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1 Introduction and statement of the main
results

The three–body problem is one of the most important
problems in space dynamics. There are various dynamical
systems composed of three bodies. Consequently this
problem has many applications in scientific researches
especially in astrophysics and astrodynamics. In general
the three–body problem is classified into two classes, first
is the so–calledgeneral problemand second is the
restricted problemin which the mass of the third body is
so small in comparison to the masses of the other two that
it does not affect their motion. The general problem
describes the motion of three bodies of arbitrary masses
under their mutual attraction due to the gravitational field.
However our knowledge about the general problem is
considerably less than on the restricted problem and
limited, It has some applications in celestial mechanics
(one is the dynamics of triple star systems) and only a
very few in space dynamics and solar system dynamics.

The restricted problem plays an important role in the
study of the motion of artificial satellites. It can be used
also to evaluate the motion of the planets, minor planets
and comets. The restricted problem gives an accurate
description not only for the motion of the Moon but also
for the motion of other natural satellites. It is worth noting
that the restricted problem has many applications not only
in celestial mechanics researches but also in physics,
mathematics and engineering. In quantum mechanics a
general form of the restricted problem is formed to solve
the Schrodinger equation of helium-like ions, see Barcza
[3]. Furthermore, in modern solid state physics the
restricted problem can be used to discuss the motion of an
infinitesimal mass affected not only by the gravitational
field but also by light pressure from one (or both) of the
primaries which is called the photogravitational problem
see Kunitsyn and Polyakhova [11]. The restricted
problem is modified into five versions:

1.The planar circular restricted three–body problem,
when the primaries revolve in a circular orbit around
their common center of mass as well as the third body
moves in the same plane.

2.If the motion of the primaries is not circular and have a
conic section. The important case when the primaries
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move in elliptical orbits around center of their masses.
In this case It is calledelliptical or pseudo restricted
problem.

3.When the third body moves out of the plane of the
primaries the problem is calledthree–dimensional
problem. This problem is applicable in the study of
the orbits for some minor planets with large
inclination to the ecliptic.

4.If the masses of the primaries or third body vary with
time. It is calledrestricted problem with variable mass
and it has important applications in stellar dynamics
and cosmology.

5.If the mass ratio of the smaller primary to the sum
masses of the primaries is very small and may be
tends to zero, the problem, is calledHill problem. In
this case the problems with a very small of mass ratio
appear as a perturbed problems for the two-body
problem.

Although the restricted problem is consider simpler
than the general one, there are great difficulties to find its
solution in the general case and it is also a non–integrable
problem. Therefore numerical methods and perturbation
techniques provide us versatile tools to try to solve the
problem.

As a seminal problem related with the effect of the
pressure of the radiation generated by the primaries with
the gravitational force, in the frame of the restricted three
body problem, we underline the work of Simmons [17].
In this paper a study of the librance points and their
stability is presented. Regarding the Hill problem, there
are different studies mainly numerical, see for instance
Chauvineau [5], Markellos et alt. [13,?], Kanavos et alt.
[10], Papadakis [15] and Voyatzis [20].

The aim of our work in to study in an analytical way
the periodic orbits and theC 1 integrability of the planar
Hill problem with radiation pressure completing some
numerical studies on this problem like [12].

The Hamiltonian of the planar Hill problem with
radiation pressure of the main primary is given by

H =
1
2
(P2

1 +P2
2)−

1
√

Q2
1+Q2

2

+(Q2P1−Q1P2)+

KQ1−Q2
1+

Q2
2

2

(1)

with K is the parameter of the radiation pressure of the
primary. After Levi–Civita regularization the Hamiltonian
(1) is

HReg=
1
2
(X2+Y2+ x2+ y2)+2(x2+ y2)(yX− xY)

+4K(x4− y4)−4(x2+ y2)(x4−2x2y2+ y4)
(2)

We rescale (2) by mean of

(x,y,X,Y)→ (
√

εx,
√

εy,
√

εX,
√

εY)

in order to obtain a perturbed problem.

HReg=
1
2
(X2+Y2+ x2+ y2)+2ε(x2+ y2)(yX− xY)

+4Kε(x4− y4)−4ε2(x2+ y2)(x4−2x2y2+ y4).
(3)

We do that, in the standard way, via the introduction
of a small parameterε which allows us to study the
dynamics of the perturbed system in a small environment
of the point(0,0). Note that if we find a periodic orbit for
the perturbed system it can be continuously extended to a
periodic orbit the initial system, see Table 1. For more
details on the equations of motion for this problem, see
Appendix II.

The idea is to use the averaging method of first order
to compute isolated periodic orbits, see Appendix I. One
of the main difficulties in practice for applying the
averaging method is to express the system in the normal
form stated in the results of Appendix. The use of proper
variables in each concrete situation can simplify a lot this
process. In particular, in the present paper we shall use
canonical variables of Lissajous introduced by Deprit [6]
to obtain information on the existence of
non–degenerated isolated periodic orbits for the system,
see for instance [4,?,?,9].

The Lissajous variables are defined by mean of the
following canonical transformation
λ : (l ,g,L,G)→ (x,y,X,Y) in the domain

Ω = T2×{L > 0}×{|G| ≤ L}

by

x=
√

L+Gsin(l +g) X =
√

L+Gcos(l +g)
y=

√
L−Gsin(l −g) Y =

√
L−Gcos(l −g)

(4)

In these variablesHReg is given by

H1 = L+ εP1(L,G, l ,g)

with P1(L,G, l ,g) is the pullback of the transformation
(4) with the perturbed polynomial

2ε(x2+ y2)(yX− xY)+4εK(x4− y4)−
4ε2(x2+ y2)(x4−2x2y2+ y4).

We denote by〈 f 〉 the averaged map of a smooth
function f with respect to the variablel . The first result of
the work is the following.

Theorem 1.At the level of energyH1 = h with the
differential system given by the HamiltonianH1 is

dG
dl

= ε f1(g,G)

dg
dl

= ε f2(g,G)

. (5)
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with

f1(g,G) =−ε
∂ 〈P1〉

∂g

f2(g,G) = ε
∂ 〈P1〉

∂g
.

Now we are ready to state a corollary of previous result
which provides sufficient conditions for the existence and
the kind of stability of the periodic orbits in this problem.

Corollary 1.System (5) is the Hamiltonian system taking
l as independent variable of the HamiltonianH1 on the
fixed energy levelH = h . If ε 6= 0 is sufficiently small then
for every solutionp = (g0,G0) of the system fi(g,G) = 0
for i = 1,2 satisfying that

det

(

∂ ( f1, f2)
∂ (g,G)

∣

∣

∣

∣

(g,G)=(g0,G0)

)

6= 0, (6)

there exists a 2π–periodic solution
γε(l) = (g(l ,ε),L(l ,ε),G(l ,ε)) such that
γε(0) → (g0,h,G0) when ε → 0. The stability or
instability of the periodic solutionγε(l) is given by the
stability or instability of the equilibrium pointp of system
(5). In fact, the equilibrium pointp has the stability
behavior of the Poincaré map associated to the periodic
solutionγε (l).

The main result of the paper is the following

Theorem 2.On every energy levelH1 = h the
Hamiltonian H1 for ε 6= 0 sufficiently small has four
2π–periodic solutions γk

ε (l) = (g(l ,ε),L(l ,ε),G(l ,ε))
such that

γ1
ε (0)→

(

π
4
,h,

3hK√
1+9K2

)

γ2
ε (0)→

(

−π
4
,h,

−3hK√
1+9K2

)

γ3
ε (0)→

(

π
4
,h,

−3hK√
1+9K2

)

γ4
ε (0)→

(

−π
4
,h,

3hK√
1+9K2

)

whenε → 0. The four periodic orbits are linearly stable.

The previous result states that at any positive energy
level there exists at least four isolated periodic orbit in
such concrete energy level. We note that we shall use this
information as a key point to prove other important
aspect: theC 1 non–integrability of the model in the sense
of Liouville–Arnold.

Theorem 3.The Hamiltonian of the planar Hill problem
with radiation pressure is not Liouville–Arnold integrable
with any second first integral of classC 1.

Proof.The proof is a direct consequence of Theorem 3
using Theorems 5 and 8 of Appendix I.

(i) x(t) =
√

ahsin
(

t + π
4

)

, y(t) =
√

bhsin
(

t − π
4

)

(ii) x(t) =
√

bhsin
(

t − π
4

)

, y(t) =
√

ahsin
(

t + π
4

)

(iii) x(t) =
√

bhsin
(

t + π
4

)

, y(t) =
√

ahsin
(

t − π
4

)

(iv) x(t) =
√

ahsin
(

t − π
4

)

, y(t) =
√

bhsin
(

t + π
4

)

Table 1: The four periodic orbits(x(t),y(t)) of the unperturbed
Hamiltonian systemHRegon each energy levelHReg= h> 0. In
the formulaea= 1+3K(1+9K2)−1 andb= 1−3K(1+9K2)−1.

2 Proof of Theorem1

The Hamiltonian system associated to the HamiltonianH1
can be written as

dl
dt

= 1+ ε
∂P1

∂L
dL
dt

=−ε
∂P1

∂ l
dg
dt

= ε
∂P1

∂G
dG
dt

=−ε
∂P1

∂g

(7)

Taking as new independent variablel , the equations (7)
become

dG
dl

=

−ε
∂P1

∂g

1+ ε
∂P1

∂L

=−ε
∂P1

∂g
+O(ε2)

dg
dl

=
ε

∂P1

∂G

1+ ε
∂P1

∂L

= ε
∂P1

∂G
+O(ε2)

(8)

Fixing the energy level ofH1= h we obtain

h= L+ εP1(L,G, l ,g).

Using the Implicit Function Theorem forε sufficiently
small, we getL = h+O(ε), and the equations are reduced
to (8).

Proof(Proof of Theorem1). The averaged system in the
anglel obtained from (8) is

dG
dl

=− ε
2π

2π
∫

0

∂P1

∂g
dl+O(ε2)

dg
dl

=
ε

2π

2π
∫

0

∂P1

∂G
dl+O(ε2).

(9)

See the Appendix for a short introduction to the averaging
theory used in this paper.
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Since,

∂ 〈P1〉
∂g

=
1

2π

2π
∫

0

∂P1

∂g
dl

∂ 〈P1〉
∂G

=
1

2π

2π
∫

0

∂P1

∂G
dl

the differential system (9) coincides with the system (5).
Once we have obtained the averaged system (5) it is

immediate to check that it satisfies the assumptions of
Theorem 4 of the Appendix, then applying the
conclusions of Theorem4 to our averaged system (5) the
rest of the statement of Theorem1 follows immediately.

3 Proof of Theorem2

The functionP1 in Deprit canonical variables is given by

P1(L,G, l ,g) = 2
√

L2−G2(L−Lcos2gcos2l

+Gsin2gsin2l)+4K((G+L)2sin4(g+ l)

− (G−L)2sin4(g− l))+O(ε)

Fixed the energy levelh for the HamiltonianH1 we
obtain the following system

dG
dl

= ε f1(g,G) = ε4h
√

h2−G2cos2g

dg
dl

= ε f2(g,G) = εh

(

6K+
Gsin2g√
h2−G2

)

.

The following expressions

(G1,g1) =

(

3hK√
1+9K2

,
π
4

)

,

(G2,g2) =

(

− 3hK√
1+9K2

,−π
4

)

,

(G3,g3) =

(

3hK√
1+9K2

,−π
4

)

,

(G4,g4) =

(

− 3hK√
1+9K2

,
π
4

)

are the only solutions of the systemf1(g,G) = 0,
f2(g,G) = 0.

On the other hand

∂ ( f1, f2)
∂ (G,g)

∣

∣

∣

∣

(Gk,gk)

=





0
−8h2

√
1+9K2

2(1+9K2)3/2 0





for k= 1,4 and

∂ ( f1, f2)
∂ (G,g)

∣

∣

∣

∣

(Gk,gk)

=





0
8h2

√
1+9K2

−2(1+9K2)3/2 0





if k = 2,3. In all the cases the determinant of
∂ ( f 1

1 , f 2
1 )

∂ (G,g)

∣

∣

∣

∣

(Gk,gk)

are 16h2(1+9K2).

4 Appendix I

Now we shall present the basic results from averaging
theory that we need for proving the results of this paper.
In the first part we described the main tools from the
averaging theory for ending with some classical results on
integrability of two–degrees of freedom systems.

The next theorem provides a first order approximation
for the periodic solutions of a periodic differential system,
for the proof see Theorems 11.5 and 11.6 of Verhulst [19].

Consider the differential equation

ẋ= εF1(t,x)+ ε2R(t,x,ε), x(0) = x0 (10)

with x∈ D ⊂ R
n, t ≥ 0. Moreover we assume thatF1(t,x)

is T periodic int. Separately we consider inD the averaged
differential equation

ẏ= ε f1(y), y(0) = x0, (11)

where

f1(y) =
1
T

∫ T

0
F1(t,y)dt.

Under certain conditions, equilibrium solutions of the
averaged equation turn out to correspond withT–periodic
solutions of equation (11).

Theorem 4.Consider the two initial value problems (10)
and (11). Suppose:

(i)F1, its Jacobian∂F1/∂x, its Hessian∂ 2F1/∂x2 are
defined, continuous and bounded by an independent
constantε in [0, ∞)×D andε ∈ (0, ε0].

(ii)F1 is T–periodic in t (T independent ofε).
(iii)y(t) belongs toΩ on the interval of time[0,1/ε].

Then the following statements hold.

(a)For t∈ [1,1/ε]we have that x(t)−y(t)=O(ε), asε →
0.

(b)If p is a singular point of the averaged equation (11)
and

det

(

∂ f1
∂y

)∣

∣

∣

∣

y=p
6= 0,

then there exists a T–periodic solutionϕ(t,ε) of
equation (10) which is close to p such that
ϕ(0,ε)→ p asε → 0.

(c)The stability or instability of the limit cycleϕ(t,ε) is
given by the stability or instability of the singular
point p of the averaged system (11). In fact, the
singular point p has the stability behavior of the
Poincaŕe map associated to the limit cycleϕ(t,ε).
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In the sequel we use the idea of the proof of Theorem
4(c). For more details see sections 6.3 and 11.8 of [19].
Suppose thatϕ(t,ε) is a periodic solution of (10)
corresponding toy = p a singular point of the averaged
equation (11). We linearize the equation (10) in a
neighborhood of the periodic solutionϕ(t,ε) obtaining a
linear equation withT periodic coefficients

ẋ= εA(T,ε)x, (12)

with A(t,ε) = ∂
∂x[F1(t,x)]x=ϕ(t,ε).

We define theT–periodic matrix

B(t) =
∂F1

∂x
(t, p).

From Theorem4 we have lim
ε→0

A(t,ε) = B(t). We shall

use the matrices

B1 =
1
T

∫ T

0
B(t)dt

and

C(t) =
∫ t

0
[B(s)−B1]ds.

Note that B1 is the matrix of the linearized averaged
equation. The matrixC(t) is T periodic and it has average
zero. The near–identity transformation

x→ y= (I − εC(t))x (13)

allows us to writte the equation (12) as

ẏ= εB1y+ ε(A(t,ε) −B(t))y+O(ε2). (14)

Remark.We note thatA(t,ε)− B(t) → 0 as ε → 0, and
also that the characteristic exponents of equation (14)
depend continuously on the small parameterε. It follows
that, for ε sufficiently small, if the determinant ofB1 is
not zero, then 0 is not an eigenvalue of the matrixB1 and
then it is not a characteristic exponent of (14). By the
near-identity transformation we obtain that system (12)
has not multipliers equal to 1.

We shall summarize some facts on the
Liouville–Arnold integrability theory for Hamiltonian
systems and on the theory of periodic orbits of differential
equations, for more details see [1] and subsection 7.1.2 of
[2], respectively. We present these results for Hamiltonian
systems of two degrees of freedom, because they adjust to
the study presented in this paper associated to a perturbed
planar Kepler problem under a Newtonian force field, but
we remark that these results also work for an arbitrary
number of degrees of freedom.

A Hamiltonian system with HamiltonianH of two
degrees of freedom is calledintegrable in the sense of
Liouville–Arnoldif it has a first integralG independent of
H (i.e. the gradient vectors ofH andG are independent

in all the points of the phase space except perhaps in a set
of zero Lebesgue measure), and ininvolution with H

(i.e. the parenthesis of Poisson ofH andG is zero).

For Hamiltonian systems with two degrees of freedom
the involution condition is redundant, sinceG is a first
integral of the Hamiltonian system the mentioned Poisson
parenthesis is always zero.

Finally, a flow defined on a subspace of the phase space
is completeif its solutions are defined for all time.

Now are ready for stating the Liouville–Arnold’s
Theorem restricted to Hamiltonian systems of two
degrees of freedom.

Theorem 5(Lioville–Arnold). Suppose that a
Hamiltonian system with two degrees of freedom defined
on the phase space M has its HamiltonianH and the
function G as two independent first integrals in
involution. If Ihc = { p ∈ M / H(p) = h and C(p) = c}
6= /0 and (h, c) is a regular value of the map(H , G ),
then the following statements hold.

(a)Ihc is a two dimensional submanifold of M invariant
under the flow of the Hamiltonian system.

(b)If the flow on a connected component I∗
hc of Ihc is

complete, then I∗hc is diffeomorphic either to the torus
S

1×S
1, or to the cylinderS1×R, or to the planeR2.

If I ∗hc is compact, then the flow on it is always
complete and I∗hc ≈ S

1×S
1.

(c)Under the hypothesis (b) the flow on I∗
hc is conjugated

to a linear flow either onS1×S
1, onS1×R, or onR2.

The main goal of this result is to connect the
components of the invariant sets associated, which are
generically submanifolds of the phase space, with the two
independent first integrals in involution and if the flow on
them is complete then they are diffeomorphic to a torus, a
cylinder or a plane, where the flow is conjugated to a
linear one.

Using the notation of the previous Theorem when a
connected componentI∗hc is diffeomorphic to a torus,
either all orbits on this torus are periodic if the rotation
number associated to this torus is rational, or they are
quasi-periodic (i.e. every orbit is dense in the torus) if the
rotation number associated to this torus is not rational.

For an autonomous differential system, one of the
multipliers is always 1, and its corresponding eigenvector
is tangent to the periodic orbit.

A periodic orbit of an autonomous Hamiltonian system
always has two multipliers equal to one. One multiplier is
1 because the Hamiltonian system is autonomous, and the
other has again value 1 due to the existence of the first
integral given by the Hamiltonian.

Theorem 6(Poincaŕe). If a Hamiltonian system with two
degrees of freedom and Hamiltonian H is
Liouville–Arnold integrable, and G is a second first
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integral such that the gradients of H and G are linearly
independent at each point of a periodic orbit of the
system, then all the multipliers of this periodic orbit are
equal to 1.

Theorem6 is due to Poincaré [16]. It gives us a tool to
study the non Liouville–Arnold integrability,
independently of the class of differentiability of the
second first integral. The main problem for applying this
result in a negative way is to find periodic orbits having
multipliers different from 1.

5 Appendix II

The equations of motion of the restricted three-body
problem (Szebehely, [18]) with radiation pressure of the
primaries (Simmons et al, [17]), with origin at the center
of mass, in a rotating system of coordinates, using
dimensionless variablesq1, q2, may be written as,

d2q1

dt2
−2

dq2

dt
=

∂Ω
∂q1

,
d2q2

dt2
+2

dq1

dt
=

∂Ω
∂q2

, (15)

andΩ is the gravitational potential in synodic coordinates
defined as,

Ω(q1,q2) =
1
2
(q2

1+q2
2)+

k1(1− µ)
r1

+
k2µ
r2

with

r2
1 = (q1− µ)2+q2

2, r2
2 = (q1− µ +1)2+q2

2.

Te constantµ , is the ratio of the mass of the smaller

primary to the total mass of the primaries and 0< µ <
1
2

.

The radiation factors of the primaries are denoted by the
constantsk1 andk2.
The Jacobi integral of this problem, has the following
expression,

C= 2Ω(q1,q2)−
(

(

dq1

dt

)2

+

(

dq2

dt

)2
)

whereC is the Jacobian constant.
If we put the origin of the synodical system in the smaller
primary and change the scale of lengths through the
relations

q1 = µ −1+Xµ1/3, q2 =Yµ1/3, k1 = 1−Kµ1/3 (16)

using the relations (16) into (15) and taking the limit for
µ → 0, we obtain

d2X
dt2

−2
dY
dt

= 3X−K− k2X
r3

d2Y
dt2

+2
dX
dt

=−k2Y
r3

with r =
√

X2+Y2, theequations of motion of the Hill
problem with radiation pressure of the primaries.

The Jacobi integral of the Hill problem with radiation
pressure of the primaries are

CHR =−
(

(

dX
dt

)2

+

(

dY
dt

)2
)

+3X2−2KX+
2k2

r

and the potential function

ΩHR(X,Y) =
3X2

2
−KX+

k2

r

and consequently the equations of motion take the form

d2X
dt2

−2
dY
dt

=
∂ΩHR

∂X
,

d2Y
dt2

+2
dX
dt

=
∂ΩHR

∂Y

In this work we consider the case when only the larger
primary radiates and consequentlyk2 = 1. We now make a
canonical transformation, through the set of variables,

(Q1, Q2, P1, P2)→
(

X, Y,
dX
dt

−Y, X+
dY
dt

)

and we obtain the Hamiltonian function ofthe Hill
problem with radiation pressure of the larger primary.

HHR =− CHR

2
=

1
2
(P2

1 +P2
2)−

1
√

Q2
1+Q2

2

+

(Q2P1−Q1P2)+KQ1−Q2
1+

Q2
2

2

The Hamiltonian function of the Hill problem with
radiation pressure of the larger primary. can be also
regularized by applying the Levi-Civita transformation.
This transformation takes the previous Hamiltonian into
the form of two uncoupled harmonic oscillators perturbed
by the Coriolis force, the sun action and the radiation
action of the main primary. Following the method
exposed in (poner los nuestros) we obtain

HReg=
1
2
(X2+Y2+ x2+ y2)+2(x2+ y2)(yX− xY)+

4K(x4− y4)−4(x2+ y2)(x4−2x2y2+ y4).

Fixed the energyHReg= h the following relation hold

h=
1
2
|CHR|−3/2.
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Cartagena in Spain. In 2010,
he became in the youngest
Mathematics Full Professor
in Spain with 33 years
old. Author of more than 60
research papers published in

the best journal he has supervised 4 PhD’s and more than
10 Master Thesis. He belongs to the Editorial Board of
several journals, between them MATCH Commun. Math.
Comput. Chem. ranked in first position of the JCR 2010
list (Interdisciplinary Mathematics).

Honaida Mohammed
Malaikah works in the field
of Mechanics and Numerical
Simulation. She received
her PhD recently from
the University of Manchester,
UK. Presently, she has been
working on some problems
of Mechanics. In view
of her strong background

on numerical computations, she has successfully
accomplished some new results. In particular, she has
studied the flow of viscoelastic fluids in the following
paper: ?Newtonian heating effects in three-dimensional
flow of viscoelastic fluid, Chinese Physics B. Since she is
new in the field of research and it is the policy of
Deanship of Scientific Research (DSR) to encourage the
upcoming Saudi researchers, her involvement in the
present project will help her a lot to learn more and
establish herself as a competent KAU researcher on the
topic of research of the project under grant no. ( 59 -130 -
35RG).

c© 2015 NSP
Natural Sciences Publishing Cor.


	Introduction and statement of the main results
	Proof of Theorem 1
	Proof of Theorem 2
	Appendix I
	Appendix II

