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Abstract: In this paper, a high-resolution direction-of-arrival (BJDestimation algorithm is proposed for highly correlatéghsis.
This algorithm is divided into two stages. In Stage 1, a higgslution method of DOA estimation using an oblique prigecoperator
was applied to estimate the DOA of highly correlated signiisStage 2, because estimations obtained in highly caeetlsignal
environments are prone to bias, a heamspace was built reeastimated angles from Stage 1 to reduce DOA bias. Next kgue
projection operator was used on the beamspace to deterh@reharacteristics of the signal source DOAs on a spatiaitispe for
scanning and estimating the angle of arrival of signals hHiggolution estimations of DOA were thus obtained. Finalbmputer
simulations were performed to assess the performance anddural accuracy of the proposed method.

Keywords: Oblique projection operator, beamspace, direction ofar(DOA), multiple signal classification (MUSIC)

1 Introduction the first method involves dimensionality reductions, in
which the effective sensor elements of array sensors are
reduced to correspond with the number of uncorrelated
§ignal sources; an example of such method is the spatial
smoothing techniqueb[7]. The second method requires
no dimensionality reductions and combines the

Estimating the direction of arrival (DOA) of signals
impinging on a sensor array is a fundamental aspect o
employing array processing in various applications
related to radar, sonar, communications, and astronom;e1 lati . techni i th al
A number of high-resolution DOA methods based on ecorrelation processing technique: wi ] € spatia
spectrum algorithm for estimating the DOA; an example

subspace, such as multiple signal classification (MUSIC) . : ;
and estimation of signal parameters via rotation of such method is the frequency smoothing technidlie [

; . . The methods discussed i8,[10,11,12,13,14] were used
invariance techniques (ESPRIT), have been developed [ . PE T S
4]. In normal circumstances, coherent or highly correlatedto estimate DOAs when both uncorrelated and coherent

signal sources created through multipath transmission Oslgcisstli%]eiliznc?re]\)/%slf/ee% 'Esti?]e ?Sttrzrgi;tié?%lﬂ;tbzte;cgf
merge into a single signal source. When this occurs, th 9 P

. thod t timate the DOAs of uncorrelat r
number of uncorrelated signal sources decreases and ﬂp(%enacl)sd T%eejncoererIate% so(arcse gi ';llalcgovefglﬁzaer?ces%uafriex
rank of the source signal covariance matrix becomes lesd gs eifher 2 Toeolitz-like matrix ogr a utilized oblique
than the number of incident signal sources, severel))N b d

; . ; -~ “projection operator (OPO) 1p,16], in which the
!mpedlng the perfprmance of the algorithms and Causmglt)ovjariance nl?latrix re(move)d Ehe6] uncorrelated source
incorrect DOA estimations. . . T

| : ¢ aini h ¢ hiahl signals and estimated the DOAs of the remaining

n an environment contamning coherent or Ngnly .qoperent signals through decorrelation. By contrast, the
correlated signals, using a spatial spectrum to estimate thg ot algorithm estimates DOAs using a traditional
DOAs requires a preprocessing procedure, Ce.‘"edlseamforming method. Although this method cannot be
decorrelation, to ensure that the rank of the source signglsed to analyze DOA estimations when the angles of

covariance matrix is equal to the number of signal arrival of the two source signals are less than the width of

sources. The spatial spectrum of the uncorrelated Sourcg, array lobes, the Bartlett algorithm is superior to the

signals can then be used for DOA estimations. Two major, USIC method for estimating the DOAs of coherent
decorrelation preprocessing methods are currently usecJ\;/I
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signals [L7,18. The methods employed in19,20,21] A28) = [a(Bps1),a(62), - ,a(6b)], where
included the characteristics of this algorithm and rekailt  A(8) = [A1(0),A2(8)] is theM x D steering matrix, and
steering matrix near the estimated DOAs angle. Inthe superscripT is transposition. The noise(t) of the
addition, the original collected data were projected ontoarray sensors is a white Gaussian process with zero mean
the beamspace extending from the steering vectors tand variances?, uncorrelated with any of the source

build a new set of data. When the spatial spectrum andaignals. Thus, the noise covariance matrix is the following

iteration  algorithm  were  adopted, relatively unknown diagonal matrix:
higher-resolution DOA  estimates were Obtamed'anE{n(t)nH(t)}
improving the performance. )
In this paper, a high-resoluton DOA estimation = "I, (2)

method use_d to de_termine the incic_;lent DOAs .of h_ighlywhereE{o} and the superscripi represent the expected
correlated signals is proposed. This method is dividedyalue and the complex conjugate transpose, respectively,
into two procedures: First, the signal subspace scaleindly is theM x M identity matrix. The source signal
MUSIC (SSMUSIC) algorithm developed using the OPO covariance matrix is

[16] was used to estimate high-resolution DOAs for one H

set of source signals; however, the estimations wer A(G)E{s(t)s“(t)}A (6)

biases. Second, a steering matrix was rebuilt near the = A(6)SA"(9), )
estimated DOAs angle. The original collected data wergypere
projected onto the beamspace extending from the steering S=E{st)s(t)}. ()

vectors to build a new set of data. Next, the OPO on the

beamspace was employed to characterize the DOAs ofhe input data vector of array sensors has the following
signal sources on a spatial spectrum for scanning an® x M covariance matrix:

estimating the angle of arrival of the signals. Rx = E{x(t)x" (1)}

The remainder of this paper is arranged as follows: H H
Section 2 briefly describes the data model. Section 3 AB)E{s)s"(1)}A"(6) + E{n(t)n
introduces the beamspace, the OPO built on the =A(6)SA"(0)+ 07 Im
beamspace, and the proposed algorithm, and Section 4 = R.+R,,
discusses several computer simulations conducted t
verify the proposed algorithm’s estimation performance.
Finally, Section 5 concludes.

()}

©)
%he received source signal covariance maRjxcan be
substituted with the received limited sample mean

Rx = (I/N) Sy x(O)x"(t)
shapshots.

The received source signal covariance maRixis
Hermitian and positive semidefinit§, Rs, andR, share
the same characteristics &, Therefore,Rx can be

where N is the number of

2 Data Model

Assume th"%t @ number .Of far—ﬁeld narrow band source diagonalized to produce the following equation:
signals impinge on a uniform linear array comprisivig

sensors at varying angles of arrivedy, 62,--- ,6p}; the R, = zmzl)\memeﬁ1

spacing constant between the two adjacent antenna D H

components igl, which is 05 of the wavelength, ang = zmzl)\memem"‘En/\nEna

highly correlated source signals exist iBD. When wherely > Ay > - > Ap >

(6)

Apf1=-=Au = O',? is the

— T i
a(6) = [a1(6).22(8),--,au(8)] istheM x 1steering  giganyaye oin, theem table e|genvector of unit norm
vector of the angle-of-arrival &, then b

. . X corresponds  to  Apm, m = 12---M and
am(0) = exg—j2rmd(m—1)sin6/B], m=1,2,--- M is s = [ene,--.ep], En = [epi1,€pr2,---,em]-

the response of theth sensor to incident signals arriving
from the direction6 , where j = vv—1 and 8 is the

Nn = UEIM_D is the eigenvalue diagonal matrix &, .

. . Each t f th trixEs = i
wavelength of the signal carrier. Thus, théx 1 data Ol?t‘ﬁog(;/r?;or Oto © tr;::tnx sof [el’fﬁé ’eDlna{tsrix
vector of the array sensors at tinean be expressed as En— [E041,€0:2,- - ,6v]. Moreover, fom=1,2,.-- .D,

p D
)= yal) S a(@)s(t)+n() Reem = (Am— 0%)em. )
i= p+1
Equation {) shows tha()\m 0?),m=1,2---,Dand 0,

= A1(8)s1(t) +A2(0)%(t) +n(t) m=D+1,D+2,---,M are the e|genvalues 63‘3.

= A(0)s(t) +n(t), (1) When the D source signals are uncorrelated and
wheret = 1,2 ---,N andN is the number of snapshots. M>D, thenE{g(t)#*(t)}, | =12,,DIs the power of
Let S(t) = [s1(t).52(t)] = [s1(1). ()., (1] be the  €ach source signal an{s (08 (1)} =0 ik and
D x 1 vector composed of signal amplitudes; K= 1:2.---,D. Thusthe rank oRyis D and
A1(6) = [a(61),a(6s),--,a(6p)] and A —02>A—02>--->Ap—02>0. (8)
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Becausee;, e, -- ,ep are the eigenvectors of the signal The method is divided into two stages: First, the DOA
subspace andp.1,ep.2,--- ,ev are the eigenvectors of estimations of a group of source signals is obtained using
the noise subspace, {e1,e, - -.ep} and (11, and the source signals directions are determined.
{ep+1,€p12, - ,em} span the signal subspace and the Second, a steering matrix is rebuilt near the estimated
noise subspace, respectively. Becafisgey, - ,eu} is DOA angle determined in Stage 1. In addition, the
the orthogonal eigenvector of the unit norm of the original collected data are projected onto the beamspace
corresponding eigenvalue{A1,Az,--- ,Am}, EsLEp. extending from steering vectors to build a new set of data
These results indicate that by performing eigenvalueand OPOs, which are used to separate the desired source
decomposition in theRx space, the perpendicularly signal from the source signal subspace. The covariance of
related signal subspace and noise subspace can like desired source signal to be estimated is extracted from
obtained. The orthogonal projection operatBgs on the  the source signals covariance matrix to characterize the
signal subspace an®g, on the noise subspace are DOAs of the desired source signals on the spatial
mutually orthogonalRg, LPg,). In addition,Pg, andPg, spectrum. Stages 1 and 2 are detailed as follows.

can be defined as Stage 1: Equation 1() is used to estimate
Pe. = EsEH, (9)  high-resoluton DOAs for the source signals
{@1,@,---,&)}. Next, according to 40,21], 0.5 is
Pe, = EnEN =1 —Pg,, (10) : o
n s chosen as the resolution of the left and right side8, ad
Moreover, {ei,e, - e} and  4haing- andé..

{a(61),a(6), -+ ,a(6p)} span the same signal subspace . ; o ;

[3]. The MUSIC algorithm 8] estimates the DOAs of the Stagg 2 AAM x §D steering matrix s rgbunt as

source signals because the signal subspace and noi%gg [a(el’)’la(erl])’a(el*)’"' a(fp-),a(6b),a(fp+)].

subspace are orthogonal. ubsequently, 'ﬁ' e new data output is written aPax3L
In [16], the authors used the OPO to project the VECIOrY(t) =W7x(t) and

source signal onto the desired signal subspace, obtainin?(t) _ WHx(t)

the source signal covariance from the source signa

covariance matrix. Thus, the cost function of SSMUSIC = W"A(8)s(t) + Wn(t). (12)

[16] for DOA estimation is expressed as Let K(G) — WHA(8) andn(t) = WHn(t); thus,

___a(0)"R{as) _
Jssmusic(8) = T2 (8)Pe.a(0)] A(8) = WHA(B)
— max a(6)"R{a(0) : (11) i[yv Ha(?l)’WHa(f)Z)""’WHa(eD)]
9 |a(0)EnEHa(0)] = [a(61),a(6),---,a(6p)]. (13)

WEere R e pseudoinverse ~ matrix and A(g) in the beamspace processing serves the same role as

Rs = [A(6)SA™(6)]" . Because 11) is the function  a(g) in elementspace processing. The symboA#) is

value derived from multiplying the MUSIC algorithm simplified asA = A(6). Therefore,

numerator by the source signal subspace, it is called the

signal SSMUSIC. The computer simulations ia6] =X =

showed that DOA estimations of highly correlated source y(t) = As(t)+n(Y). (14)

signals in an environment with a low signal-to-noise ratio =

(SNR) and small sample size produced a more favorable

resolution than did MUSIC. When the correlation g _ E{yy" )

coefficient is less than 0.8, such method produces an — n

excellent DOA estimation resolution. = ASA" +E{n(t)n"(1)}. (15)
In a highly correlated source signal environment, the

MUSIC and SSMUSIC algorithms produce biased DOA Let

estimates. To reduce the estimation biases, the OPO ASA™ andRy = E{A(t)A™ (1)) (16)

rom (14), the covariance matrix of(t) is expressed as

the beamspace can be used to characterize the sourc€

signal DOAs on the spatial spectrum for scanning andThen, (L5) can be rewritten as

estimating the angle of arrival of a source signal and

obtain high-resolution estimations. Thus, the following Ry = Rs+Rn. (17)
algorithm is proposed.

Ry undergoes eigenvalue decompositidr, L8], which
can be expressed as

_ H
In this paper, a high-resolution method for estimating Ry = E{3yD(t)y )}
DOAs of highly correlated source signals is proposed. = Zm=1 ymvmvm (18)

3 Proposed Algorithm
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and Og6)8(8) Can be used to removB(6), anda(6&)
R _ TP H remains unaffected. Thus, the desired source signal to be
y = 231:1 YmVmVim - estimated can be separated from the other source signals.
— H H The OPO Oggiggy differs from the orthogonal
2 s YV + 3 p Vi projection oper(alti)r(ilr%% and can only be used to remove
— [EEl As O E? the subspace that is orthogonal to the projected space.
N0 A Er To extract the desired source signal variance
o n —— _y E{[a(6)s][a(6)s]"} from the source signal covariance
= EANEs +E\E,, (29) matrix, the source signal DOA spatial spectrum
h s s S v — T 2isth estimation algorithm is developed. To obtain an accurate
WNEre, 2 Vo 2 - 2 Vo 2 ¥b1=""=VY¥0 =0n ISIN€  ogtimate of [a(6)3] of a(B)s, oblique projection is

eigenvalue oRy and corresponds to the eigenveactgrof
Ym ,» m=12-..3D and Es = [vi,---,vp] and
Es = [Vp+1,-++,Vap] . In the following, (e) denotes the a(6)§ = Ogg)p(a)Y (1)

performed ona(é)) usingy(t) ; thus,

subspaces spanned by the column vectors of a matrix. In  =/ay\i=H 1 =/n\vi—1=H 1

the beamspacéEs) and (A) are the signal subspaces, =(6)[a"(8)Pg(g)a(8)] 72" (6)Pg(q)Y (1) (24)
and (En) is the noise subspace; the correlation betweerThe desired source signal covariance
the highly correlated signals can be removed 18]. E{[a(6)s][a(6)s]"} is derived from the second-order

}
Next, the OPOs are established on the beamspace tstatistic E{[a(6)§][a(6)S]"} of a(6)s . According to
project the desired source signal subspace, and the sour¢e3) and @4), E{[a(6,)s][a(6))s]"} can be expressed as
signal is separated from highly correlated source signals.

The covariance of the desired source signal is extracte@{a(6)§§'a"(6)} = Oxq
from the source signals covariance matrix, thereby . R.OH

creating the spatial spectrum algorithm used to estimate a(6)B(6) Y~ a(e)B(6)

the desired source signal DOA. To ensure that the =a(@)aa(a)

algorithm is valid for general applications, tite source o. EAE"OH

signal was chosen as the desired source signal to be +Oa(6)8(6)=n/\nEn Oz0)B(8)-

Oag)e(@)E{Y(t)Y(t)"}O5g)8(a)
o

estimated. EquatiorLé) can be rewritten as follows: (25)
_ b B Next, (26) and @7) are derived fromZ1) and @5):
y(t) =a(8)s(t)+ 3 alfos(t) +n(t) -
At Ox(@)(8)RsOx(q)a(a) =a(B)ai@" (8),  (26)
=3a(6)s(t)+B(&)b(t) +n(t). (20)
whereB(8,) is the D x (3D — 1) matrix of A minusa(6;) Og(6)a@)RsORa)a) = B(6)SB"(8). (27)

, andb(t) is the (D — 1) x 1 column matrix ofs minus . )

s(t). Because the signal subspadE&s) and noise Equationszg)and @7) can be combined as
subspace(En) are orthogona(fs) ® (En) = C*>2, Oa(a)8(8)RsOa(a)s(a) +Os(@jae) RsO (g aa)
where (Es) @ (En) is the direct sum of the subspaces  _ 83 (8) 1 B(8)SB" (8

(Es) and(En) . Letay =E{s§'}, k=1,2,---D; S'is __( aia’(6) +B(6)SB™(8)

the (D — 1) x (D — 1) diagonal matrix of diagonal = Rs. (28)
elementsy, k # i. The equivalence relation for the signal According to @6), the OPOOg(g)5(4) can be used to

covariance matriRs [16] is obtained: . . . —
s[16] extract the desired source signal covariance fR¢nIn

ﬁy_ﬁnxnﬁr — ASAH [14], when both uncorrelated and coherent source signals
Rs={ a(6)aa" (8) +B(6)SB" () (21)  coexisted in the system, the uncorrelated source signals
EA = from the covariance matrix were separated; the MUSIC
s&s - was then used to estimate the DOA of the uncorrelated
The OPQO4(g)54) [15,16] is expressed as source signals, and the high-resolution DOA estimation
method was adopted to estimate the remaining coherent
Oaee(a) :a(el)[aH(Q)Pé(&)a(el)]fla(el)H Pé(e.)- source signals, thereby improving the estimation

22) performanqe and resqlution. _ _ _
To obtain the desired source signal covariance using
]SZIGIS), Rs almd Oémsk(]el) T;]usttﬂ?e deteénjined first. tT'he f
AR ollowing lemmas show that the pseudoinverse matrix o
Sp?é:(tahceo;at;?n(;f;;e ﬂlﬁdg)swﬂ is (8(8)), and the null Rs (Re ) can be obtained from the received limited signal
Vi ' samples, which can be used to estimBteand produce
Ogq)8(6) A(6) =a(6) andOyg)5g) B(B) =0.  (23)  Ogg)p(a)[14 15,16

whereP§(9|> is the orthogonal projection operator of the
range space that is orthogonal B(6)). According to

(@© 2015 NSP
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Lemma 3.1 The equation for the OP@gg)p(g) is as The following flowchart shows the procedures of the
follows: two-stage algorithm:

and
— - » Start
Oa(6)8(6)RsOz()8(6) = alB)aia™ (&) ¢
= a(6)[a"(6)Ra6)] 2 (8), 1
(30) Input data
where [@(8)R{a@) ! = o . Here, ¢
S+ renH = —2=H . : .
Rs = (ASA")" = Es\¢ "Es is the pseudoinverse matrix Eigenvalue decomposition of
of Rs. First stage covariant matrix of input data
Proof. Please refer to Appendix 6.1.
According to Lemma 3.1?: is obtained from the ¢
received limited signal samples to estimRie Therefore, Estimate DOAs by Eq. (11)
a(6) in (29 is changed t@(0) as the scanning steering which is a method using the
vector to build a 6-related algorithm, in which oblique projection operator
6 € [-90°, 90°] is scanned to estimat®ggq)pg)-
Equation 29) is reordered to produc&) and (328: ]' v
Fae) = a(0)[@" (8)Rs a(6)]*a" (B)Rq, (31) r Build the beamspace by
Eq. (12) using the initial
estimate of DOA from first stage
Ga6) = Pz —Fae): (32) v
where Py is the orthogonal projection operator with the . o
range spac éﬂ> Second stage Evaluate the oblique projection
According to Theorem 3.2 oflf], let operator on beamspace by
Egq. (29)
Estimate DOAs by Eq. (35
Trace{H} yEq. G3)
_ — A 4
= Trace{ R} + 2a" Pe. (6)a(6)/[a" (8)R.a(0)] 4
> Trace Rs} < Stop >
= Trace{ Rs}, whena(0) =a(@), (34)
whereTrace{e} denotes the trace of a matrix. Fig. 1: Flowchart of proposed method

Proof. Please refer to Appendix 6.2.

According to @4), when the scanning angtis set at
[-90°, 90°] and a“(ewﬁa(e)a(e)/[a“<e>ﬁ:a<e>]
equals zero, the spatial incidence angle of arrival of the .
source signab, is obtained in a similar manner witid 1) 4 Design Examples
to build a peak in the power spectrum of the beamspace_ . ) ) ) )
and estimate the source signal DOAs. The cost functionf his section discusses computer simulations that were

for DOAs estimation is expressed as conducted to demonstrate the performance of DOA
estimation when the proposed method was applied to

at (e)ﬁs*a(e) uniform linear arraysM sensor elements were located in
f(6) = 9 W the uniform linear arrays, and the distance between each

element was half the distance of the wavelength. The
SNR was the ratio between the signal power and the noise
variance of each sensor element. The number of source
signals was known, and the zero-mean spatially white
Gaussian process was used when performing these
simulations.

a (0)WR, WHa(6)
6 |aH(9)WEHE,WHa()|

(39)
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During the first simulation, a group of two highly ! ‘
correlated source signals entered the systerf; at 0° 09 f ]
and 6, = 5° ; the second group contained a third signal
entering at6; = 40° and was not correlated with the
aforementioned two signals. The SNR of all the source @ 07|

08 -

signals was 10 dB, and the number of sensor element: 2 06 .
wasM = 8. Fig.2 shows that in a highly correlated source S
signal environment, using MUSIC in a beamspace to g *°/ >
estimate the DOAs yielded angles of arrival the resolution g o4t 8
of which was superior to those obtained using MUSIC in § sl |

a received signal space.
02

0.1 -

1 T 0 I 4y |
-90 -70 -50 -30 -10 0510 30 40 50 70 90
097 _ }I%/II\[/IJISJIS%C 7 Angle of Arrival
0.8 - q
v Fig. 3: Normalized spectrum of the proposed method
0.7
Desired

06 signals 1

o2 0.9 entered the array sensors &0°,5°}; a third

uncorrelated source signal entered the array sensors at
40°; the SNR ranged from 0 dB to 20 dB; and the number
of snapshots was 500. Because the received signal
subspace was projected onto the beamspace to enhance
01 F the source signal characteristics, the proposed method
N VAN . Py o reduced the correlation between the source signals and the
<0 .70 -5 30 -10 0510 30 40 50 70 90 estimation bias. Fig4 shows that the proposed method
Angle of Arrival outperformed the MUSIC and SSMUSIC methods. The
simulations indicate that in a low SNR environment, the
Fig. 2: Normalized spectrums of the MUSIC and MUSIC after SSMUSIC method outperformed the MUSIC method.
beamspace (BMUSIC) algorithm However, in a high SNR environment, because the results
obtained from {1) were similar to the results produced
by the MUSIC method, the performance dflf and the
MUSIC method did not differ significantly. By contrast,
the proposed method demonstrated an improved
erformance in a low SNR environment.
For the fourth simulation, the number of snapshots

04

Beam Pattern (dB)

03

02

Conditions for the second simulation were the same
those for the first; Fig.3 depicts the f(8) spatial
spectrum. The peak of the spatial spectrum represents t
angle of arrival of the source signal, and DOA estimations

yielded a high resolution in highly correlated source was varied to test the performance of the proposed

signal environments. method. The SNR was set at 10 dB and the number of

The root mean square error (RM.SE) was used as th%napshots was increased from 100 to 1000; all other
performance indicator of the estimation method, and the

conditions remained the same. The SSMUSIC method

RMSE of the DOA was expressed as outperformed the MUSIC method in estimating DOAs
F D= when the snapshots were few. Fi§.shows that the
RMSE = \/zrzl >i—1(6(r)—6(r))?/(FD), (36)  proposed method outperformed the MUSIC and
R SSMUSIC methods when the snapshots were few; as the
where6(r) is the estimate o6 (r) during therth Monte number of snapshots increased, the proposed method
Carlo test. The RMSE was used to compare the DOAobtained excellent resolution.
estimation performance between the MUSIC, SSMUSIC  For the fifth simulation, the correlated coefficients
[16], and proposed methods. The following simulations[17] were varied from 0.5 to 0.9 and the number of
were obtained using 1000 Monte Carlo tests. Thesnapshots was set at 100; the other conditions remained
correlated coefficients of highly correlated source signal the same. Fig.6 shows that the proposed method
were defined according td]. outperformed the MUSIC and SSMUSIC methods when

For the third simulation, the performance was the snapshots were few, because the proposed method
investigated whem = 12 and the SNR values differed. involves the beamspace for reducing the DOA estimation
The experimental conditions are as follows: two highly bias; this caused a favorable performance even when the
correlated source signals with a correlated coefficient ofcorrelated coefficients were high.
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102 | I | : / 1
- MUSIC i — MUSIC /
"~ - SSMUSIC ] - SSMUSIC /
e e — Proposed method — Proposed method Ve
10 N |
/ »
S 10 ” 7
—_ g0 10 - Y
= 10 7
2 :
-1
10 ¢
2 ]
10 ‘ ‘ : ‘ : : 0.5 0.6 0.7 0.8 0.9
0 2 4 6 8 10 12 14 16 18 20
SNR(dB) Correlation coefficients
Fig. 4: RMSE of DOA estimations for varying SNRs Fig. 6 RMSE of DOA estimations for varying correlation
coefficients
\ — MUSIC o )
\ —+ SSMUSIC coefficients varied, the proposed method outperformed
\ Proposed method the MUSIC and SSMUSIC methods.
\
0 \
w105 ]
[5) N T — -
E I— T = r—— —_—r—————— -~ — )
5—; 10 - | | |
= [ - MUSIC
~ —_ ~ SSMUSIC
, '~ - — Proposed method
1 -
10 -~
o P e
3 '
L L Ea/ \.\
100 200 300 400 500 600 700 800 900 1000 % RN d
Number of snapshots 10" T —r—— e — — g

Fig. 5: RMSE of DOA estimations for a varying number of
snapshots

-1
10100 200 300 400 500 600 700 800 900 1000

For the last two simulations, two groups of two highly Number of snapshots

correlated source signals were used; the angles of arrival. , N
were{—30°,—26°} and{0°,5°}, respectively. A group of qi%p;otz,MSE of DOA estimation versus the number of
uncorrelated source signals had & 4@gle of arrivalM '

was set at 12 and the SNR was set at 10 dB. In the sixth

simulation, the performance of the three methods was

investigated by setting the correlated coefficients at 0.9

and varying the number of snapshots. Figshows that )

the proposed method and the SSMUSIC method weréd Conclusion

superior to the MUSIC methodLf] when the snapshots

were few. As the number of snapshots increased, th&his paper introduces a high-resolution estimation
proposed method outperformed the MUSIC andmethod that uses the OPO to separate desired source
SSMUSIC methods. In the seventh simulation, accordingsignals from the source signal subspace and adopts the
to the previous simulations, the number of snapshots wabeamspace to reduce estimation bias. Computer
set at 500 and the correlated coefficients were alteredimulation results revealed that the proposed method
from 0.5 to 0.9. Fig.8 shows that when the correlated yielded superior resolution in the DOA estimation results
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10" ‘ ‘ 6.1 Proof of Lemma 3.1
= MUSIC /
-+ SSMUSIC / Equations87) and @38) were used to denva!*( )R and
— Proposed method / obtain the following equation:
/ _
— / al(6)Rs
& / _ =H( Aty +
g , =a'(AsA")
Ea _ _
e e I S () AR
N — ATa@)Hs AT
- ~ _ H
_ [ [ B(8)Pgq)2(6)) 2" 8Py | )
[B(6)P3)B(8)] 'B(6)P54) |
05 0.6 0.7 08 0.9 Sy
Correlation coefficients — ai 0, ,O)K+
Fig. 8. RMSE of DOA estimations for varying correlation 1| u N L N
coefficients = a[ﬁ (6))Pg(g)a(6)] 7@ (6)Pg(g,- (41)
Thus,
| . a(8)R;a(8)
for highly correlated signals. Moreover, the proposed 1 . N . "
method exhibited favorable DOA estimation performance = —-[a" (6)Pg(q)a(6)] ~[@" (6)Pgq,a(6)]
when uncorrelated source signals and highly correlated 1'
source signals coexisted. - — (42)
ai
When @7), (38), and @2) are used, the following is
obtained:
6 Appendix a(e)[a (6)Rsa(d) "a"(8)Re

—a)aa’ (B)A") s AT

_ = ATs H 71*+
According to f14,1516], Lemma 3.1 and Theorem 3.2 — a(6)ailA " a(6)]" S A
were proposed. According to Lemmas 5.3h and 5.9 in [@ (6P, a>él(9.)]*1é1H(6)Pl< o | . .
[22], the pseudoinverse matrix & in (16) is = al6)ai [B(8)P,4B(8)] 2B(8)PLq, (6)

—~

Aca+ AH\+ 17t 71K+
:(ASA ) :(A ) STA s (37) :a(e)a.(l 0 O) [EH(GI)PJB_m)f(eI)] 1éH(9)PJB_<a)
o B Vel > B G)P;(Q)Bm)rls(a)a N
whereA” = (A"A)"1A" . BecauséA = [a(6),B(6)] , — a(6) (2 (6)P3 g (6] 2 (8)PY g, (43)

the following results were obtained by usiri]:
According to the definition 005(g)5(g) in (22) and @3),
Lemma 3.1 has been validated.

At =

[7H<a>Pé<e.>a(e.>]15'*(9'>P§<9|> (38)

B(6)P5)B(8)]"B(8)Pgg)
6.2 Proof of Theorem 3.2

According to the definitions of the pseudoinverse matrix . ) 3

and orthogonal projection, the following basic For simplicity,a(6) is abbreviated a& When Lemma 3.1

characteristics were derived: and @9) are used, the following is obtained:

ey FaRsFH = aa'R.a 'a8"R.RR. @R, g ‘a"
R.RR; =R 39 _
sTEs ey (39) —aa'R,a 'a'R{aa"R.a a"
=aa'R,a ‘&
P4Rs = RsPz =Rs. (40) S Ra (44)
S
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When @1), (32), (39), (40), (44), and Lemma 3.1 are used,
FaRsF + GaRsGY
FaRsFL + (Px—Fz)Rs

:UI
-

(45)

When @5) and the basic properties of tiieace are used,
the following is obtained:
Trace{H}

— 1
SR+ o Ra o

al %saﬁH Pen)

_ . 2@"'Pga)
= Trace{ Rs} + —FRa
> Trace{ Rs}.

WhenPg a(6) = 0, (46) is valid, thereby confirming the
validity of the theorem.

(46)
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