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Abstract: Inspired by a number of recent investigations, we introdheaew analogues of the Apostol-Bernoulli polynomials ted
Apostol-Euler polynomials, the Apostol-Genocchi polynal® based on Mittag-Leffler function. Making use of the Capisactional

derivative, we derive some new interesting identities esthpolynomials. It turns out that some known results areattas special
cases.
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1 Introduction generalizes the fractionah” defined by

The concept of fractional is popularly appeared from a )= /mtf‘le“dt (1)
guestion raised in the year 1695 by LHopital o ’

(1661-1704) to Leibniz (1646-1716), which searched the ) )

way of Leibniz's notationd for the derivative of order which converges in the right half of the complex plane
heN* = NU {0} whenn = % (What if n — %)_ In his Re(§) > 0 (see L], [2]). This function satisfies the

response, dated 30 September 1695, Leibniz wrote to Lfollowmg functional equations:

Hopital as follows:”--This is an apparent paradox from r(&)r(y)
which, one day, useful consequences will be drawn F(&+1)=¢&r(&) andB¢,y) = FETy) 2)
(see L], [2)).

Subsequent mention of fractional derivatives was ; ;
made, in some context, by Euler in 1730, Lagrange inﬁ%ﬁr_eB(E’V) 's known as Beta function (seg]{[2], (6],

1772, Laplace in 1812, Lacroix in 1819, Fourier in 1822, The Mittaa-Leffler functi hich l th
Liouville in 1832, Riemann in 1847, Greer in 1859, exponzntielll zjgnct?ore?r isus;\(;é?]nk;yw Ich generalizes the
Holmgren in 1865, Grinwald in 1867, Letnikov in 1868, '

Sonin in 1869, Laurent in 1884, Nekrassov in 1888, Krug o0 A

in 1890, and Weyl in 1917 (for details, sei,[[2]). Ea(2) = Zom (see L], [2). (3)
One of the most recent works on the subject of n=

fractional calculus is the book of Podlubnij [published .

in 1999, which deals with theory of fractional differential Obviously that E1(2) = &

equations. ==

One of the fundamental functions of the fractional The Mittag-Leffler function plays a vital and important
calculus is Euler's gamma functio (), which  role in the concept dfractional calculus
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The generalization of Mittag-Leffler function is also 2 Analogues of Bernoulli, Euler and
defined by the following series expansion: Genocchi Polynomials and their Properties

2 . .
2) = nzom, (a>0,B>0) (seel], [2]). Recently, analogues of Bernoulli, Euler and Genocchi

polynomials were studied by many mathematicians
(4) [4-24]. We are now ready to give the definition of

By (4), we have generating functions, corresponding to Mittag-Leffler

g X " function, of Bernoulli, Euler and Genocchi polynomials.
E11(2) = =€,
Gl (k1) Definition 1. Leta > 0andA > 0, define
> X é-1
E12(2) = , 5
12(2) Z rk+2  z ®) H (X2 a|A)= Zo%)nx alr) n' )\E() e
E > X é-z-1 z“. !
1.3( Zr k+3) 2 F(xz:a|A)= Zoéanx alA) il ()He?‘z
Continuing this process gives M
M ( ali) Gax:a )= =———-€
L -2 xz:d| ZO”X Y /\Ea()+1
Eim(2) = 7€~ %g (see ], [2]).
zn k=0 where Znh(x:a |A), &n(x:a|A) and % (x:a|A) are

called, respectively, Bernoulli-type, Euler-type and
Note that various generalizations of the Mittag-Leffler Genocchi-type polynomials.

function which are studied by Humbert and Delerdg [

and by Chak3], were further extended by Srivasta@.[  Corollary 1. Takinga = 1 in Definition1, we have
In [1],[2], the Riemann-Liouville fractional integral of

ordera for a functionf is defined b il z z
o g gwxw—— e
T @Of (1) = —/ (t—9)7 1f(s)ds ©)
() Jo Ex Mo 2 e
(f:(0,0) — R anda >0). 20 A no Ae+1
The Caputo-fractional derivative of higher order for a 5nq
continuous functiorf is given by
1 t (g Gn(x]A) —Y
(a) - n! Aez+ 1
70 = g f g ™) 20
(f : (0,0) — R anda > 0), where B (x|A), En(x[A) and Gi(x|A) are called
] ) Apostol-Bernoulli polynomials, Apostol-Euler
wheren is the smallest integer greater than or equakto  polynomials and ~ Apostol-Genocchi  polynomials,
(see ], [2]). respectively (seed], [9], [18], [19], [22], [ 23], [ 25]).

From (6) and (7), we have

Corollary 2. Substitutingor = A = 1 in Definition 1, we
2@f (t) = ¥ [ﬂk—‘”f (t)} keN. (8 have

From @), it follows that ZOB” (X) z_ i o2

(a)gn _ I'(n+1) n—o *® il
2 e G (see ], [2).  (9) ;En(x)ﬁzeziﬂeﬂ’

The fractional derivative of the produtg, which is called

Leibniz rule, is given by and
o > G (x)i— 2z o
ZUHOFGIEDY ((ID £ (1) 212 Mg(t) (see [, [2). nZO " T et
o

(10) where B(X), En(x) and Gy(x) are called classical
In the next section, we consider analogues ofBernoulli polynomials, classical Euler polynomials and
Bernoulli, Euler and Genocchi polynomials which are classical Genocchi polynomials, respectively (s& [
introduced usingJ). [91,118],[19],[22,[23],[29).
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Takingx = 0 in the above definition, we have Let us now apply the familiar derivativg( in the both
sides of DefinitionL,
Pn(0:alA):= DBna(a]|A) 4/ , e ,
Bernoulli-type number & <ZO<93n (XZ a | /\) H) = ZO <&93n (XZ a | /\)) H
En0:a|A):= &(alA) n= ' n= '
H/_/ Z d 2
Euler-type number = m &e’(
40:alA):=  “G(a|r) a
5,—/ . 22 e}(Z
Genocchi-type number = 7/\ Eq (Z) 1
and from the above, we write Zn+1
= z P (a | )\)
H(0,z:0|A): =2 (z:a|A),
F0,z:a|A):=F(z:a|A), (11) Similarly, we can procure the derivatives of
MO,z a|A)i=M(z:a|)). Euler-type and Genocchi-type polynomials. Thus, we

state the following theorem.

Matching Definitionl and (L1), we get the following Theorem 2.The following identities hold true:

corollary.

d

—PBn(x:a|A)=nDBn_1(x:a|A
Corollary 3. The following functional equations hold dx n(X: @A) =nFns(xzafd),
true: %é"n(x:aw\):né@n_l(x:ap\)
H(Xz:a|A)=H(z:a|A)es and
Fxz:a|A)=F(z:a|A)e? d

— o A)=nG1(x:ia ).
M2 a | A)=H#(2:a|N)EZ axon(xafA)=ndha(x:afA)
. Polynomials @, (X) are called Appell polynomials
By using @) and Corollary3, becomes when they have the following identity:

ZO%’nx a|)\ (zo,%’na“\ )(zo Zr:) %%(X:G):ndn_l(x:a). (14)

So, by Theorem2 and (4), we have the following
From the rule of Cauchy product, we get corollary.

Corollary 4. Our polynomials, which areZ, (x: o |A),

=) © n
z B (X1 a0 |,\)i = Z z : B (a | A)xk é én(x:a|A)and%, (x: a|A), are Appell polynomials.
=0 nt & & \K n!

(12) From Theoren®, we have
Comparing the coefficients (ﬁ in (12), we have 1 Bri1(:a|A)—Bo(x:a |)\)
' /%n(x:a|A)dx: 1 ls "
2 /n n—k ° "
DBn(X:a|A)= kZO (k) B (a[A)xX (13)  More generally,

x+1 PBra(X+1:a|A)—PBn(x:a|A
Similarly, we can get identities for Euler-type and Py a|A)dy= e r|1+)1 n | )
Genocchi-type polynomials. Therefore, we discover the’*
following theorem. Thus, we get the following theorem.

Theorem 1.The following identities hold true: Theorem 3.The following identities hold true:

Xt PBra(x+1l:a|A)—PBn(x:a|A
: s (M K By a|A)dy = Pl |A) = Zn(x:a|d)
Ba(x:a|A) = % ‘ By (a | )Xk y —1
" o Enii(x+1lia|A)—&(xalA
- (N by alA)dy= n+1( r|1+)1 n( |A)
Eo \K and
" /n B . | ) |
Ga(xia|A) =3 <k>%(a|/\)xn k /x+ %(y:a|)\)dy:%+1(x+1.a|)\) %(X-Glf\)_
= X n+1
(@© 2015 NSP

Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

2660 NS 2 S. Araci et al. : Identities Involving Some New Special Palgmals...

3 Identities Including Special Polynomials Theorem 4.The following identity

Arising from Fractional Calculus
a r(m+1)
Recent works involving the integral of the product of Z"Bm(t[A) = m
several type Bernstein polynomial$g, p-adic integral n (M
representation forg-Bernoulli numbers andy-integral % zo k!( k )Bm—n—k()‘) k—a+n
K

representation of-Bernstein polynomials?], fermionic Fintk—a+1)
p-adic integral representation for Frobenius-Euler
numbers and polynomiald 4], derivative representations

of Bernstein polynomialsl[7] have been investigated. s true.

In this final part, we derive some new interesting
identities related to special polynomials by utilizingrfro In [19], Apostol-Bernoulli polynomials of higher order
Caputo-fractional derivative and Riemann-Liouville are defined by
integral.

As well known, Apostol-Bernoulli polynomials are 2 . . o M
iven to be: dz = tIA)=. (18
J Ae 1 1 e 1 WZO m (A5 (18

h—times
F(t,z|A) = /\ez 1 ZBntM (15)

Note that Apostol-Bernoulli polynomials are analytic on Takinginto accountthd(y (t) is analytic or®. It follows
the region® = {ze C | [z+logA | < 2m} (see 19|, [22,  from (18), we have
[23)). Differentiating in the both sides olLf), we have

d

d il (h)
SBA(t]A) =By 1(t]A) (see 19, [22, [23). (16) g (t14) =mB, (t]2) (19)
Whent =0 in (15), we haveB, (0| A) :=By(A) thatare  and
called Bernoulli numbers, and can be generated by
dn F(m+1) _m
F(z|A) = /\ez i %Bn . an  gnP m (t]A) = F(m_ns1omn(lA) (seeld.
(20)
By (15 and (L7), we have the following functional S‘f]bS“tUt'”g t = 0 into (18, we have
equation: Br(n)(0|)\) = r<n>()\) that are called Bernoulli
F(t,z|A) =€2F (2] A). polynomials of higher order.
By using Taylor’s formula in the last identity, we have Owing to (18) and @0), we see that
< (MY mk < (M) K
Bt 1) = 3 (0)m B = 5 ()8 it Lo dE
nt19=3 (4 200 g L SO,
(eeld,[22,123). _ m(m=1)--.(mn+1)
Taking f (t) =Bm(t|A)in (7) gives men
1 " Bn(t | A) | x <m_n>B§2nfk(A)
DB (t]|A) = / griBm 12) sy Eo\ K
Fn—a)jo (t—g* "™ 1 t &
:m(m—l)(m—n+1) X |:I_(n_a)/o (t_s)an+lds]
MmN /m_n mon | (M-N B(h) A
X z K Bm-n-k(A) _ [ (m+1) (") Brenk )tk—a+n
k=0 F(m-n+1) & I(n+k—a+1)
X ! /t ) ds _ rmyy e KO tkean
rin—a)lo (t—sa "t F(m-n+1) & T (ntk—a+1)
_ r(m+1) DS+t dgmmen- k(slsgn I;h)
F(m—n+1) y
Xm—n K (5)Bmn k(/\)tk"””. - (J'DlBSJ)
k; Fintk—a+1)
Therefore, we procure the following theorem. Therefore, we can state the following theorem.
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Theorem 5.The following equality and
(m+1)
aph) __(m+1 DG (X:a|A) = —————
ST KRN
zI'n+k a+1) r ”+k a+1)
—n—k
251+32+ 4sh=m—n—k (Slmszn 3,])

$20

X
j=1

We recall the definition of generating function for
Bernoulli-type polynomials as follows:

ZO'%)“X alr) n! /\Ea() YE. 1%

and also

is true.

%%n(x:a|A):n%n,l(x:a|A).

Taking f (t) = Zn(x:a | A)in (7), we compute

1 / dtngn(x a|)\)|t SdS

1)

DY%n(x:a|A)

m(m— (m—n+1)

X z < )%’n (alA)
1 t S
I'(n—a)/o (t—s)"”*ldsl
r(m+1)
r(m—n+1)
MK (M) D (a | A)
& F(n+k—a+1)

X
L — |

k—a-+n

We can acquire similar identities for

the following interesting theorem.

Theorem 6.The following equalities hold true:
(m+1)

F(m—n+1)
MK (M P (a | A)
& F(n+k—a+1)
r(m+1)

r(m—n+1)
MM én(a | A)
& T (n+k—a+1)

DY%n(x:a|A) =

tkfcurn'

DY (x:a|A) =

k—a+n

Euler-type
polynomials and Genocchi-type polynomials. So, we state

4 Conclusion

In this article, we have introduced the new analogues of
the Apostol-Bernoulli polynomias, the Apostol-Euler
polynomials, the Apostol-Genocchi polynomials based on
the Mittag-Leffler function. As applications of these
definitions, we get some new recurrence relations for
aforementioned polynomials. Based upon these relations,
we also derive some new interesting identities of these
polynomials by using the Caputo-fractional derivative.

It would be interesting to apply the results of this paper
to other known special polynomials, e.g., to some other
Hermite polynomials, Legendre polynomials and related
polynomials. We plan to deal with such related problems
in our subsequent works.
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