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Abstract: Finite field inversion is considered a very time-consumimgration in scalar multiplication required in elliptic ser

cryptosystems. A fast inversion algorithm in binary extensfields using normal basis representation is proposed. bfased on
Fermat's theorem. Compared to existing similar methods, shown that for a given extension degraef the concerned field the
proposed algorithm requires as few as or fewer multiplcatithan any other similar algorithm in the literature.
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1 Introduction solving an inverse. For a nonzero element GF(2M),
its inverse can be given by

Elliptic curve cryptography (ECC) is one of the most
popular public key cryptography technologies used today aleag?2_g?va¥x...xa®™ " (1)
[1,2]. Finite field inversion generally regarded as
probably ~the most time-consuming operation in |pyerse calculation without any attempt to modify) (
computations involved in many elliptic ~curve requires(m— 2) multiplications and(m— 1) squarings.
cryptosystems 3,4]. Thus, the motivation behind our \wang et al. implemented1) in very large scale
work is to accelerate the runtime of such cryptosystemspegration (VLSI) technology and reported their work
using affine coordinates through fast inverse computation;y, [7]. Itoh and Tsuijii proposed an efficient inversion
Finite field inversion can be solved with extended method with significantly reduced complexity by cleverly
Euclidean algorithm or exponentiation with a constantmodifying (1). Their algorithm has inversion cost of
exponent. The latter solution also referred to as Fermat's/(m— 1) + hw(m— 1) — 2] normal basis multiplications
Little Theorem (FLT) based method. Extended Euclideanjn GF(2™), where/(x) is the binary length ok andhw(x)
algorithm method considered not efficient in hardwarejs the Hamming weight of the binany Their algorithm,
implementation, since the number of computation stepseferred to as ITA §], will be given a more detailed
varies significantly for different input and few variables review in Section Ill. Changt al.considered cases where
must be stored throughout the computation. In FLT basedm — 1) can be factorized into two nontrivial divisors
method, an inverse can be computed with a series ofm— 1 = x x y) and proposed an algorithm' referred to as
squarings and multiplication$[6]. CEA [9], whose inversion cost is
Adoption of binary extension field with normal basis [(¢(x) +hw(x) — 2) + (¢(y) + hw(y) — 2)]. Takagi et al.
renders field squaring a free runtime operation, andproposed an improved version algorithm of CEA
inversion complexity (inversion cost) can be effectively algorithm by allowing decomposition ofm — 1) into
measured as the number of required multiplications. Inseveral factors plus a small remainder
this paper, we will focus on FLT based method for (m— 1 = []*.;ri + h). Their algorithm, referred to as
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TYT [10], requires[3¥ , (£(ri) +hw(ri) — 2) +h] normal

basis multiplications inGF(2™) to solve an inverse. o . 2 _—
Recently, Liet al. made incremental improvement on a=a6> +a0% + - +am20°  +am10%
TYT and reduced inversion cost to ) )

[sK .(6(ri) +hw(ri) —2)+hw(h)]  normal  basis Whereg € {0,1} fori=0,1,---,m—1. Using NB,a can
multiplications in GF(2™). Their inversion algorithm also be given by a binary vector

referred to as LCA 11] in the rest of the paper. In

summary, the problem of efficient computation of inverse a = (aoa1 " 8m-28m-1)- (2)
with FLT method is to find a shortest addition chain
(SAC) to reach the constant exponehi#]f

In this paper, a new algorithm to solve inverse in
GF(2™) using normal basis is presented. It is an
incremental improvement on TYT and LCA algorithms.
Given (m— 1) = 1¥_;ri + h, our proposed algorithm has
inversion cost of ¥ ; (¢(ri) + hw(rj) — 2) + 1]. Note that
it is more flexible to choosé in the proposed method,
rather than restriction ofi to be one in TYT algorithm
and to be the leadtw(h) in LCA algorithm. The main
idea is to decompos@gn— 1) into several factors plus a m1 1% me1 m _
remainderh and restricth to belong to the SAC of any a? = lZE a‘-ez'] = Z} 802" = Z}a«i,mezl
factor in(m— 1). Therefore, all multiplications relevant to i= i= i=
remainderh are saved, thus, more reductions in the _— (am_18081 - - - Bm_38m_2), ()
required multiplications for inversion can be achieved.

Given m of GF(2™) recommended either for where the subscript ((i — 1)) is defined as
governmental or personal use of ECC, we will show that[(i — 1) modm]. Comparing 8) to (2), a? can be obtained
inversion cost of our method is always as few as or fewerfrom cyclic shifting to the right the coefficients af.
than other methods mentioned above. For example, wheRurthermore, the operation oir? w.rt. NB can be
m= 216 it requires 10 multiplications for inversion using realized withi-bit right cyclic-shifts.
our proposed algorithm, while it needs 11 multiplications  Based on above discussian ! = a2"2. Knowing
for inversion with TYT and LCA algorithms, and it needs that
12 multiplications for inversion with ITA algorithm.

The rest of the paper is organized as follows: A 2M_2=2142%24...4om 2 oML
preliminary mathematics of finite fields is reviewed in . )

Section 2. The relevant field inversion algorithms arethena™ can be given by
previewed in Section 3. Our proposed inversion algorithm

For two arbitrary elements, 3 € GF(2™), we have
(a+ B)? = a2+ B2, since the characteristic f@F(2")
is two and the term @3 = 0. As mentioned above,
nonzero elements iIGF(2™) form cyclic group under
multiplication with group order|GF*(2M)| = 2™ — 1.
Therefore, givern € GF*(2™), we havea?"-1 =1 and
a?" = a. Thus, field squaring ofr w.rt. NB can be
obtained as follows:

is presented in detail in Section 4. Comparison tables an%{_l _ g2 _ g2y 2m 2o
the achieved results are provided in Section 5. Finally, o1 2 -2 -1
conclusions are drawn in Section 6. =0° X0 x---xa®  xa® . 4)

It can be clearly seen frondl) that inversion requires
(m—2) multiplications andm— 1) squarings. Given that

2 Mathematical Preliminaries squaring is a free runtime operation when using NB,
inversion operation needs only(m — 2) NB
2.1 Finite field GK2™M) and normal basis multiplications inGF (2™).

A field F is a commutative ring whose nonzero elements

form a group under multiplication. Thus, every nonzero 2.2 Addition chains

field elementa € F has a corresponding multiplicative

inverse elementr* € F. A finite field GF(2") is afield  An addition chain for a positive integer denoted a€;,
containing 2' elements that has characteristic of two. is a chain $equenceof elements iitegers of lengthl,

A basis of GF(2™) over GF(2) of the form  with the property that (the last chain-elemepts given
{62 62 ... 62" 62" "1 where 6 € GF(2™ is by gradual addition of previous chain-elements. When
suitable field element, is called a normal basis (NB) ofis small enough, such as the factorgin— 1), the chain
GF(2™) over GF(2) [13]. It is known that there always is referred to as the shortest addition chain (SAC). This
exists an NB forGF(2™M) over GF(2) for any value of  because the chain is a priori known and has the minimal

m> 1 [1]. chain-length. Givem, then

Any given field elementa € GF(2™) can be
represented with respect to the NB as follows C. =(co,C1,.--,C-1,C),
(@© 2015 NSP
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with ¢p =1, ¢ =r and the governing rulej = G, + Ci,, Applying (6 to (5 repeatedly  with
for (0 <i,i1,ip <l)and(i >i1,ip). C is associated with j=q—1,g—2,...,1, it follows

another sequence of integer pairs, where each pair is

representing thé" subsequent chain-elemeanin C, and

is given by 21 1= (212 _q)2(M-2-Mo)2 4

A = ((ciy,Ci,y) | 0<ig iz <1—1). (22277 _ 1)(Ma-5--M0)2 | (M2 _ 1)oMo 4 (oMo _ 1),

Assumer = 18, then (7)
Cis=(1,2,4,8,16,18), Write

associated with the sequence of integer-pairs

o2 1) —mi22 22t
Aig=((1,1),(2,2),(4,4),(8,,8),(16,2)), ( ) = mj( )( )

—m22 T )22 1) (2P (22 - 1)
following the governing rule; = ¢i_1 4+ ¢j_1 = 2¢;_1 for 2l 2i-2 20
i € {1,2,3,4}, except fori = 5, wherecs = ¢4 + C1. =m(2" +1)2" +1)-- (27 +1). (8)

Another chain for = 18 is given by . . . ) .
Substitutg2™? —1),j=q—1,q—2,...,1,in (7) with
Cis=(1,2,3,6,12,18), (8). Note that(2™ — 1) = mg andmg_1 = 1, thus we have

associated with the sequence of integer-pairs

—2 —2
Agg — ((1,1),(2,1),(3,3),(6,,6),(12,6)), om 1_1: (...((1+22q )qu,zzq _|_mq72)...
20-3 3243 20 20
following the governing rule; = ¢i_1 + ¢i_1 = 2¢i_1 for (1427 )2 T my ) (14:27) 2707 4 .
i €{1,3,4}, andc; = ¢i_1 +¢i_2 fori € {2,5}. Note that , D
both chains are the shortest addition chains (SACS) for Therefore, the inverse oft € GF*(2™) using ITA
18. There are different SACs forof same length. expression is given by
Addition chains are useful in computing terms of the
form (a? ~1) with fewest possible multiplications, given
thata € GF(2™) andr is small positive integer. Suchterms ~ a ! =
assist in inverse computation @&F(2™). When we get to o q-2 3
introduce our decomposition met(hO()j in sectionfi\¢an (((- .- (((a”zzq )2%722 X a"‘q*Z)”zzq )quf
be equal to eithefm— 1) or any factor of it as long as
h € C;. In that section, by means of an example we will
also show how such computations are performed.

32073

1422 oMo’ 2
o @MYL gme) T (g

The number of multiplication operations involved in
3 A Review of FLT based Inversion (9) is the sum of the following two parts: i) the number of
Algorithmsin GF(2™) Using NB ‘4+' signs in any exponent, and i) the number &f ‘signs.
The the number off’ signsin @) isq—1 or¢(m—1)—1.
With FLT based inversion algorithms given ii)( an ~ The number of X’ signs depends on whether or nog
inverse in GF(2™) can be generated inm — 2) is equal to one foj = 0,1,...,q— 2. This because™ =
multiplication operations. Itoh and Tsujii proposed an 1 if mj = 0 and the signx’ immediately precedingr™
algorithm that significantly reduces the number of (= 1) can be saved. Note that, ; = 1, thus part ii) is
required multiplications for inversior8[. Their method ~hw(m— 1) — 1. Therefore, inversion cost ifYis given by

can be described as follows. [¢(m—1)+hw(m— 1) —2]. ITA inversion algorithm was
Note that ' —2 = 2(2™! — 1) and writem—1 as a  derived based on previous discussidmgorithm 1).

g-bit binary numberfmg_1my_>...mimp), with the MSB Feng [L4] proposed an inversion algorithm with

mg-1 =1, then inversion cost similar to that of ITA algorithm, except that

it relies on field multiplications and square-roots (left
cyclic-shifts in NB) to computer inversion. The algorithm
is highly regular and modular, thus, is suitable for VLSI
Note that implementation as claimed by the author.

Changet al. improved ITA algorithm for cases in
. which (m— 1) can be factorized into two non-trivial
2(Mj--mo)z _ 1 — (2M2 _ 1)2(M-1-Mo)2 | 2(M-1.-Mo)2 _ 1 divisors P]. Their method can be described as follows.
(6) Givenm— 1= xx Yy, we have

om-1_ 4 _ o(Mg-1Mg-2..MMo)2 _ 1. (5)
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Algorithm 1 : ITA Inversion Algorithm inGF(2™) [8]
Input: a € GF*(2™), andm—1 = (1mg_...M o).
Output:d = a?" 2 = a1 € GF(2")

Initialization: 6 := a;

fori:=q—2to0do
5:=5x08%;
if m=1then

d:=axd%:

end if

end for

5= 82

return o

2mlo1=29-1

= (2= D291 @P 2+ (2914 (299,

Thereforea ! using CEA expression is given by

-1

a-l= 02(2”’*1—1)

— (a2*—1)<2X>yfl+<2X>H+...+<zX>1+<zX>°}2'

Assume thatd = (aZ~1) has been computed with
ITA algorithm by setting the inputs ag andm—1 = x.
Thus it requireg?(x) + hw(x) — 2] multiplications. Lety
be represented hybit binary numbey = (1y;_2...yo)2.
By following similar procedure to that irBj, the number
of multiplication operations involved is given by
[¢(y)+hw(y) —2]. Therefore, inversion cost of this
improved algorithm is given by

[(€() +hw(x) —2) + (¢(y) +hw(y) —2)].  (10)

recurswely First letx = ry x --- X1, Yy = rg, and

5 =a?"1 Based onQ) it reqU|res[€(rk)+hw(rk)—2]
mult|pllcat|ons. Secondly, letx = r; x -+ X rg_o,
y=ry_1, andd = a2 to computea?®”"1-1 which

requires [£(rx_1) +hw(rx_1) —2] multiplications, etc.
Finally, computation ofr?*~ using ITA or ©) requires
[¢(r1) 4+ hw(r1) — 2] multiplications. Therefore, inversion
cost of TYT algorithm is given by

k

2l

(rj)+hw(rj) —2]+h|.

Note thath is always restricted to value of 1 as claimed
by the authors.

LCA algorithm proposed by Liet al. is a further
improvement on TYT algorithm in one aspedt]]. It
reuses some intermediate results to savéh)
multiplications  while  keeping hw(h) small in
(m—1) = *_yrj +h. Compared to TYT method, Let
al’'s method allows to be larger than 1 as long as reuse is
applicable anchw(h) can be kept minimal. As a result,
Li's method gives more flexibility in decomposing
(m—1). Instead of {1), a~* using LCA expression is
given by

szhfl_l

x (o

2'171)2"'*'1 x (a

)2

2m—h—171

al= aZirifmlfhzi x (a
2m_pm-h )2

am-h-1_1\2
)<

= (a (12)

hw(h) multiplications
It is shown in LCA algorithm that it takes ontyw(h)

multiplications to compute the underbraced termig)(
provided thath andr; are properly chosen, and certain

Note that this improvement is not applicable when intermediate results from other terms can be reused in

(m—1) is prime.

TYT algorithm proposed by Takagi al. is a further
improvement on ITA and the method of Chaagal in
two aspects](]. First TYT allows(m— 1) to be a prime
by factorizing (m— 1 — h), whereh restricted to small
value, rather thafim— 1). Secondly, TYT permits more

than two divisors, as long as an optimal decompaosition

computing the term(a2 ~12"" Therefore, inversion
cost of LCA algorithm is given by

k

Z (rj) +hw(rj) — 2] +hw(h)| .

Note thath is always restricted to minimuitmw(h) as

[10] is obtained. Their method can be described asgigimed by the authors.

follows.
Assume(m— 1) can be decomposed infon— 1) =
r]'j‘zlrj +h, i.e, several factors plus a small remainder

Write 2" —2=2M-1 4. 2M=2 1 ... oM=N 4 2m-"_ 2 then
a~tusing TYT expression is given by
al=a?""xa? " x . xa? "x (@@ N2 11)

h multiplications

The last terma?™ " *=1) = a2¥2"*~1n (11) can

be computed by applying Changt als method

4 Proposed Inversion Algorithm

While inversion cost of TYT algorithm depends on value
of h, inversion cost of LCA algorithm depends on
Hamming weight oh. In the rest of this section, we will
propose a new method to compute! € GF(2™). In this
method, inversion cost is neither dependent fomor
Hamming weight oth. Thus, more flexible choices fdr
value are available.
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Theorem 1Given (m— 1) = [1¥_;rj +h with h properly
chosen to belong to,C(shortest addition chain of factor

ry), a—*for a nonzerax € GF(2™) can be computed with
inversion cost bounded above by

k
z (rj)+hw(rj)
J:

—2]+1 (13)

ProofGiven(m— 1) as inTheorentl, then

K o 2
_ <a2ﬂ1_1r1+h1> _ ((azrlx---xrkil)zh » (azhil))Z

= (@ @)

e— (((Zrl)r2*1+ ) (@Y 1)) .
. (14)
Knowing that a? powers are simplyi-bit right
cyclic-shifts, i.e., free runtime operations. Thus, irser
expression in14) can be reduced to the following

al— [(azflfl)e % (az'tl)} .

given that

(15)

Let us now forget about the computational cost of thecompute the tern{a®*~1) =

except forrq, is exactly as given in 1) above. By
returning to the ternfa??-1), its computational cost can
be given as follows. Let the SAC foi be given by

Crl = {00701702703}7
wherecg = 1 andcz = r1. In addition, let the associated
sequence of integer pairs Gf, be given by
Arl = {(C07CO)7 (Cla Cl)a (CZa CZ)}a

using the addition rule; = ¢i_1 +¢—1 for i € {1,2,3}.
Then, it follows that(a?*~1) = (a?*~1) is computed as

follows
0 —1\2% Co— Co+Co Cl_
(02 1)2 % (02 1) _ (02 1) _ (021 1)
(0251 1)2C1 (0201_1) _ (0251+Cl—1) _ (a2C2—1)
(@122 x (@) = (@®*7% ) = (a® H17)

Let us assign integer values f&;, elements while
satisfying the addition rule of A, ie., let
co = 1,c1 = 2¢c; = 4c3 = rp = 8 such that
C, = Cs = {1,2,4,8}, then
[€(r1) +hw(ry) — 2] = [¢(8) + hw(8) — 2] = 3. This result
exactly equal the number of multiplications necessary to
(or2 —1), as evident from

term(a?*~1) (we return to it before ending the proof), the (17) above. In other words, 3 is equal to the length of

computational cost required for using exponeint (15) is
given by

k

%[f(fj)ﬂLhW(fj) -2, (16)
j=

and its detailed steps are given as follows. Firstly,

computational cost of

2n 71) (22— 1q..4(21)0 _ (azrlxr2fl)

(a

is [l(r2) + hw(rp) — 2]
computational cost of

multiplications. Secondly,

rqQxro rqxroyrg—1, . r1xro\0 rqQxXroxrg
(azl 2 1)(21 2)3 + +(21 2) :(azl 2713 1)

is [€(r3) + hw(rz) — 2] multiplications. Finally,
computational cost of
(a2r1><---><rk7171)(2r1><---xrk,1>rk—1+_'_+(2r1x---xrk,1>0
_ (azrlx---xrkil) _ (02'171)8
is  [l(re) + hw(ry) — 2] multiplications.  Thus,

computational cost relevant to all factors {(m— 1),

Cr, = Cg, which represents the number of commas
separating its elements. Note that previous discussion is
valid for any choice of; and its associated SAC. Thus,
computational cost of the terfm?* ~1) is given by

[0(r1) +w(ry) — 2], (18)

multiplications. Notice that ith = ¢; for i € {0,1,2,3},
then (a2~1) = (a?*~1) is an intermediate result, as
evident from (7) above. Thus, all computational cost of
the term(a?'~1) is saved. Extra multiplication is required
to combine the terms inlg) above. When added to other
costs given in 16) and (18), the inversion cost of our
proposed algorithm is exactly as given irheoreml1
above.

In the following, by means of an example we introduce
our proposed algorithms. ConsideF (221 and assume
that m = 216 is already passed to our proposed
decomposition algorithmA(Igorithm 2). Given thatry is

a small factor, the SAC and the sequence of integer pairs
of r; are assumed already available and accessible. Given
thatm = 216 and a nonzero field elememtc GF(22)

in which its inversex —1 is required, then

DecomExt(216) =

(13,4,7) and(m—1) =13 x 16+ 7.

(@© 2015 NSP
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Algorithm 2 DecomExtm) Algorithm in GF(2™)
Input: extension degrem
Output:(m—1) =r1 x n+hgiven as(rq,n, h)
Initial: t := (m—1), | :=/t, j :=0;

iftisodd:S«+ S =1{1,3,---,1:=[l11}. |[l] if | odd;
iftiseven'S« S={2,4,--- [ :=[l]}. [I]if | odd;
for all i in the selecte@®do

R:=t—i;

while (R# 2€and 2|Rand [R/2] > i) do
Ri=(5),i=j+1
end while
save the resulted 3-tupl&, j, S(i)) in array (memory)
ji=0;
next i;
end for
find (R, j,S(i)) with i € Cr and largesf;
return (ry:=Rn:=2 h:=g(i))

Thusry = 13,n= 16 andh = 7. The SAC forr; = 13,
Ci3=1{1,2,3,6,7,13}. Given thata,C,,A,, andh are
passed as inputs to our proposgthininversealgorithm
(Algorithm 3) , the resulted output i$a2°~1), which
requires[f(r1) + hw(ry) — 2] = [¢(13) + hw(13) — 2] =5
GF(2%'6)-multiplications. In order to understand how

Algorithm 3 chairrinverseAlgorithm in GF(2™)
Input: e € GF*(2™), Cy and A, precomputed,
K :=0 if (m— 1) not-decomposed, otherwige= h
Output:82 = et € GF(2M), f = (a?* 1)
Given: &, (6) = €1, &, s, (€) = [5G, (€)™ x &, (¢)
Initial: | :=lengthCy), &, :=€;
fori:=1tol do .
& (e) := [5G, (6))*™ x &, (e);

if K =¢j then
f 1= & (6);

end if

end for

if Kk #0then
return &, f

end if

return &2, f

chaininvrersealgorithm works, calculation steps for the
term (a?*~1) are shown in 19) for r; = 13 andCy3 as
given above.

(@)% x (a) = (a®) = (a*Y)

(@3 x (@) = (a") = (a® )

(a”)? x (a”) = (@®) = (a® 1)

(a%9? x (@) = (a') = (a® )
(0127)26 x (a%%) = (a®19%) = ( 213—1) (19)

Given that h 7 € Ci3, then the term
(a?'-1) = (a?'-1) is available when computing the term
(a2"-1), as evident from 19) above. Notice how the
outputs in (9) at each computation step have the form
(a®~1), where x is the elements ofCy3 in their
appropriate order witha?' 1) = a.

Computations relevant to other factors(m— 1) are
performed using our proposed-actors algorithm
(Algorithm 4). The algorithm requires
SAol0(ry) + hw(rj) — 2] = [£(16) + hw(16) — 2] = 4
GF(2216)-multiplications.

Algorithm 4 FactorsAlgorithm in GF(2™)

Input: A € GF(2™),v = [*_,rj i 1j = (1mé£>72,“m(()j))2
Output:p = A€ = (q?*-1)e

Initial: r := 1,
for j:=2tokdo
pi=A;
Fi=rxrj_i;
for i:=qj—2to0do
W= px p2?
if m! = 1 then
o= A x 2
end if
end for
A=
end for
return u

When adding the required multiplications ih9j to
those required byactorsalgorithm, the total number of
required multiplications relevant to all factors (m— 1)
is given by X [(r)) + hw(rj)) —2] = 5+4 =9
GF(2216)-multiplications. Knowing that one extra

multiplication is required to combine the terf?'~1),
the inverse  of a is computed  with
SElery) + hwrj) — 2] + 1 9 + 1 10
GF(2216)-multiplications, which is the inversion cost
using our proposed algorithm.

Inverséa,m) is our proposed main inversion
algorithm @lgorithm 5). It consists of all previously
mentioned helper algorithms which are ready for call
when appropriate and depending on the case under
consideration.

In what follows, we present a set of propositions
helpful to understand the way in whicimverséa,m)
algorithm works, and to clarify the best possible
techniques to decompoge— 1). Here are some useful
notations. The required number of multiplications
necessary to compute the tefm? ~1), NRMgr), binary
length of r, I(r), Hamming weight ofr, w(r), r is a
full-weight integer] (r) = w(r), shortest addition chain of

(@© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 5, 2443-2452 (2015)www.naturalspublishing.com/Journals.asp NS = 2449

Algorithm 5 InverseAlgorithm in GF(2™)

Input. a € GF*(2™), extension degrem values are expect.ed to have ' the minimum
Output:3 = a1 € GF(2M) NRMgr; x n+ h) in inverse computation relative to
Initial: (m—1); others.
Case when(m-— 1) is not-decomposed:
if (m—1) = 2 or w(m—1) = 2) then Prop.7 For the set of m values those decomposed as
return & := chaininverséa,Cnm_1,An_1,0) r1 x n+hwith h= 1 (thish alwayse C;,), those m values
Casewhen(m_l) is decomposed: in inverse computation have NRM@X n-+ h) same as
ese that required by using TYT algorithm. With=h2X for any
fetch (ry,n, h) from the array (memory); positive integer kthis h often € C;,), those m values in
(n,p] := chairrinvers€a,C;,, A, h); inverse computation have NRMs x n+ h) same as that
y := Factorgn,n); required by using LCA algorithm. Thus, such m values
if (h=0) then are also associated with lowest possible inversion cost
elfewm o=y using our inversion algorithm.
se
return 5 := ((y)? x p)? Prop.8 For the set of m values those decomposed as
end if ri x n+h with h=ry (this h always € C;,), those m

values can be factorized into prime factors. In such a
case, DecomEx{m) algorithm may or may not produce
the minimum NRMs; x n—+ h) in inverse calculation
r, C, length ofC;, Ig,. Note that ifr = (m— 1), then  compared to prime factors decomposition. Select first
NRMgm — 1) gives the required number of decomposition if associated with lower inversion cost,
multiplications necessary to compute the inverse. Also, ifotherwise, select the latter using the prime factarsind
r = h, then NRMgh) = 1 (using our decomposition r,, since g x N4ry =ry x (n+1) = ry x ro. Factorize p

method). Furthermore, given if possible, to achieve more reductions.

DecomExtim) = r; x n 4+ h, then

NRMgDecomExtfm)) = NRMSgr n h) =

NRM;rl)—kNRME?n))zk 1. sr X + The following propositions are helpful in finding the

shortest addition chains (SACs) for an integer, which may
Prop.1 Given m= (2k+ 1) for any positive integer k, be applicable in some cases. In searching for the SAC for
no decomposition is required for m. In calling apositive integex (i.e.,Cy), then:

chain-inverse algorithm, the inverse is obtained with . _
NRMg{zk) =k multiplications. Prop. 1 If xis large, there are many possible SACs for x.

_ Thus, the set of values taken by h is maximized given that
Prop.2 Given m= (2¢+ 2] 4+ 1) for any positive integers  h e C..
k> j(i.e., wim—1) = 2), no decomposition is required
for m. In calling chain-inverse algorithm, the inverse is Prop.2 If x=ry xrzx---xr¢ (multiplication of several
obtained with NRM&K + 21) = k+ 1 multiplications. factors), given that h is equal to any facterfor 1 <i <K,

. ) ) then h must belong to the SAC of x, i.eg 8.

Prop.3 Given m= (p+ 1), for prime p with wp) = 3,
then DecomEXxt(p + 1) is expected to produce more Prop.3 Ifx=ryxryx---x g (multiplication of several
reductions, and the inverse is obtained with factors), given thats > ri for 2 <i < k and x# 2% for
NRM¢gr1 x n+h) multiplications. any positive integer k, there must be a SAC of x of length

= : <i<
Prop.4 Given m= (px q+ 1), for prime p and g with lox =le, +[loggri] for2<i<k.

w(p x g) = 3, then DecomExtp x q+ 1) is expected to
produce more reductions, and the inverse is obtained wit
NRM<r1 x n+ h) multiplications.

hProp. 4 If x = 2X for any positive integer k, then x has
only one SAC of lengtla) = k, which is the Power of Two
SAC, i.e.(1,2,4,--- ,2"). Notice that the elements of the
Prop.5 Given m= (2¢x p+1) for any positive integer ~General SAC can have any value, not only power of two
k and prime p. If wp) < 3, no decomposition is required values.

for m. In calling chain-inverse algorithm, the inverse is . o o
obtained with NRM&@ x p) = k + NRMgp) Prop.5 Ifx = 2K+ 21 for any positive integers  j (i.e.,
multiplications. If wp) > 3, let r = 2 and W(X) =2), then x has at least two SACs of length +

r, = DecomExtfp+ 1), thus the inverse is obtained with K+ 1, where the Power of Two SAC is a possible choice.

NRM¢gr; x rp) = k+ NRMgr,) multiplications.
$raxre) + 8r2) P Prop.6 If x=Kk-+n, given that k is the largest power of

Prop.6 For the set of extension degrees m thosetwo 2 value in x for i=1,2,3,-- -, if w(n) < 3, then G
decomposed as;rx n+ h, if he G, is a full-weight is obtained by using either the General or the Power of
remainder, Wr1) = 2 and n= 2% for any positive integer Two SAC. Otherwise, iffm) > 3, then the General SAC is

k. When increasing k while fixing and h values, those m expected to produce the shortest addition chaiotx.

(@© 2015 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

2450

N SS ¥

W. Mahmoud, H. Wu: Speeding Up Finite Field Inversion...

5 Analysisand Results

Here we consider a selected setmfvalues taken from
the rangeg(100< m < 571) to represent binary extension

fields under consideration. Some of the values are

recommended for use in ECC by NIST and SECG. The
rest achieves better results in using our algorithm redativ
to other algorithms, which probably of interest to other
cryptographic or code-theoretic applications. Given that

Table 2: Proposed/sLCA Algorithm

GF(2M) LCA[11] Proposed [Algo. 5]
[m [(m-1) AD [IC AD | IC |

123 122 40x 3+2 9 14x8+10 9

187 186 34x5+16 | 10 | 11x16+10 10
189 188 36x5+8 10 | 22x8+12 10
238 237 68x3+33 | 11 | 14x16+13 11
384 383 25x5x3+8 | 12 | 23x16+15 12
428 427 25x17+2 | 12 | 13x32+11 12

such values are applied as input to our decomposition

algorithm, their associated decompositions (AD) and the
corresponding inversion costs (IC) using our proposed
inversion algorithm are listed in Tablie For comparison

purposes, the AD and IC of other inversion algorithms areaim to show the effectiveness of our decomposition

also listed in the table.

Table 1: Proposed/sOther Inversion Algorithm$GF (2™) : 100< m < 571

GF(2™) ITA[8] TYT [10] LCA[11] Proposed [Algo. 5]
m [ (m—1) IC AD IC AD IC AD IC
100 99 9 11x9 9 11x9 9 3x32+3 8
108 | 107 10 | 2(13x4+1)+1 | 10 | 11x9+8 | 10 | 13x8+3 9
116 115 10 23x5 10 23x5 10 7x16+3 9
150 149 10 37x4+1 10 | 37x4+1 | 10 9% 16+5 9
155 154 10 17x9+1 10 | 17x9+1 | 10 | 18x8+10 9
163 162 9 18x9 9 18x9 9 81x2 9
164 163 10 18x9+1 10 | 18x9+1 | 10 5x32+3 9
168 167 11 83x2+1 11| 41x4+3 | 11 | 10x16+7 10
174 173 11 43x4+1 11 | 43x4+1 | 11 21x8+5 10
180 179 11 2(11x8+1)+1 | 11 | 11x16+3 | 11 | 11x16+3 10
184 183 12 14x13+1 11 | 14x13+1 | 11 | 11x16+7 10
185 184 10 23x8 10 23x8 10 23x8 9
208 207 12 23x9 11 23x9 11 | 24x8+15 10
215 214 11 107x2 11 | 53x4+2 | 11 | 13x16+6 10
216 215 12 43x5 11 43x5 11| 13x16+7 10
228 227 11 113x2+1 11| 25x9+2 | 11 7x32+3 10
231 230 11 23x10 11 23x10 11 7x32+6 10
233 232 10 29x8 10 29x8 10 29x8 10
239 238 12 17x14 10 17x14 10 17x14 10
280 279 12 31x9 12 31x9 12 | 17x16+7 11
283 282 11 141x2 11 | 20x14+2 | 11 | 17x16+10| 11
294 293 11 73x4+1 11| 73x4+1 | 11 9% 32+5 10
299 298 11 2(37x4+1) 11 | 37x8+2 | 11 | 18x16+10| 10
312 311 13 31x10+1 13 | 18x17+5| 12 | 19x16+7 11
320 319 14 29x11 12 29x11 12 | 19x16+15 | 11
324 323 11 19x17 11 19x17 11 5x64+3 10
350 349 13 29x12+1 12 | 29x12+1 | 12 | 21x16+13| 11
360 359 13 179x2+1 13 | 97x3+68 | 12 | 11x32+7 11
392 391 12 23x17 12 23x17 12 | 12x32+7 11
404 403 12 67x6+1 12 | 67x6+1 | 12 | 25x16+3 11
409 408 11 24x17 10 24x17 10 51x8 10
424 423 13 47x9 13 47x9 13 | 13x32+7 11
436 435 13 29x5x3 12 | 29x5x3 | 12 | 27x16+3 11
448 447 15 149x3 12 149x3 12 | 27x16+15| 11
571 570 13 19x6x5 12 | 19x6x5 | 12 | 35x16+10 | 12

From Table 1, it is apparent that our proposed

method relative to the one of LCA algorithm. Therefore,
the AD and IC using our algorithm are also listed in the
table.

From Table2, it is apparent that inversion cost of both
algorithms is identical. Therefore, our proposed inversio
algorithm, namelyinverséa, m), can be a substitute for
LCA algorithm to calculate inversion in such binary
extension fields.

Another set of degrees of GF(2™), selected from
[1Q is shown in Table3. Such a set is associated with
lowest possible inversion cost using decomposition
method of TYT algorithm. Through this comparison, we
aim to show the effectiveness of our decomposition
method relative to the one of TYT algorithm. Therefore,
the AD and IC using our algorithm are also listed in the
table.

From Table3, it is apparent that inversion cost of both
algorithms is the same in sont&F(2™), except for the
last three entries in the table. In these entries our
algorithm achieves lower inversion costs in comparison
with TYT inversion algorithm. Therefore, our proposed
inversion algorithm, namelyinverséa,m), can be a
substitute for TYT algorithm to calculate inversion in
such binary extension fields.

In the following, we show a table which includes
some extension degrees used in ECC when defined
over Silverman fields16]. We compare the AD and IC of
inversion algorithms presented in this paper over such
type of extension fields, as shown in Talle

inversion algorithm has as few as or fewer inversion cost

relative to other similar inversion algorithms. In some
binary extension fieldsGF(2™), the reductions in
inversion cost are up to 4GF(2™M)-multiplications.
Although the set of listed degrees ai is not
comprehensive, the results shown in Tableeflect the
applicability of our proposed decomposition method in
accelerating field inversion iGF(2™).

Another set of degrees of GF(2™), selected from
[11] is shown in Table2. Such a set is associated with the
lowest possible inversion cost using decomposition
method of LCA algorithm. Through this comparison, we

Table 3: Proposed/s TYT Algorithm

GF(2M) TYT [10] Proposed [Algo. 5]
[m [(m—1 AD [1C AD | IC |
128 127 18x7+1 10 15x8+7 10
192 191 38x5+1 11 23x8+7 11
256 255 17x5x3 10 17x15 10
320 319 29x11 12 | 19x16+15| 11
384 383 2(38x5+1)+1 | 13 | 23x16+15| 12
416 415 83x5 12 | 25x16+15| 11
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Table 4: ProposedsOther Inversion Algorithms [Subset of Silverman Fields] fewer than in other similar inversion algorithms. The

e LTABL TR0 LoAf] [ Propowd [Age. d suitability of our algorithm for use in elliptic curve
106 | 105 9 Bx13+1 | O | BxI3+L | 9 | 12<8+0 | O cryptography, in addition to its reliance on a set of factors
S0 A T I iobo bl il Iyl Il Bt il which definitely have shortest addition chains, renders our
964 | 963 | 14 | 37x26+1 | 14| 32x6x5+3| 13| 15x64+3 | 12 method more attractive in hardware implementation and
1018 | 1017 16 8(18x7+1)+1 | 14 | 36x7x4+9 | 14 | 31x32+25 | 13 . . . .. . .

1186 | 1185 | 13 30x37+1 | 13| 32¢37+1 | 13 | 37x32+1 | 13 for future consideration with other finite extension fields.

Acknowledgment

From Table4, it is apparent that inversion cost of our )
algorithm is as few as or fewer than in other algorithms. The authors would like to warmly thank the anonymous
Therefore, our inversion algorithm can be used to computdeferees for their help in reviewing this manuscript.
inversion in Silverman fields, thus improving the runtime
of cryptographic applications defined over such fields.

In the following, we provide an approximate References
comparison on memory storage requirements. Since in
practical applicationsn is frequently selected as a power [1] Standard specifications for public-key cryptography,

of 2, which is a suitable choice w.r.t memories, assume  “http://grouper.ieee.org/groups/1363/D1”, draft-vers
m = 128. Note that decomposition d¢in— 1) has no number 1. IEEE standards documents, November 2009.
effect on memory requirements for same algorithm and [2] D. Hankerson, J. Menezes and S. Vanst@side to Elliptic
extension degree under consideration. Curve Cryptography New York, USA: Springer-Verlag

In using our inversion algorithm, the required memory Inc., 2004.
is given by ¢(r;) + hw(ry). However, in using LCA [3] S. Fenn, M. Benaissa and D. Taylor, “Fast Normal Basis
algorithm it is given by q + 4, where Inversion inGF(2™),” IET Electronic Lettersvol. 32, issue
q = max {q, G, -- ,G}, is the binary length of largest 17, pp. 1566-1567, Aug. 2002. )
factor in (m— 1) when decomposed infofactors. Using ~ [41 Q- Deng, X. Bai, L. Guo and Y. Wang, "A fast hardware
TYT and ITA algorithms, the required memory is given ~ Mplementation of multiplicative inversion IGF(27)"
by a constant value. Although it slightly higher than in ~ ASi2 Pacific Conference on Postgraduate Research in
other algorithms, the required memory in our proposed I';"'sz:emr%n'f &NEIZCUO'TLCS'lgp:t47?:‘.4l7d5’ Jg"azoE%g'
algorithm is a function of;. Knowing thatr; is small [B1R. Lidl an - _Niederrerter, Finite. Felas - 2n "

integer, the obtained results still promising and conforms Cambridge, UK: Cambridge University Press, 1997.
eger, . P 9 [6] S. Fenn, M. Benaissa and D. Taylor, “Finite field inversio
with space-time tradeoffs.

| | h hi d | fl h over the dual basis|EEE Transactions on VLSI Systems
n general, the achieve results reflect the vol. 4, issue 1, pp. 134-137, Jan. 1996.

applicability of our proposed method for accelerating [7]C. Wang, T. Truong, H. Shao, L. Deutsch, J. Omura and

field inversion in GF(2"). Binary extension fields I. Reed, “VLSI Architecture for Computing Multiplications
recommended for use in ECC are also associated with  and Inverses iGF(2™),” IEEE Transactions on Computers

minimal inversion cost using our algorithm. Therefore, vol. 34, issue 8, pp. 709-716, Aug. 1985.

when our algorithm is employed to compute inversion in [8] T. Itoh and S. Tsuijii, “A Fast Algorithm for Computing
scalar multiplication algorithm, the runtime of such Multiplicative Inverses inGF(2™) Using Normal Basis,”
algorithm becomes faster. Scalar multiplication alganith Information and Computing Journalol. 78, issue 7, pp.
is the core of most modern ECC-based cryptographic ~ 171-177, Jul. 1988.

applications, where it dominates their execution time. [9] T. Chang, E. Lu, Y. Lee, Y. Leu and H. Shyu, “Two
Such applications are: elliptic curve digital signature Algorithms for Computing Multiplicative Inverses in

algorithm (ECDSA), elliptic curve Diffie-Hellman GF(2") Using Normal Basis,” accepted binformation
(ECDH) key-agreement algorithm, elliptic curve ElIGamal Processing Letters Journal
(EC_E|Gama|) encryption a|gorithm’ etc. [10] N. Takagi, J. Yoshiki and K. Takagi, “A Fast Algorithmrfo

Multiplicative Inversion inGF(2™) Using Normal Basis,”
IEEE Transactions on Computersol. 50, issue 5, May
2001.

[11] Y. Li, G. Chen, Y. Chen and J. Li, “An Improvement of

. . . . TYT Algorithm for GF(2™) Based on Reusing Intermediate
In this paper, we have proposed a fast field inversion  compytation Results,Communications in Mathematical
algorithm in binary extension fieldsF(2") using normal Sciences Journal011 International Press of Boston. vol.
basis representation. It is based on Fermat's approach for g issue 1, pp. 277-287, Jan. 2011.
inversion. By appropriately decomposing of the [12] N. Cruz-Cortes, F. Rodriuez-Henriquez and C. Coello,
concernedsF(2™) into several factors and a remainder “An Artificial Immune System Heuristic for Generating
with h belongs to the short addition chain of any of such Short Addition Chains JEEE Transactions on Evolutionary
factors, the inversion cost of our algorithm is as few as or ~ Computationvol. 12, issue 1, pp. 1-24, Jan. 2008.

6 Closing Remarks

(@© 2015 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

2452 %q Né \P)

W. Mahmoud, H. Wu: Speeding Up Finite Field Inversion...

[13] D. Pei, C. Wang and J. Omura, “Normal Basis of Finite &iel
GF(2™M),” IEEE Transactions on Information Thegryol.
32, issue 2, pp. 285-287, Feb. 1986.

[14] G. Feng, “A VLSI Architecture for Fast Inversion in
GF(2M),” IEEE Transactions on Computengol. 38, issue.
10, pp. 1383-1386, Oct. 1989.

[15] F. Rodriguez, N. Saqib and N. Cruz, “A fast implememtati
of multiplicative inversion overGF(2™),” International
Symposium on Info. Technolodys Vegas, Nevada, U.S.A.,
vol. 1, pp. 574-579, Apr. 2005.

[16] M. Ciet, J. Quisquater and F. Sica, “A Secure Family of
Composite Finite Fields Suitable for Fast Implementation
of Elliptic Curve Cryptography,”’Progress in Cryptology
INDOCRYPTvol. LNCS 2247, pp. 108-116, 2001.

Walid Mahmoud
received the B.E.Sc degree
from University of Western
Ontario, London, Ontario,
Canada. His M.A.Sc
and Ph.D degrees received
from University of Windsor
; " Ontario, Windsor, Ontario,
R T Canada. He designed and
implemented many academic

Huapeng Wu received
the BS degree in electrical
engineering, and the MSc
degree in computer science,
both from the University
of Science and Technology
of China (USTC), in 1987
i and 1992, respectively, and
mi‘ i the PhD degree in electrical
engineering from the
University of Waterloo in 1999. He was a Vvisiting
assistant professor with the Department of Electrical and
Computer Engineering, lllinois Institute of Technology,
for the academic year of 1999. He did postdoctoral work
with the Centre for Applied Cryptographic Research at
the University of Waterloo from 2000 to 2002. He is now
an associate professor with the Department of Electrical
and Computer Engineering, University of Windsor,
Windsor, Canada. His research interests include fast and
efficient implementation of public key cryptography
systems, data security, cyber security, and security
applications in vehicles. Dr. Wu has authored or
co-authored 20 journal papers including 15 IEEE
transactions papers, and about 40 peer-reviewed
conference papers. He is currently a senior member of
IEEE and an associate editor for IEEE Transactions on

research projects during his academic studies in Canad&omputers.
Dr. Mahmoud has published academic research papers

(Conferences and Journals) in the field of wireless

communications and cryptography. Currently his research

interests include communication networks, network

security and cryptography, wireless communications
computer hardware and software design.

(@© 2015 NSP
Natural Sciences Publishing Cor.



	Introduction
	Mathematical Preliminaries
	A Review of FLT based Inversion Algorithms in GF(2m) Using NB
	Proposed Inversion Algorithm
	Analysis and Results
	Closing Remarks

