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1 Introduction

The action of genes is manifested statistically in
sufficiently large communities of matching individuals
(belonging to the same species). These communities are
called populations [2]. The population exists not only in
space but also in time, i.e. it has its own life cycle. The
basis for this phenomenon is reproduction by mating.
Mating in a population can be free or subject to certain
restrictions.

The whole population in space and time comprises
discrete generationsF0,F1, . . . . The generationFn+1 is the
set of individuals whose parents belong to theFn
generation. A state of a population is a distribution of
probabilities of the different types of organisms in every
generation. Type partition is called differentiation. The
simplest example is sex differentiation. In bisexual
population any kind of differentiation must agree with the
sex differentiation, i.e. all the organisms of one type must
belong to the same sex. Thus, it is possible to speak of
male and female types.

The evolution (or dynamics) of a population
comprises a determined change of state in the next
generations as a result of reproductions and selection.
This evolution of a population can be studied by a
dynamical system (iterations) of a quadratic stochastic
operator.

The history of the quadratic stochastic operators can
be traced back to the work of S. Bernshtein [1]. For more
than 80 years this theory has been developed and many
papers were published (see [1]-[7],[10]-[17]). Several
problems of physical and biological systems lead to

necessity of study the asymptotic behavior of the
trajectories of quadratic stochastic operators.

Let E = {1,2, . . . ,m}. By the (m − 1)− simplex we
mean the set

Sm−1 = {x = (x1, . . . ,xm) ∈ Rm : xi ≥ 0,
m

∑
i=1

xi = 1}.

Each elementx ∈ Sm−1 is a probability measure onE
and so it may be looked upon as the state of a biological
(physical and so on) system ofm elements.

A quadratic stochastic operatorV : Sm−1 7→ Sm−1 has
the form

V : x′k =
m

∑
i, j=1

pi j,kxix j, (k = 1, . . . ,m), (1)

wherepi j,k− coefficient of heredity and

pi j,k = p ji,k ≥ 0,
m

∑
k=1

pi j,k = 1, (i, j,k = 1, . . . ,m).

For a given x(0) ∈ Sm−1, the trajectory
{x(n)}, n = 0,1,2, . . . of x(0) under the action of QSO (1)
is defined byx(n+1) =V (x(n)), wheren = 0,1,2, . . .

One of the main problems in mathematical biology is
to study the asymptotic behavior of the trajectories. There
are many papers devoted to study of the evolution of the
free population, i.e. to study of dynamical system
generated by quadratic stochastic operator (1), see e.g.
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[3]-[16]. In [15] a survey of theory quadratic stochastic
operators is given.

In this paper we find a condition under which the
evolutionary operators of bisexual population is
contraction.

2 Definitions

In this section following [2], we describe the evolution
operator of a bisexual population. Assuming that the
population is bisexual we suppose that the set of females
can be partitioned into finitely many different types
indexed by{1,2, . . . ,n} and, similarly, that the male types
are indexed by{1,2, . . . ,ν}. The numbern+ ν is called
the dimension of the population. The population is
described by its state vector(x,y) in Sn−1 × Sν−1, the
product of two unit simplexes inRn andRν respectively.
Vectorsx and y are the probability distributions of the
females and males over the possible types:

xi ≥ 0,
n

∑
i=1

xi = 1; y j ≥ 0,
ν

∑
j=1

y j = 1.

DenoteS = Sn−1 × Sν−1. We call the partition into
types hereditary if for each possible statez = (x,y) ∈ S
describing the current generation, the state
z′ = (x′,y′) ∈ S is uniquely defined describing the next
generation. This means that the associationz 7→ z′ defined
a mapV : S 7→ S called the evolution operator. For any
point z(0) ∈ S the sequencez(t) = V (z(t−1)), t = 1,2, . . .

is called the trajectory ofz(0). Let p( f )
i j,k and p(m)

i j,l be
inheritance coefficients defined as the probability that a
female offspring is typek and, respectively, that a male
offspring is type l, when the parental pair is
i, j(i,k = 1,2, . . . ,n; and j, l = 1,2, . . . ,ν). We have

p( f )
i j,k ≥ 0,

n

∑
k=1

p( f )
i j,k = 1, p(m)

i j,l ≥ 0,
ν

∑
l=1

p(m)
i j,l = 1.

Let z′ = (x′,y′) be the state of the offspring
population at the birth stage. This is obtained from
inheritance coefficients as

W :



















x′k =
n,ν
∑

i, j=1
p( f )

i j,kxiy j, (1≤ k ≤ n)

y′l =
n,ν
∑

i, j=1
p(m)

i j,l xiy j, (1≤ l ≤ ν).
(2)

We see from (2) that for a bisexual population the
evolution operator is a quadratic mapping ofS into itself.
But for free population the operator is quadratic mapping
of the simplex into itself given by (1).

In [8,9] an algebra of the bisexual population is defined
as the following:
Consider{e1, . . . ,en+ν} the canonical basis onRn+ν and

divide the basis ase( f )
i = ei, i= 1, . . . ,n ande(m)

i = en+i, i=
1, . . . ,ν. Introduce onRn+ν a multiplication defined by

e( f )
i e(m)

j = e(m)
j e( f )

i = 1
2

(

n
∑

k=1
p( f )

i j,ke
( f )
k +

ν
∑

l=1
p(m)

i j,l e(m)
l

)

;

e( f )
i e( f )

k = 0, i,k = 1, . . . ,n;

e(m)
j e(m)

l = 0, j, l = 1, . . . ,ν;

(3)
Thus the coefficients of bisexual inheritance is the

structure constants of an algebra, i.e. a bilinear mapping
of R

n+ν ×R
n+ν to R

n+ν . The general formula for the
multiplication is the extension of (3) by bilinearity, i.e. for
z, t ∈ R

n+ν ,

z= (x,y) =
n

∑
i=1

xie
( f )
i +

ν

∑
j=1

y je
(m)
j ,

t = (u,v) =
n

∑
i=1

uie
( f )
i +

ν

∑
j=1

v je
(m)
j

using (3), we obtain

zt = 1
2

n
∑

k=1

(

n
∑

i=1

ν
∑
j=1

p( f )
i j,k(xiv j + uiy j)

)

e( f )
k +

+ 1
2

ν
∑

l=1

(

n
∑

i=1

ν
∑
j=1

p(m)
i j,l (xiv j + uiy j)

)

e(m)
l .

(4)

From (4) and using (2), in the particular case thatz= t,
i.e.x = u andy = v, we obtain

zz= z2 =
n

∑
k=1

( n

∑
i=1

ν

∑
j=1

p( f )
i j,kxiy j

)

e( f )
k +

+
ν

∑
l=1

( n

∑
i=1

ν

∑
j=1

p(m)
i j,l xiy j

)

e(m)
l =W (z).

for anyz∈ S. This algebraic interpretation is very useful.
For example, a bisexual population statez = (x,y) is an
equilibrium (fixed point) precisely whenz is an
idempotent element of the setS, i.e.z= z2.

The algebraB = BW generated by the evolution
operatorW (see (2)) is called theevolution algebra of the
bisexual population.

In [8] it was shown that ifz is a fixed point thenz ∈
Rn+ν

0
⋃

Rn+ν
1 , where

Rn+ν
η = {z= (x,y) :

n

∑
i=1

xi =
ν

∑
j=1

y j = η}, η = 0,1.

For simplexS = Sn−1× Sν−1 by tangent space we get

Rn+ν
0 = {z= (x,y) :

n

∑
i=1

xi =
ν

∑
j=1

y j = 0}.
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3 Contracting operators

In operator theory, a bounded operatorW : X →Y between
normed vector spacesX andY is said to be acontraction
if its operator norm‖W‖ ≤ 1.

An extremal example of a quadratic contraction is the

constant operator. In this case the coefficientsp( f )
i j,k, p(m)

i j,l
do not depend oni and j. This suggests that for a
sufficiently small scattering of coefficient for every fixed
k, l the quadratic operator will be a contraction. This
remark can be expressed as a precise theorem.

The Lipschitz constant of an operator
W : Rn+ν → R

n+ν is

L(W ) = sup
z6=t

‖W (z)−W(t)‖
‖z− t‖

,

where‖ · ‖ is some norm inRn+ν . If this norm can be
chosen so thatL(W ) < 1 then W will be a strict
contraction in this norm with the consequences: unique
fixed point, convergence of all trajectories to this point,
exponential rate of convergence. Unless otherwise
specified, we will use thel1− norm in the basis

e( f )
i = ei, i = 1, . . . ,n ande(m)

i = en+i, i = 1, . . . ,ν defined

as ‖z‖ =
n
∑

i=1
xi +

ν
∑
j=1

y j for

z= (x,y) =
n
∑

i=1
xie

( f )
i +

ν
∑
j=1

y je
(m)
j .

Lemma 3.1.[2] Let ∆ be a convexn− dimensional
compact inRn, F : ∆ → ∆ be a smooth map. Then (for
any norm)L(F)≡ max

z∈∆
‖dzF‖.

Lemma 3.2.[2]. Let a matrixA = (ai j)
n
i, j=1 satisfies

n

∑
i=1

ai1 =
n

∑
i=1

ai2 = ...=
n

∑
i=1

ain.

Then

‖A|Rn
0‖=

1
2

max
j1 6= j2

n

∑
i=1

|ai j1 − ai j2|,

whereA|Rn
0 is restriction operatorA onRn

0.
For eachz∈ B we have linear operatorMz : B → B

defined byMz(t) = zt.

Theorema 3.3.The following inequality holds for the
Lipschitz’s constant

L(W )≤ max
i1,i2, j

( n

∑
k=1

|p( f )
i1 j,k − p( f )

i2 j,k|+
ν

∑
l=1

|p(m)
i1 j,l − p(m)

i2 j,l |

)

+

max
j1, j2,i

( n

∑
k=1

|p( f )
i j1,k

− p( f )
i j2,k

|+
ν

∑
l=1

|p(m)
i j1,l

− p(m)
i j2,l

|

)

.

Proof. For the operatorW in S the derivative is

dzW = 1
2









































ν
∑
j=1

p( f )
1 j,1y j . . .

ν
∑
j=1

p( f )
n j,1y j

n
∑

i=1
p( f )

i1,1xi . . .
n
∑

i=1
p( f )

iν,1xi

...
. . .

...
...

. . .
...

ν
∑
j=1

p( f )
1 j,ny j . . .

ν
∑
j=1

p( f )
n j,ny j

n
∑

i=1
p( f )

i1,nxi . . .
n
∑

i=1
p( f )

iν,nxi

ν
∑
j=1

p(m)
1 j,1y j . . .

ν
∑
j=1

p(m)
n j,1y j

n
∑

i=1
p(m)

i1,1xi . . .
n
∑

i=1
p(m)

iν,1xi

...
. . .

...
...

. . .
...

ν
∑
j=1

p(m)
1 j,νy j . . .

ν
∑
j=1

p(m)
n j,νy j

n
∑

i=1
p(m)

i1,νxi . . .
n
∑

i=1
p(m)

iν,νxi









































dzW = 2Mz = 2
n

∑
k=1

xkM( f )
k +2

ν

∑
l=1

ylM
(m)
l ,

where M( f )
k = M

e( f )
k

and M(m)
l = M

e(m)
l

are the

multiplication maps with matrixes(p( f )
i j,k)

n
i,k=1 and

respectively(p(m)
i j,l )

ν
j,l=1.

By Lemma 3.1 we have

L(W ) = 2max
z∈S

‖Mz‖ ≤ 2max
k

‖M( f )
k ‖+2max

l
‖M(m)

l ‖.

By Lemma 3.2,

‖M( f )
k ‖=

1
2

max
i1,i2, j

( n

∑
k=1

|p( f )
i1 j,k− p( f )

i2 j,k|+
ν

∑
l=1

|p(m)
i1 j,l− p(m)

i2 j,l |

)

,

‖M(m)
l ‖=

1
2

max
i, j1, j2

( n

∑
k=1

|p( f )
i j1,k

− p( f )
i j2,k

|+
ν

∑
l=1

|p(m)
i j1,l

− p(m)
i j2,l

|

)

.

Corollary 3.4. An evolutionary operator (2) is a strict
contraction if

max
i1,i2, j

( n

∑
k=1

|p( f )
i1 j,k − p( f )

i2 j,k|+
ν

∑
l=1

|p(m)
i1 j,l − p(m)

i2 j,l |

)

+

max
j1, j2,i

( n

∑
k=1

|p( f )
i j1,k

− p( f )
i j2,k

|+
ν

∑
l=1

|p(m)
i j1,l

− p(m)
i j2,l

|

)

< 1. (5)

For evolutionary operators with positive coefficients
there is a multiplicative estimate of the distance from the
evolutionary operator to the constant one. Let

µ f ≡ µ f (W )= max
i1,i2, j,k

p( f )
i1 j,k

p( f )
i2 j,k

, µm ≡ µm(W ) = max
i, j1, j2,l

p(m)
i j1,l

p(m)
i j2,l

,

and letζ (W ) equal to LHS of (5).

Lemma 3.5.

ζ (W )≤ 4
µ f −1
µ f +1

+4
µm−1
µm+1

.
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Proof. If α,β > 0 andµ = max(α
β ,

β
α ) then obviously

|α −β |=
µ −1
µ +1

(α +β ).

Hence

|p( f )
i1 j,k − p( f )

i2 j,k| ≤
µ f −1
µ f +1

(p( f )
i1 j,k + p( f )

i2 j,k),

|p(m)
i1 j,l − p(m)

i2 j,l | ≤
µm −1
µm +1

(p(m)
i1 j,l + p(m)

i2 j,l),

and respectively

|p( f )
i j1,k

− p( f )
i j2,k

| ≤
µ f −1
µ f +1

(p( f )
i j1,k

+ p( f )
i j2,k

),

|p(m)
i j1,l

− p(m)
i j2,l

| ≤
µm −1
µm +1

(p(m)
i j1,l

+ p(m)
i j2,l

).

It remains to sum these inequalities overk and
respectively overl, keeping in mind that

n

∑
k=1

p( f )
i1 j,k =

n

∑
k=1

p( f )
i2 j,k =

ν

∑
l=1

p(m)
i j1,l

=
ν

∑
l=1

p(m)
i j2,l

= 1.

Corollary 3.6.

L(W )≤ 4
µ f −1
µ f +1

+4
µm −1
µm +1

.

Corollary 3.7. If 7µ f µm − (µ f + µm) < 9 then the
evolutionary operator (2) is a strict contraction.

Corollary 3.8. Let µ = max(µ f
,µm). Then

L(W )≤ 8
µ −1
µ +1

and if µ <
9
7 then the evolutionary operator (2) is a strict

contraction.

Remark 3.9. For free and bisexual populations the
conditions of contractility are essentially different.

Let us give several examples and check the condition
of Corollary 3.4.

Example 3.10.Consider the operator

W :































x′1 =
3
7x1y1+

1
2x1y2+

1
2x2y1+

4
7x2y2,

x′2 =
4
7x1y1+

1
2x1y2+

1
2x2y1+

3
7x2y2,

y′1 =
4
7x1y1+

1
2x1y2+

1
2x2y1+

3
7x2y2,

y′2 =
3
7x1y1+

1
2x1y2+

1
2x2y1+

4
7x2y2.

(6)

The coefficients of the operator (6) are the following

p( f )
11,1 =

3
7 p( f )

12,1 =
1
2 p( f )

21,1 =
1
2 p( f )

22,1 =
4
7

p( f )
11,2 =

4
7 p( f )

12,2 =
1
2 p( f )

21,2 =
1
2 p( f )

22,2 =
3
7

p(m)
11,1 =

4
7 p(m)

12,1 =
1
2 p(m)

21,1 =
1
2 p(m)

22,1 =
3
7

p(m)
11,2 =

3
7 p(m)

12,2 =
1
2 p(m)

21,2 =
1
2 p(m)

22,2 =
4
7

It is easy to check that condition (5) fulfilled for (6).
Indeed,

max
i1,i2, j

( n

∑
k=1

|p( f )
i1 j,k − p( f )

i2 j,k|+
ν

∑
l=1

|p(m)
i1 j,l − p(m)

i2 j,l |

)

+

max
j1, j2,i

( n

∑
k=1

|p( f )
i j1,k

− p( f )
i j2,k

|+
ν

∑
l=1

|p(m)
i j1,l

− p(m)
i j2,l

|

)

=
4
7
.

Consequently, this operator is a strict contraction and
it has unique fixed point(1

2,
1
2,

1
2,

1
2). Moreover any

trajectory of (6) converges to the fixed point.
The following example shows that the condition of

Corollary 3.4 is not fulfilled and evolutionary operator
has periodic trajectory.

Example 3.11.Consider the operator

W :



























x′1 = x1y1

x′2 = x1y2+ x2

y′1 = x2y2

y′2 = x1+ x2y1

(7)

It easy to check that operator (7) does not satisfy the
condition of Corollary 3.4.

We rewrite the operator (7) in the form

W :







x′1 = x1y1

y′1 = (1− x1)(1− y1)
(8)

Denotexn = x(n)1 , yn = y(n)1 then from (8) we have






xn+1 = xnyn

yn+1 = (1− xn)(1− yn)
(9)

Since 0≤ xnyn ≤ xn from the first equation of (9) it
follows that lim

n→∞
xn = x∗ = 0. Indeed, for

z0 ∈ int(S1× S1) = {z∈ S1× S1 : xi > 0,yi > 0, i = 1,2}.

we get from (9)

xn+2

xn+1
= (1− xn)

(

1−
xn+1

xn

)

,

c© 2015 NSP
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xn+2xn = xn+1(1− xn)(xn − xn+1),

lim
n→∞

xn+2xn = lim
n→∞

xn+1(1− xn)(xn − xn+1),

(x∗)2 = 0, x∗ = 0.

Now consider the operator

W 2 :







x′ = xy− x2y− xy2+ x2y2

y′ = x+ y− xy− x2y− xy2+ x2y2

Clearly, the operatorW 2 has fixed points(0,y), 0 ≤
y ≤ 1. The point(0,y) is a saddle point.

It is easy to check that the set
{(x,y) ∈ S1 × S1 : x1 = 0} is an invariant subset for (7).
Any point of the invariant subset is periodic point with
period two for operator (7). So trajectory of the operator
with an initial point from invariant subset does not
converge. Thus operator (7) has a trajectory which does
non-converge to the fixed point(0,1, 1

2,
1
2).

The following example shows that condition of
Corollary 3.4 is sufficient but is not necessary.

Example 3.12.Consider the operator with coefficients of
inheritance

p( f )
11,1 = 0 p( f )

12,1 = 0 p( f )
21,1 =

1
2 p( f )

22,1 =
1
2

p( f )
11,2 = 1 p( f )

12,2 = 1 p( f )
21,2 =

1
2 p( f )

22,2 =
1
2

p(m)
11,1 = 0 p(m)

12,1 =
1
2 p(m)

21,1 = 0 p(m)
22,1 =

1
2

p(m)
11,2 = 1 p(m)

12,2 =
1
2 p(m)

21,2 = 1 p(m)
22,2 =

1
2

i.e. the evolution operator has the form

W :































x′1 =
1
2x2

x′2 = x1+
1
2x2

y′1 =
1
2y2

y′2 = y1+
1
2y2

(10)

It easy to check that operator (10) does not satisfy the
condition of Corollary 3.4.

max
i1,i2, j

( n

∑
k=1

|p( f )
i1 j,k − p( f )

i2 j,k|+
ν

∑
l=1

|p(m)
i1 j,l − p(m)

i2 j,l |

)

+

max
j1, j2,i

( n

∑
k=1

|p( f )
i j1,k

− p( f )
i j2,k

|+
ν

∑
l=1

|p(m)
i j1,l

− p(m)
i j2,l

|

)

= 2> 1.

But any trajectory of (10) converges to(1
3,

2
3,

1
3,

2
3).

Indeed, from (10) we have

x(n+1)
1 =

1
2
(1− x(n)1 )

We consider following one dimensional dynamical
system.

f (x) =
1
2
(1− x)

It has unique fixed pointx = 1
3 and decreasing on

[0,1]. Easy to check thatf ′(x) = − 1
2 and| f ′(1

3)| =
1
2 < 1

therefore the fixed pointx = 1
3 is attracting.

We claim that any trajectory off (x) converges to the
fixed pointx = 1

3. Indeed, we have

f n(x) =
n

∑
k=1

(−1)k

2k +(−1)n ·
x
2n

and

lim
n→∞

f 2n(x) = lim
n→∞

(

1
3
·
22n −1

22n +
x

22n

)

=
1
3
,

lim
n→∞

f 2n+1(x) = lim
n→∞

(

1
3
·
22n −1

22n +
1

22n+1 −
x

22n+1

)

=
1
3
.

So for any initial point trajectory of (10) converges to
(1

3,
2
3,

1
3,

2
3).
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