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1 Introduction

Elliptic curve cryptography (ECC) is one of the most
popular public key cryptography technologies used today
[1,2]. Finite field inversion generally regarded as
probably the most time-consuming operation in
computations involved in many elliptic curve
cryptosystems [3,4]. Thus, the motivation behind our
work is to accelerate the runtime of such cryptosystems
using affine coordinates through fast inverse computation.

Finite field inversion can be solved with extended
Euclidean algorithm or exponentiation with a constant
exponent. The latter solution also referred to as Fermat’s
Little Theorem (FLT) based method. Extended Euclidean
algorithm method considered not efficient in hardware
implementation, since the number of computation steps
varies significantly for different input and few variables
must be stored throughout the computation. In FLT based
method, an inverse can be computed with a series of
squarings and multiplications [5,6].

Adoption of binary extension field with normal basis
renders field squaring a free runtime operation, and
inversion complexity (inversion cost) can be effectively
measured as the number of required multiplications. In
this paper, we will focus on FLT based method for

solving an inverse. For a nonzero elementα ∈ GF(2m),
its inverse can be given by

α−1 = α2m−2 = α21×α22×·· ·×α2m−1
. (1)

Inverse calculation without any attempt to modify (1)
requires(m− 2) multiplications and(m− 1) squarings.
Wang et al. implemented (1) in very large scale
integration (VLSI) technology and reported their work
in [7]. Itoh and Tsujii proposed an efficient inversion
method with significantly reduced complexity by cleverly
modifying (1). Their algorithm has inversion cost of
[ℓ(m− 1) + hw(m− 1)− 2] normal basis multiplications
in GF(2m), whereℓ(x) is the binary length ofx andhw(x)
is the Hamming weight of the binaryx. Their algorithm,
referred to as ITA [8], will be given a more detailed
review in Section III. Changet al.considered cases where
(m− 1) can be factorized into two nontrivial divisors
(m−1= x× y) and proposed an algorithm, referred to as
CEA [9], whose inversion cost is
[(ℓ(x)+hw(x)−2)+ (ℓ(y)+hw(y)−2)]. Takagi et al.
proposed an improved version algorithm of CEA
algorithm by allowing decomposition of(m− 1) into
several factors plus a small remainder
(m− 1 = ∏k

i=1 r i + h). Their algorithm, referred to as
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TYT [10], requires
[

∑k
i=1(ℓ(r i)+hw(r i)−2)+h

]
normal

basis multiplications inGF(2m) to solve an inverse.
Recently, Li et al. made incremental improvement on
TYT and reduced inversion cost to[

∑k
i=1(ℓ(r i)+hw(r i)−2)+hw(h)

]
normal basis

multiplications in GF(2m). Their inversion algorithm
referred to as LCA [11] in the rest of the paper. In
summary, the problem of efficient computation of inverse
with FLT method is to find a shortest addition chain
(SAC) to reach the constant exponent [12].

In this paper, a new algorithm to solve inverse in
GF(2m) using normal basis is presented. It is an
incremental improvement on TYT and LCA algorithms.
Given (m− 1) = ∏k

i=1 r i + h, our proposed algorithm has
inversion cost of

[

∑k
i=1(ℓ(r i)+hw(r i)−2)+1

]
. Note that

it is more flexible to chooseh in the proposed method,
rather than restriction ofh to be one in TYT algorithm
and to be the leasthw(h) in LCA algorithm. The main
idea is to decompose(m− 1) into several factors plus a
remainderh and restricth to belong to the SAC of any
factor in(m−1). Therefore, all multiplications relevant to
remainderh are saved, thus, more reductions in the
required multiplications for inversion can be achieved.

Given m of GF(2m) recommended either for
governmental or personal use of ECC, we will show that
inversion cost of our method is always as few as or fewer
than other methods mentioned above. For example, when
m= 216 it requires 10 multiplications for inversion using
our proposed algorithm, while it needs 11 multiplications
for inversion with TYT and LCA algorithms, and it needs
12 multiplications for inversion with ITA algorithm.

The rest of the paper is organized as follows: A
preliminary mathematics of finite fields is reviewed in
Section 2. The relevant field inversion algorithms are
previewed in Section 3. Our proposed inversion algorithm
is presented in detail in Section 4. Comparison tables and
the achieved results are provided in Section 5. Finally,
conclusions are drawn in Section 6.

2 Mathematical Preliminaries

2.1 Finite field GF(2m) and normal basis

A field F is a commutative ring whose nonzero elements
form a group under multiplication. Thus, every nonzero
field elementα ∈ F has a corresponding multiplicative
inverse elementα−1 ∈ F . A finite field GF(2m) is a field
containing 2m elements that has characteristic of two.

A basis of GF(2m) over GF(2) of the form
{θ 20

,θ 21
, · · · ,θ 2m−2

,θ 2m−1}, where θ ∈ GF(2m) is
suitable field element, is called a normal basis (NB) of
GF(2m) over GF(2) [13]. It is known that there always
exists an NB forGF(2m) over GF(2) for any value of
m≥ 1 [1].

Any given field element α ∈ GF(2m) can be
represented with respect to the NB as follows

α = a0θ 20
+a1θ 21

+ · · ·+am−2θ 2m−2
+am−1θ 2m−1

,

whereai ∈ {0,1} for i = 0,1, · · · ,m−1. Using NB,α can
also be given by a binary vector

α = (a0a1 · · ·am−2am−1). (2)

For two arbitrary elementsα,β ∈ GF(2m), we have
(α + β )2 = α2 + β 2, since the characteristic forGF(2m)
is two and the term 2αβ = 0. As mentioned above,
nonzero elements inGF(2m) form cyclic group under
multiplication with group order|GF×(2m)| = 2m− 1.
Therefore, givenα ∈ GF×(2m), we haveα2m−1 = 1 and
α2m

= α. Thus, field squaring ofα w.r.t. NB can be
obtained as follows:

α2 =

[
m−1

∑
i=0

aiθ 2i

]2

=
m−1

∑
i=0

aiθ 2i+1
=

m−1

∑
i=0

a((i−1))θ 2i

= (am−1a0a1 · · ·am−3am−2), (3)

where the subscript ((i − 1)) is defined as
[(i−1) modm]. Comparing (3) to (2), α2 can be obtained
from cyclic shifting to the right the coefficients ofα.
Furthermore, the operation ofα2i

w.r.t. NB can be
realized withi-bit right cyclic-shifts.

Based on above discussionα−1 = α2m−2. Knowing
that

2m−2= 21+22+ · · ·+2m−2+2m−1,

thenα−1 can be given by

α−1 = α2m−2 = α21+22+···+2m−2+2m−1

= α21×α22×·· ·×α2m−2×α2m−1
. (4)

It can be clearly seen from (4) that inversion requires
(m−2) multiplications and(m−1) squarings. Given that
squaring is a free runtime operation when using NB,
inversion operation needs only(m − 2) NB
multiplications inGF(2m).

2.2 Addition chains

An addition chain for a positive integerr, denoted asCr ,
is a chain (sequence) of elements (integers) of length l ,
with the property thatr (the last chain-element) is given
by gradual addition of previous chain-elements. Whenr
is small enough, such as the factors in(m−1), the chain
is referred to as the shortest addition chain (SAC). This
because the chain is a priori known and has the minimal
chain-length. Givenr, then

Cr = (c0,c1, . . . ,cl−1,cl ),
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with c0 = 1, cl = r and the governing ruleci = ci1 + ci2,
for (0≤ i, i1, i2 ≤ l) and(i > i1, i2). Cr is associated with
another sequence of integer pairs, where each pair is
representing theith subsequent chain-elementci in Cr and
is given by

Ar = ((ci1,ci2) | 0≤ i1, i2≤ l −1) .

Assumer = 18, then

C18 = (1,2,4,8,16,18),

associated with the sequence of integer-pairs

A18 = ((1,1),(2,2),(4,4),(8, ,8),(16,2)),

following the governing ruleci = ci−1+ ci−1 = 2ci−1 for
i ∈ {1,2,3,4}, except for i = 5, where c5 = c4 + c1.
Another chain forr = 18 is given by

C18 = (1,2,3,6,12,18),

associated with the sequence of integer-pairs

A18 = ((1,1),(2,1),(3,3),(6, ,6),(12,6)),

following the governing ruleci = ci−1+ ci−1 = 2ci−1 for
i ∈ {1,3,4}, andci = ci−1+ ci−2 for i ∈ {2,5}. Note that
both chains are the shortest addition chains (SACs) forr =
18. There are different SACs forr of same length.

Addition chains are useful in computing terms of the
form (α2r−1) with fewest possible multiplications, given
thatα ∈GF(2m) andr is small positive integer. Such terms
assist in inverse computation inGF(2m). When we get to
introduce our decomposition method in section IV,r can
be equal to either(m− 1) or any factor of it as long as
h ∈ Cr . In that section, by means of an example we will
also show how such computations are performed.

3 A Review of FLT based Inversion
Algorithms in GF(2m) Using NB

With FLT based inversion algorithms given in (1), an
inverse in GF(2m) can be generated in(m − 2)
multiplication operations. Itoh and Tsujii proposed an
algorithm that significantly reduces the number of
required multiplications for inversion [8]. Their method
can be described as follows.

Note that 2m− 2= 2(2m−1− 1) and writem− 1 as a
q-bit binary number(mq−1mq−2 . . .m1m0)2 with the MSB
mq−1 = 1, then

2m−1−1 = 2(mq−1mq−2...m1m0)2−1. (5)

Note that

2(mj ...m0)2−1= (2mj 2 j −1)2(mj−1...m0)2 +2(mj−1...m0)2−1.
(6)

Applying (6) to (5) repeatedly with
j = q−1,q−2, . . .,1, it follows

2m−1−1= (2mq−12q−1−1)2(mq−2...m0)2 + · · ·
(2mq−22q−2−1)2(mq−3...m0)2+(2m121−1)2m0+(2m0−1).

(7)

Write

(2mj 2 j −1) = mj(2
2 j−1

+1)(22 j−1−1)

= mj(22 j−1
+1)(22 j−2

+1) · · ·(220
+1)(220−1)

= mj(2
2 j−1

+1)(22 j−2
+1) · · ·(220

+1). (8)

Substitute(2mj 2 j −1), j = q−1,q−2, . . . ,1, in (7) with
(8). Note that(2m0−1) = m0 andmq−1 = 1, thus we have

2m−1−1= (· · · ((1+22q−2
)2mq−22q−2

+mq−2) · · ·
· · · (1+22q−3

)2mq−32q−3
+ · · ·+m1)(1+220

)2m020
+m0.

Therefore, the inverse ofα ∈ GF×(2m) using ITA
expression is given by

α−1 =
(

((· · · (((α1+22q−2

)2mq−22q−2

×αmq−2)1+22q−3

)2mq−32q−3

· · ·

· · ·×αm1)1+220

)2m020

×αm0

)2

. (9)

The number of multiplication operations involved in
(9) is the sum of the following two parts: i) the number of
‘+’ signs in any exponent, and ii) the number of ‘×’ signs.
The the number of ‘+’ signs in (9) is q−1 orℓ(m−1)−1.
The number of ‘×’ signs depends on whether or notmj
is equal to one forj = 0,1, . . . ,q−2. This becauseαmj =
1 if mj = 0 and the sign ‘×’ immediately precedingαmj

(= 1) can be saved. Note thatmq−1 = 1, thus part ii) is
hw(m−1)−1. Therefore, inversion cost in (9) is given by
[ℓ(m−1)+hw(m−1)−2]. ITA inversion algorithm was
derived based on previous discussion (Algorithm 1).

Feng [14] proposed an inversion algorithm with
inversion cost similar to that of ITA algorithm, except that
it relies on field multiplications and square-roots (left
cyclic-shifts in NB) to computer inversion. The algorithm
is highly regular and modular, thus, is suitable for VLSI
implementation as claimed by the author.

Chang et al. improved ITA algorithm for cases in
which (m− 1) can be factorized into two non-trivial
divisors [9]. Their method can be described as follows.
Givenm−1= x× y, we have
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Algorithm 1 : ITA Inversion Algorithm inGF(2m) [8]

Input: α ∈GF×(2m), andm−1= (1mq−2...m1m0)2.
Output:δ = α2m−2 = α−1 ∈GF(2m)
Initialization:δ := α;
for i := q−2 to 0do

δ := δ ×δ 22i

;
if mi = 1 then

δ := α×δ 22i

;
end if

end for
δ := δ 2;
return δ

2m−1−1= 2xy−1

= (2x−1)((2x)y−1+(2x)y−2+ · · ·+(2x)1+(2x)0).

Therefore,α−1 using CEA expression is given by

α−1 = α2(2m−1−1)

=
[

(α2x−1)(2
x)y−1+(2x)y−2+···+(2x)1+(2x)0

]2
.

Assume thatδ = (α2x−1) has been computed with
ITA algorithm by setting the inputs asα andm− 1 = x.
Thus it requires[ℓ(x)+hw(x)−2] multiplications. Lety
be represented byr-bit binary numbery= (1yr−2 . . .y0)2.
By following similar procedure to that in (9), the number
of multiplication operations involved is given by
[ℓ(y)+hw(y)−2]. Therefore, inversion cost of this
improved algorithm is given by

[(ℓ(x)+hw(x)−2)+ (ℓ(y)+hw(y)−2)]. (10)

Note that this improvement is not applicable when
(m−1) is prime.

TYT algorithm proposed by Takagiet al. is a further
improvement on ITA and the method of Changet al in
two aspects [10]. First TYT allows(m−1) to be a prime
by factorizing (m− 1− h), whereh restricted to small
value, rather than(m− 1). Secondly, TYT permits more
than two divisors, as long as an optimal decomposition
[10] is obtained. Their method can be described as
follows.

Assume(m− 1) can be decomposed into(m− 1) =
∏k

j=1 r j +h, i.e., several factors plus a small remainderh.

Write 2m−2= 2m−1+2m−2+ · · ·+2m−h+2m−h−2, then
α−1 using TYT expression is given by

α−1 = α2m−1×α2m−2×·· ·×α2m−h×
︸ ︷︷ ︸

h multiplications

(α2m−h−1−1)2. (11)

The last term(α2m−h−1−1) = α2r1×r2×···rk−1 in (11) can
be computed by applying Changet al’s method

recursively: First letx = r1 × ·· · × rk−1, y = rk, and
δ = α2x−1. Based on (9) it requires[ℓ(rk)+hw(rk)−2]
multiplications. Secondly, letx = r1 × ·· · × rk−2,
y= rk−1, andδ = α2x−1 to computeα2r1×···×rk−1−1, which
requires [ℓ(rk−1)+hw(rk−1)−2] multiplications, etc.
Finally, computation ofα2r1−1 using ITA or (9) requires
[ℓ(r1)+hw(r1)−2] multiplications. Therefore, inversion
cost of TYT algorithm is given by

[
k

∑
j=1

[ℓ(r j)+hw(r j)−2]+h

]

.

Note thath is always restricted to value of 1 as claimed
by the authors.

LCA algorithm proposed by Liet al. is a further
improvement on TYT algorithm in one aspect [11]. It
reuses some intermediate results to saveℓ(h)
multiplications while keeping hw(h) small in
(m− 1) = ∏k

j=1 r j + h. Compared to TYT method, Liet
al’s method allowsh to be larger than 1 as long as reuse is
applicable andhw(h) can be kept minimal. As a result,
Li’s method gives more flexibility in decomposing
(m− 1). Instead of (11), α−1 using LCA expression is
given by

α−1 = α∑m−1
i=m−h2i × (α2m−h−1−1)2

= α2m−2m−h× (α2m−h−1−1)2

= (α2h−1)2m−h×
︸ ︷︷ ︸

hw(h) multiplications

(α2m−h−1−1)2. (12)

It is shown in LCA algorithm that it takes onlyhw(h)
multiplications to compute the underbraced term in (12),
provided thath and r1 are properly chosen, and certain
intermediate results from other terms can be reused in
computing the term(α2h−1)2m−h

. Therefore, inversion
cost of LCA algorithm is given by

[
k

∑
j=1

[ℓ(r j)+hw(r j)−2]+hw(h)

]

.

Note thath is always restricted to minimumhw(h) as
claimed by the authors.

4 Proposed Inversion Algorithm

While inversion cost of TYT algorithm depends on value
of h, inversion cost of LCA algorithm depends on
Hamming weight ofh. In the rest of this section, we will
propose a new method to computeα−1 ∈GF(2m). In this
method, inversion cost is neither dependent onh nor
Hamming weight ofh. Thus, more flexible choices forh
value are available.
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Theorem 1Given (m− 1) = ∏k
j=1 r j + h with h properly

chosen to belong to Cr1 (shortest addition chain of factor
r1), α−1 for a nonzeroα ∈GF(2m) can be computed with
inversion cost bounded above by

k

∑
j=1

[ℓ(r j)+hw(r j)−2]+1. (13)

Proof.Given(m−1) as inTheorem1, then

α−1 = α2m−2 =
(

α2m−1−1
)2

=

(

α2
∏k

j=1 r j +h−1
)2

=
(

(α2r1×···×rk−1)2h× (α2h−1)
)2

=

(

(α2r1−1)
e2h

× (α2h−1)

)2

,

given that

e=
(

((2r1)r2−1+ · · ·+1) · · ·((2r1×···×rk−1
)rk−1+ · · ·+1)

)

.

(14)
Knowing that α2i

powers are simplyi-bit right
cyclic-shifts, i.e., free runtime operations. Thus, inverse
expression in (14) can be reduced to the following

α−1 =
[

(α2r1−1)
e× (α2h−1)

]

. (15)

Let us now forget about the computational cost of the
term(α2r1−1) (we return to it before ending the proof), the
computational cost required for using exponente in (15) is
given by

k

∑
j=2

[ℓ(r j)+hw(r j)−2], (16)

and its detailed steps are given as follows. Firstly,
computational cost of

(α2r1−1)(2
r1)r2−1+···+(2r1)0 = (α2r1×r2−1)

is [ℓ(r2) + hw(r2) − 2] multiplications. Secondly,
computational cost of

(α2r1×r2−1)(2
r1×r2)r3−1+···+(2r1×r2)0 = (α2r1×r2×r3−1)

is [ℓ(r3) + hw(r3) − 2] multiplications. Finally,
computational cost of

(α2r1×···×rk−1−1)(2
r1×···×rk−1)rk−1+···+(2r1×···×rk−1)0

= (α2r1×···×rk−1) = (α2r1−1)
e
,

is [ℓ(rk) + hw(rk) − 2] multiplications. Thus,
computational cost relevant to all factors in(m− 1),

except for r1, is exactly as given in (16) above. By
returning to the term(α2r1−1), its computational cost can
be given as follows. Let the SAC forr1 be given by

Cr1 = {c0,c1,c2,c3},
wherec0 = 1 andc3 = r1. In addition, let the associated
sequence of integer pairs ofCr1 be given by

Ar1 = {(c0,c0),(c1,c1),(c2,c2)},
using the addition ruleci = ci−1 + ci−1 for i ∈ {1,2,3}.
Then, it follows that(α2r1−1) = (α2c3−1) is computed as
follows

(α2c0−1)2c0 × (α2c0−1) = (α2c0+c0−1) = (α2c1−1)

(α2c1−1)2c1 × (α2c1−1) = (α2c1+c1−1) = (α2c2−1)

(α2c2−1)2c2 × (α2c2−1) = (α2c2+c2−1) = (α2c3−1)(17)

Let us assign integer values forCr1 elements while
satisfying the addition rule of Ar1, i.e., let
c0 = 1,c1 = 2,c2 = 4,c3 = r1 = 8 such that
Cr1 = C8 = {1,2,4,8}, then
[ℓ(r1)+hw(r1)−2] = [ℓ(8)+hw(8)−2] = 3. This result
exactly equal the number of multiplications necessary to
compute the term(α2r1−1) = (α28−1), as evident from
(17) above. In other words, 3 is equal to the length of
Cr1 = C8, which represents the number of commas
separating its elements. Note that previous discussion is
valid for any choice ofr1 and its associated SAC. Thus,
computational cost of the term(α2r1−1) is given by

[ℓ(r1)+w(r1)−2] , (18)

multiplications. Notice that ifh = ci for i ∈ {0,1,2,3},
then (α2h−1) = (α2ci−1) is an intermediate result, as
evident from (17) above. Thus, all computational cost of
the term(α2h−1) is saved. Extra multiplication is required
to combine the terms in (15) above. When added to other
costs given in (16) and (18), the inversion cost of our
proposed algorithm is exactly as given inTheorem1
above.

In the following, by means of an example we introduce
our proposed algorithms. ConsiderGF(2216) and assume
that m = 216 is already passed to our proposed
decomposition algorithm (Algorithm 2). Given thatr1 is
a small factor, the SAC and the sequence of integer pairs
of r1 are assumed already available and accessible. Given
that m= 216 and a nonzero field elementα ∈ GF(2216)
in which its inverseα−1 is required, then

DecomExtn(216) = (13,4,7) and(m−1) = 13×16+7.
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Algorithm 2 DecomExtn(m) Algorithm in GF(2m)

Input: extension degreem
Output:(m−1) = r1×n+h given as(r1,n,h)
Initial: t := (m−1), l :=

√
t, j := 0;

if t is odd:S← So = {1,3, · · · , l := ⌈l⌉}. ⌊l⌋ if l odd;
if t is even:S← Se = {2,4, · · · , l := ⌊l⌋}. ⌈l⌉ if l odd;
for all i in the selectedSdo

R := t− i;
while (R 6= 2k and 2|R and ⌈R/2⌉ ≥ i) do

R :=
(R

2

)
, j := j +1;

end while
save the resulted 3-tuple(R, j ,S(i)) in array (memory)
j := 0;
next i;

end for
find (R, j ,S(i)) with i ∈CR and largestj ;
return (r1 := R, n := 2 j , h := S(i))

Thus r1 = 13, n = 16 andh = 7. The SAC forr1 = 13,
C13 = {1,2,3,6,7,13}. Given thatα,Cr1,Ar1, and h are
passed as inputs to our proposedchain-inversealgorithm
(Algorithm 3) , the resulted output is(α213−1), which
requires[ℓ(r1) + hw(r1)− 2] = [ℓ(13)+ hw(13)− 2] = 5
GF(2216)-multiplications. In order to understand how

Algorithm 3 chain-inverseAlgorithm in GF(2m)

Input: e∈GF∗(2m), Cv and Av precomputed,
κ := 0 if (m−1) not-decomposed, otherwiseκ := h

Output:δ 2
cl
= e−1 ∈GF(2m), f = (α2κ−1)

Given:δci (e) = e2ci−1, δci1+ci2
(e) = [δci1(e)]

2
ci2 ×δci2

(e)
Initial: l := length(Cv),δc0 := e;
for i := 1 to l do

δci (e) := [δci1(e)]
2ci2 ×δci2

(e);
if κ = ci then

f := δci (e);
end if

end for
if κ 6= 0 then

return δcl , f
end if
return δ 2

cl
, f

chain-inversealgorithm works, calculation steps for the
term (α2r1−1) are shown in (19) for r1 = 13 andC13 as
given above.

(α)21× (α) = (α3) = (α22−1)

(α3)21× (α) = (α7) = (α23−1)

(α7)23× (α7) = (α63) = (α26−1)

(α63)21× (α) = (α127) = (α27−1)

(α127)26× (α63) = (α8191) = (α213−1) (19)

Given that h = 7 ∈ C13, then the term
(α2h−1) = (α27−1) is available when computing the term
(α213−1), as evident from (19) above. Notice how the
outputs in (19) at each computation step have the form
(α2x−1), where x is the elements ofC13 in their
appropriate order with(α21−1) = α.

Computations relevant to other factors in(m−1) are
performed using our proposedFactors algorithm
(Algorithm 4). The algorithm requires
∑k

j=2[ℓ(r j) + hw(r j) − 2] = [ℓ(16) + hw(16) − 2] = 4

GF(2216)-multiplications.

Algorithm 4 FactorsAlgorithm in GF(2m)

Input: λ ∈GF(2m),v= ∏k
j=2 r j : r j = (1m( j)

qj−2 · · ·m
( j)
0 )2

Output:µ = λ e = (α2r1−1)e

Initial: r := 1;
for j := 2 tok do

µ := λ ;
r := r× r j−1;
for i := q j −2 to 0do

µ := µ×µ2r2i

;

if m( j)
i = 1 then

µ := λ ×µ2r2i

;
end if

end for
λ := µ;

end for
return µ

When adding the required multiplications in (19) to
those required byFactorsalgorithm, the total number of
required multiplications relevant to all factors in(m− 1)
is given by ∑k

j=1[ℓ(r j) + hw(r j) − 2] = 5 + 4 = 9

GF(2216)-multiplications. Knowing that one extra

multiplication is required to combine the term(α2h−1),
the inverse of α is computed with
∑k

j=1[ℓ(r j) + hw(r j) − 2] + 1 = 9 + 1 = 10

GF(2216)-multiplications, which is the inversion cost
using our proposed algorithm.

Inverse(α,m) is our proposed main inversion
algorithm (Algorithm 5). It consists of all previously
mentioned helper algorithms which are ready for call
when appropriate and depending on the case under
consideration.

In what follows, we present a set of propositions
helpful to understand the way in whichInverse(α,m)
algorithm works, and to clarify the best possible
techniques to decompose(m− 1). Here are some useful
notations. The required number of multiplications
necessary to compute the term(α2r−1), NRMs(r), binary
length of r, l(r), Hamming weight ofr, w(r), r is a
full-weight integer,l(r) = w(r), shortest addition chain of
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Algorithm 5 InverseAlgorithm in GF(2m)

Input: α ∈GF∗(2m), extension degreem
Output:δ = α−1 ∈GF(2m)
Initial: (m−1);
Case when(m−1) is not-decomposed:

if ((m−1) = 2k or w(m−1) = 2) then
return δ := chain-inverse(α,Cm−1,Am−1,0)

Case when(m−1) is decomposed:
else

fetch(r1,n,h) from the array (memory);
[η,ρ] := chain-inverse(α,Cr1 ,Ar1,h);
γ := Factors(η,n);
if (h= 0) then

return δ := γ
else

return δ := ((γ)2h×ρ)2
end if

r, Cr , length ofCr , lCr . Note that if r = (m− 1), then
NRMs(m − 1) gives the required number of
multiplications necessary to compute the inverse. Also, if
r = h, then NRMs(h) = 1 (using our decomposition
method). Furthermore, given
DecomExtn(m) = r1 × n + h, then
NRMs(DecomExtn(m)) = NRMs(r1 × n + h) =
NRMs(r1)+NRMs(n)+1.

Prop. 1 Given m= (2k + 1) for any positive integer k,
no decomposition is required for m. In calling
chain-inverse algorithm, the inverse is obtained with
NRMs(2k) = k multiplications.

Prop. 2 Given m= (2k+2 j +1) for any positive integers
k > j (i.e., w(m− 1) = 2), no decomposition is required
for m. In calling chain-inverse algorithm, the inverse is
obtained with NRMs(2k+2 j) = k+1 multiplications.

Prop. 3 Given m= (p+1), for prime p with w(p) = 3,
then DecomExtn(p+ 1) is expected to produce more
reductions, and the inverse is obtained with
NRMs(r1×n+h) multiplications.

Prop. 4 Given m= (p×q+1), for prime p and q with
w(p× q) = 3, then DecomExtn(p× q+ 1) is expected to
produce more reductions, and the inverse is obtained with
NRMs(r1×n+h) multiplications.

Prop. 5 Given m= (2k× p+1) for any positive integer
k and prime p. If w(p) < 3, no decomposition is required
for m. In calling chain-inverse algorithm, the inverse is
obtained with NRMs(2k × p) = k + NRMs(p)
multiplications. If w(p) ≥ 3, let r1 = 2k and
r2 = DecomExtn(p+1), thus the inverse is obtained with
NRMs(r1× r2) = k+NRMs(r2) multiplications.

Prop. 6 For the set of extension degrees m those
decomposed as r1 × n+ h, if h ∈ Cr1 is a full-weight
remainder, w(r1) = 2 and n= 2k for any positive integer
k. When increasing k while fixing r1 and h values, those m

values are expected to have the minimum
NRMs(r1 × n + h) in inverse computation relative to
others.

Prop. 7 For the set of m values those decomposed as
r1×n+h with h= 1 (thish always∈Cr1), those m values
in inverse computation have NRMs(r1× n+ h) same as
that required by using TYT algorithm. With h= 2k for any
positive integer k (this h often∈ Cr1), those m values in
inverse computation have NRMs(r1×n+h) same as that
required by using LCA algorithm. Thus, such m values
are also associated with lowest possible inversion cost
using our inversion algorithm.

Prop. 8 For the set of m values those decomposed as
r1× n+ h with h= r1 (this h always∈ Cr1), those m
values can be factorized into prime factors. In such a
case, DecomExtn(m) algorithm may or may not produce
the minimum NRMs(r1 × n+ h) in inverse calculation
compared to prime factors decomposition. Select first
decomposition if associated with lower inversion cost,
otherwise, select the latter using the prime factors r1 and
r2, since r1×n+ r1 = r1× (n+1) = r1× r2. Factorize r2
if possible, to achieve more reductions.

The following propositions are helpful in finding the
shortest addition chains (SACs) for an integer, which may
be applicable in some cases. In searching for the SAC for
a positive integerx (i.e.,Cx), then:

Prop. 1 If x is large, there are many possible SACs for x.
Thus, the set of values taken by h is maximized given that
h∈Cx.

Prop. 2 If x= r1× r2×·· ·× rk (multiplication of several
factors), given that h is equal to any factor ri for 1≤ i ≤ k,
then h must belong to the SAC of x, i.e., h∈Cx.

Prop. 3 If x= r1× r2×·· ·× rk (multiplication of several
factors), given that r1 > r i for 2≤ i ≤ k and x 6= 2k for
any positive integer k, there must be a SAC of x of length
lCx = lCr1

+ ⌈log2 r i⌉ for 2≤ i ≤ k.

Prop. 4 If x = 2k for any positive integer k, then x has
only one SAC of length lCx = k, which is the Power of Two
SAC, i.e.,(1,2,4, · · · ,2k). Notice that the elements of the
General SAC can have any value, not only power of two
values.

Prop. 5 If x= 2k+2 j for any positive integers k> j (i.e.,
w(x) = 2), then x has at least two SACs of length lCx =
k+1, where the Power of Two SAC is a possible choice.

Prop. 6 If x = k+n, given that k is the largest power of
two 2i value in x for i= 1,2,3, · · · , if w(n) < 3, then Cx
is obtained by using either the General or the Power of
Two SAC. Otherwise, if w(n)≥ 3, then the General SAC is
expected to produce the shortest addition chain Cx of x.
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5 Analysis and Results

Here we consider a selected set ofm values taken from
the range(100≤ m< 571) to represent binary extension
fields under consideration. Some of the values are
recommended for use in ECC by NIST and SECG. The
rest achieves better results in using our algorithm relative
to other algorithms, which probably of interest to other
cryptographic or code-theoretic applications. Given that
such values are applied as input to our decomposition
algorithm, their associated decompositions (AD) and the
corresponding inversion costs (IC) using our proposed
inversion algorithm are listed in Table1. For comparison
purposes, the AD and IC of other inversion algorithms are
also listed in the table.

Table 1: ProposedvsOther Inversion Algorithms[GF(2m) : 100≤m< 571]

GF(2m) ITA [8] TYT [10] LCA [11] Proposed [Algo. 5]
m (m−1) IC AD IC AD IC AD IC

100 99 9 11×9 9 11×9 9 3×32+3 8
108 107 10 2(13×4+1)+1 10 11×9+8 10 13×8+3 9
116 115 10 23×5 10 23×5 10 7×16+3 9
150 149 10 37×4+1 10 37×4+1 10 9×16+5 9
155 154 10 17×9+1 10 17×9+1 10 18×8+10 9
163 162 9 18×9 9 18×9 9 81×2 9
164 163 10 18×9+1 10 18×9+1 10 5×32+3 9
168 167 11 83×2+1 11 41×4+3 11 10×16+7 10
174 173 11 43×4+1 11 43×4+1 11 21×8+5 10
180 179 11 2(11×8+1)+1 11 11×16+3 11 11×16+3 10
184 183 12 14×13+1 11 14×13+1 11 11×16+7 10
185 184 10 23×8 10 23×8 10 23×8 9
208 207 12 23×9 11 23×9 11 24×8+15 10
215 214 11 107×2 11 53×4+2 11 13×16+6 10
216 215 12 43×5 11 43×5 11 13×16+7 10
228 227 11 113×2+1 11 25×9+2 11 7×32+3 10
231 230 11 23×10 11 23×10 11 7×32+6 10
233 232 10 29×8 10 29×8 10 29×8 10
239 238 12 17×14 10 17×14 10 17×14 10
280 279 12 31×9 12 31×9 12 17×16+7 11
283 282 11 141×2 11 20×14+2 11 17×16+10 11
294 293 11 73×4+1 11 73×4+1 11 9×32+5 10
299 298 11 2(37×4+1) 11 37×8+2 11 18×16+10 10
312 311 13 31×10+1 13 18×17+5 12 19×16+7 11
320 319 14 29×11 12 29×11 12 19×16+15 11
324 323 11 19×17 11 19×17 11 5×64+3 10
350 349 13 29×12+1 12 29×12+1 12 21×16+13 11
360 359 13 179×2+1 13 97×3+68 12 11×32+7 11
392 391 12 23×17 12 23×17 12 12×32+7 11
404 403 12 67×6+1 12 67×6+1 12 25×16+3 11
409 408 11 24×17 10 24×17 10 51×8 10
424 423 13 47×9 13 47×9 13 13×32+7 11
436 435 13 29×5×3 12 29×5×3 12 27×16+3 11
448 447 15 149×3 12 149×3 12 27×16+15 11
571 570 13 19×6×5 12 19×6×5 12 35×16+10 12

From Table 1, it is apparent that our proposed
inversion algorithm has as few as or fewer inversion cost
relative to other similar inversion algorithms. In some
binary extension fieldsGF(2m), the reductions in
inversion cost are up to 4GF(2m)-multiplications.
Although the set of listed degrees ofm is not
comprehensive, the results shown in Table1 reflect the
applicability of our proposed decomposition method in
accelerating field inversion inGF(2m).

Another set of degreesm of GF(2m), selected from
[11] is shown in Table2. Such a set is associated with the
lowest possible inversion cost using decomposition
method of LCA algorithm. Through this comparison, we

Table 2: ProposedvsLCA Algorithm

GF(2m) LCA [11] Proposed [Algo. 5]
m (m−1) AD IC AD IC

123 122 40×3+2 9 14×8+10 9
187 186 34×5+16 10 11×16+10 10
189 188 36×5+8 10 22×8+12 10
238 237 68×3+33 11 14×16+13 11
384 383 25×5×3+8 12 23×16+15 12
428 427 25×17+2 12 13×32+11 12

aim to show the effectiveness of our decomposition
method relative to the one of LCA algorithm. Therefore,
the AD and IC using our algorithm are also listed in the
table.

From Table2, it is apparent that inversion cost of both
algorithms is identical. Therefore, our proposed inversion
algorithm, namelyInverse(α,m), can be a substitute for
LCA algorithm to calculate inversion in such binary
extension fields.

Another set of degreesm of GF(2m), selected from
[10] is shown in Table3. Such a set is associated with
lowest possible inversion cost using decomposition
method of TYT algorithm. Through this comparison, we
aim to show the effectiveness of our decomposition
method relative to the one of TYT algorithm. Therefore,
the AD and IC using our algorithm are also listed in the
table.

From Table3, it is apparent that inversion cost of both
algorithms is the same in someGF(2m), except for the
last three entries in the table. In these entries our
algorithm achieves lower inversion costs in comparison
with TYT inversion algorithm. Therefore, our proposed
inversion algorithm, namelyInverse(α,m), can be a
substitute for TYT algorithm to calculate inversion in
such binary extension fields.

In the following, we show a table which includes
some extension degreesm used in ECC when defined
over Silverman fields [16]. We compare the AD and IC of
inversion algorithms presented in this paper over such
type of extension fields, as shown in Table4.

Table 3: ProposedvsTYT Algorithm

GF(2m) TYT [10] Proposed [Algo. 5]
m (m−1) AD IC AD IC

128 127 18×7+1 10 15×8+7 10
192 191 38×5+1 11 23×8+7 11
256 255 17×5×3 10 17×15 10
320 319 29×11 12 19×16+15 11
384 383 2(38×5+1)+1 13 23×16+15 12
416 415 83×5 12 25×16+15 11
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Table 4: ProposedvsOther Inversion Algorithms [Subset of Silverman Fields]

GF(2m) ITA [8] TYT [10] LCA [11] Proposed [Algo. 5]
m (m−1) IC AD IC AD IC AD IC

106 105 9 8×13+1 9 8×13+1 9 12×8+9 9
178 177 10 11×16+1 10 11×16+1 10 11×16+1 10
226 225 10 14×16+1 10 14×16+1 10 7×32+1 10
964 963 14 37×26+1 14 32×6×5+3 13 15×64+3 12
1018 1017 16 8(18×7+1)+1 14 36×7×4+9 14 31×32+25 13
1186 1185 13 32×37+1 13 32×37+1 13 37×32+1 13

From Table4, it is apparent that inversion cost of our
algorithm is as few as or fewer than in other algorithms.
Therefore, our inversion algorithm can be used to compute
inversion in Silverman fields, thus improving the runtime
of cryptographic applications defined over such fields.

In the following, we provide an approximate
comparison on memory storage requirements. Since in
practical applicationsm is frequently selected as a power
of 2, which is a suitable choice w.r.t memories, assume
m = 128. Note that decomposition of(m− 1) has no
effect on memory requirements for same algorithm and
extension degree under consideration.

In using our inversion algorithm, the required memory
is given by ℓ(r1) + hw(r1). However, in using LCA
algorithm it is given by q + 4, where
q = max {q1,q2, · · · ,qk}, is the binary length of largest
factor in (m−1) when decomposed intok factors. Using
TYT and ITA algorithms, the required memory is given
by a constant value. Although it slightly higher than in
other algorithms, the required memory in our proposed
algorithm is a function ofr1. Knowing thatr1 is small
integer, the obtained results still promising and conforms
with space-time tradeoffs.

In general, the achieved results reflect the
applicability of our proposed method for accelerating
field inversion in GF(2m). Binary extension fields
recommended for use in ECC are also associated with
minimal inversion cost using our algorithm. Therefore,
when our algorithm is employed to compute inversion in
scalar multiplication algorithm, the runtime of such
algorithm becomes faster. Scalar multiplication algorithm
is the core of most modern ECC-based cryptographic
applications, where it dominates their execution time.
Such applications are: elliptic curve digital signature
algorithm (ECDSA), elliptic curve Diffie-Hellman
(ECDH) key-agreement algorithm, elliptic curve ElGamal
(EC-ElGamal) encryption algorithm, etc.

6 Closing Remarks

In this paper, we have proposed a fast field inversion
algorithm in binary extension fieldsGF(2m) using normal
basis representation. It is based on Fermat’s approach for
inversion. By appropriately decomposingm of the
concernedGF(2m) into several factors and a remainderh,
with h belongs to the short addition chain of any of such
factors, the inversion cost of our algorithm is as few as or

fewer than in other similar inversion algorithms. The
suitability of our algorithm for use in elliptic curve
cryptography, in addition to its reliance on a set of factors
which definitely have shortest addition chains, renders our
method more attractive in hardware implementation and
for future consideration with other finite extension fields.
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