUR
(m,x)

[(Ψg∗Ψg)(m)]α(g0−g)

mα(g0)α(g)
+χUR

(m,x)
(Ψg∗Ψg)(m)

mα(g0)
+χUR

(m,x)
(Ψg0 ∗Ψg0)(m)

mα(g0)

= χUR
(m,x)

[(Ψg∗Ψg)(m)]α(g0−g)

mα(g0)α(g)
+χUR

(m,x)
[Ψ(g+g0)∗Ψ(g−g0)](m)

mα(g0)
.

It follows that

‖C g−C g0‖1 ≤

α(|g0−g|)
∫

R3

∞
∫

m0

(Ψg∗Ψ g)(m)dmdx

α(g0)α(g)

+

∫

R3

∞
∫

m0

[Ψ(g+g0)∗ |Ψ (g−g0)| ](m)dmdx

α(g0)
.(25)
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By the Remark5 we have

∫

R3

∞
∫

m0

(Ψg∗Ψg)(m)dmdx=





∫

R3

∞
∫

m0

(Ψg)(m)dmdx





2

= (α(g))2 ≤ ϑ‖h‖1 < ∞,

and

∫

R3

∞
∫

m0

[Ψ(g+g0)∗ |Ψ (g−g0)|](m)dmdx= α(|g−g0|)α(g0+g).

Therefore using again the linearity ofα and applying(24)
yield

‖C g−Cg0‖1 ≤
α(g)α(|g0−g|)

α(g0)
+

α(g0+g)α(|g−g0|)

α(g0)

≤ 5α(|g0−g|)

≤ 5ϑ‖g−g0‖1. (26)

Next we prove that the later inequality is valid for all
h,g ∈ X1+ \ {0}. Let us fix h,g in X1+ \ {0} and let
ht = (1 − t)h + tg for t ∈ [0,1]. Since the function
t 7→ α(ht) is continuous andα(ht) > 0 for eacht ∈ [0,1]
we have inft α(ht)> 0. Letκ = ϑ−1 inft α(ht). Then(26)
yields
‖C hs−C ht‖1 ≤ 5ϑ‖hs−ht‖1 provided that ‖hs−ht‖1 ≤ κ .
Let n be an integer such thatn ≥ ‖h− g‖1/κ and let
ti = i/n for i = 0,1, ...,n. Then ‖hti − hti−1‖1 ≤ κ and
then:

‖C h−Cg‖1 ≤
n

∑
i=1

‖C hti −C hti−1‖1

≤ 5ϑ
n

∑
i=1

‖hti −hti−1‖1

= 5ϑ‖h−g‖1,

(27)

where we used the fact thathti − hti−1 =
g−h

n
for any

i = 0,1, ...,n. Furthermore by (7) and Remark 5,

‖C g− C 0‖1 = ‖C g‖1 ≤
∫

R3

∞
∫

m0

md(x,m)g(x,m)dmdx≤

ϑ‖g‖1 for anyg∈ X1+. This concludes that the operator
C is continuous at 0. Therefore inequality(27) passes to
the limit ath= 0 org= 0, which concludes the proof.

Theorem 3.Let p
o
∈ D(F)∩X1+, the Cauchy problem

du
dt

(t) = F [p(t)]+C [p(t)]

p|t=0
= p

o
,

(28)

has a global unique solution.

Proof.First we recall that the solutionp of (28) is the
unique solution of the integral equation

p(t) = GF(t)p0+

∫ t

0
GF(t − s)C [p(s)]ds, t ≥ 0, (29)

where (GF(t))t≥0 is the semigroup generated by the
operatorF given in (23). We consider

Y :=C([0, t1],X1+)

and its norm

‖g‖Y := max{‖g(t)‖1 : 0≤ t ≤ t1}.

furthermore, we let

Ξ := {g∈ Y : g(t) ∈ B(p0, r1)∩X1+ ∀t ∈ [0, t1]},

with r1 ∈R+. Now we defineM on Ξ as the mapping

(M g)(t) := GF(t) f +
∫ t

0
GF(t − s)C [g(s)]ds, 0≤ t ≤ t1.

ThenM (Ξ) ⊂ Y and(M g)(t) ∈ X1+ for all t ∈ [0, t1].
The proof of the existence of a unique solutionp ∈ Ξ to
the equationp = M p follows in the standard way [22,
Theorem 6.1.2] sinceX1+ is a complete metric space as a
closed subspace of a Banach space. Consequently the
integral equation (29) has a unique solution
p ∈ C([0, t1],X1+). The existence of a global strong
solution to problem(28) immediately follows from the
fact thatC is globally Lipschitz, as shown in the Lemma
1.

6 Concluding Remarks

In this article, we used the theory of strongly continuous
semigroups of operators [22] to analyze the
well-posedness and show existence result of an
integro-differential equation modelling
convection-coagulation processes. This work generalizes
the preceding ones with the inclusion of the spatial
transportation kernel which was not considered before.
We proved that the full model with combined
coagulation-transport operator has global unique solution,
thereby addressing the problem of existence of solutions
for this model. This may help us analyze in the same way
a model with combined
coagulation-fragmentation-transport-direction changing
whose the full identification of the generator and
characterization of its domain remain an open problem.
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