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This paper is dedicated to the memory of Professor The restricted problem plays an important role in the
José Sousa Ramos. study of the motion of artificial satellites. It can be used
also to evaluate the motion of the planets, minor planets
and comets. The restricted problem gives an accurate
: . description not only for the motion of the Moon but also
1 Introduction and statement of the main for thepmotion of ot%er natural satellites. It is worth ngtin
results that the restricted problem has many applications not only
in celestial mechanics researches but also in physics,
The three—body problem is one of the most importantmathematics and engineering. In quantum mechanics a
problems in space dynamics. There are various dynamicaieneral form of the restricted problem is formed to solve
systems composed of three bodies. Consequently thithe Schrodinger equation of helium-like ions, see Barcza
problem has many applications in scientific researche¢3]. Furthermore, in modern solid state physics the
especially in astrophysics and astrodynamics. In generalestricted problem can be used to discuss the motion of an
the three—body problem is classified into two classes, firstnfinitesimal mass affected not only by the gravitational
is the so—calledgeneral problemand second is the field but also by light pressure from one (or both) of the
restricted problenin which the mass of the third body is primaries which is called the photogravitational problem
so small in comparison to the masses of the other two thasee Kunitsyn and Polyakhoval]]. The restricted
it does not affect their motion. The general problem problem is modified into five versions:
describes the motion of three bodies of arbitrary masses
under their mutual attraction due to the gravitational field 1.The planar circular restricted three-body problem
However our knowledge about the general problem is  when the primaries revolve in a circular orbit around
considerably less than on the restricted problem and their common center of mass as well as the third body
limited, It has some applications in celestial mechanics moves in the same plane.
(one is the dynamics of triple star systems) and only a 2.If the motion of the primaries is not circular and have a
very few in space dynamics and solar system dynamics. conic section. The important case when the primaries
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move in elliptical orbits around center of their masses.in order to obtain a perturbed problem.
In this case It is calleelliptical or pseudo restricted
problem 1
3.When the third body moves out of the plane of the . #&eg= = (X2 + Y2+ X2 +y?) 4+ 26 (X% + y?) (YX — XY)
primaries the problem is callethree—dimensional 2

problem This problem is applicable in the study of +4Ke(xX* —y) — 42 (@ +y?) (X — 232 +-yh).
the orbits for some minor planets with large (3)
inclination to the ecliptic. We do that, in the standard way, via the introduction

4.1f the masses of the primaries or third body vary with of a small parametee which allows us to study the
time. It is calledrestricted problem with variable mass dynamics of the perturbed system in a small environment
and it has important applications in stellar dynamicsof the point(0,0). Note that if we find a periodic orbit for
and cosmology. the perturbed system it can be continuously extended to a
5.If the mass ratio of the smaller primary to the sum periodic orbit the initial system, see Table 1. For more
masses of the primaries is very small and may bedetails on the equations of motion for this problem, see
tends to zero, the problem, is callétill problem. In Appendix I1.
this case the problems with a very small of mass ratio  The idea is to use the averaging method of first order
appear as a perturbed problems for the two-bodyto compute isolated periodic orbits, see Appendix I. One
problem. of the main difficulties in practice for applying the
Although the restricted problem is consider simpler 2€raging method is to express the system in the normal
than the general one, there are great difficulties to find itdOr™M stated in the results of Appendix. The use of proper
solution in the general case and it is also a non—integrabl¥ariables in each concrete situation can simplify a lot this
problem. Therefore numerical methods and perturbatiorP"©¢€SS- IIn paréllcular, in the present dpapﬁrbwe shall use
techniques provide us versatile tools to try to solve thecanonical variables of Lissajous introduced by Defjt [
problem. to obtain information on the existence of

. . non—degenerated isolated periodic orbits for the system,
As a seminal problem related with the effect of the 9 P y

L Lo = see for instanced] ?,?,9].
pressure of the radiation generated by the primaries with . X ,
the gravitational force, in the frame of the restricted ¢hre The Lissajous variables are defined by mean of the
body problem, we underline the work of Simmong]  following canonical _ transformation
In this paper a study of the librance points and their?  (1:9:L,G) = (XY, X,Y) in the domain
stability is presented. Regarding the Hill problem, there 2
are different studies mainly numerical, see for instance Q=T">x{L>0}x{[G] <L}
Chauvineau§], Markellos et alt. 13,7], Kanavos et alt. by
[10Q], Papadakis15] and Voyatzis R0Q].

The aim of our work in to study in an analytical way ~X= vVL+Gsin(l +g) X =vL+Gcogl +9) (4)
the periodic orbits and the’! integrability of the planar Y= vL—Gsin(l —g) Y =L —Gcogl —g)
Hill problem with radiation pressure completing some

numerical studies on this problem lik&Z]. In these variablestregis given by
The Hamiltonian of the planar Hill problem with I =L+e2(L,G,l,9)
radiation pressure of the main primary is given by
1 1 with £1(L,G,1,g) is the pullback of the transformation
= E(|312+ P2) — — +(QoPL— QuPo)+ (4) with the perturbed polynomial
VQiI+Q; 1) 26 (3 +y2) (yX — XY) + 46K (6 — ) —
2
KQL— Q3+ 22 4622 +y?) (X — 23 +y).

2
with K is the parameter of the radiation pressure of the
primary. After Levi—Civita regularization the Hamiltoma

We denote by(f) the averaged map of a smooth
function f with respect to the variable The first result of

(1) is the work is the following.
1o o 2 ) Theorem 1At the level of energys7i = h with the
HReg= (X" +Y"+X +Y2) +20¢ +y?) (YX—XY) differential system given by the Hamiltonia#4 is
AKX =) =40 +y?) (¢ - 2P 1Y) dG
) a ef1(9,G)
We rescaleZ) by mean of ) (5)
d
(XY X.Y) =5 (VEX, Vay VEX, VEY) 5 —£f(6.0)
(@© 2015 NSP
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with (i) x(t)=+Vahsin(t+7), y(t)=+bhsin(t—17])
fi(g.6) = 27 (i) x(t)=vbhsin(t—F), y(t)=ahsin(t+J)

6<gzg> (i) x(t)=vbhsin(t+ ), y(t)=Vahsin(t— %)

f2(9,G) = ¢ 091- (v) x(t)=+ahsin(t—1T), y(t)=+vbhsin(t+ 1)

Table 1: The four periodic orbitgx(t),y(t)) of the unperturbed
Hamiltonian systemZgegon each energy leve#geg=h> 0. In
the formulaea= 1+ 3K (1+9K?)"Landb=1—-3K(1+9K?)~L.

Now we are ready to state a corollary of previous result
which provides sufficient conditions for the existence and
the kind of stability of the periodic orbits in this problem.

Corollary 1.System§) is the Hamiltonian system taking

| as independent variable of the Hamiltonia#i on the

fixed energy level = h . If € + Ois sufficiently smallthen 2 Proof of Theorem1
for every solutiorp = (go, Gg) of the system;fg,G) = 0

fori = 1,2 satisfying that The Hamiltonian system associated to the Hamilto#n
can be written as
det[ 21 f2) £0 (6)
9(9.6) lgo)-(wco)) di_ ), g7 db_ 97
dt oL dt ol
there exists a 2r—periodic solution q 0P 4G o7 @)
() = (g(,e),L(1,€),G(,€)) such that 49_ .91 a5 _ 271
¥e(0) — (go,h,Gp) when & — 0. The stability or dt 0G dt a9
instability of the periodic solutiory(l) is given by the ) ) , .
stability or instability of the equilibrium poirp of system Taking as new independent variab|éhe equationsn)
(5). In fact, the equilibrium pointp has the stability —Pecome
behavior of the Poincd map associated to the periodic 07,
solutionyg(1). 4G _80—9 B 803”1 ols
The main result of the paper is the following dl 1+€0@1 T ag +0(e%)
Theorem 20n every energy levels# = h the oL (8)
Hamiltonian J71 for € # 0 sufficiently small has four 803”1
2m—periodic  solutions y¥(1) = (g(l,£),L(l,€),G(l,£)) d_9: 0G 285@1+O(£2)
such that dl 07, 0G
l+e——
1(0) - (’—T h, 0K __ ) o
T\ T y |
2(0) - ( T h —3hK > Fixing the energy level of#1= h we obtain
£ _Za ’72
0+ (T R h=L+e24(L,G,l,0).
& _> R y T ———5
4n v 1§h?<K2 Using the Implicit Function Theorem fog sufficiently
0)—(——,h—— small, we get. = h+ O(¢), and the equations are reduced
o) - (-G e small we g @ q

whene — 0. The four periodic orbits are linearly stable.

) . Proof(Proof of Theoremi). The averaged system in the
The previous result states that at any positive energyanglel obtained from @) is

level there exists at least four isolated periodic orbit in

such concrete energy level. We note that we shall use this 2n

information as a key point to prove other important d_G__ € /dgzldl+0(£2)

aspect: th&s* non—integrability of the model in the sense dl 2t/ 0dg

of Liouville—Arnold. 0 ©)
. . . 2r

Theorem 3The Hamiltonian of the planar Hill problem d_g £ dgzldl+0(82).

with radiation pressure is not Liouville—Arnold integrabl dl — 21/ 4G
with any second first integral of clagg'. 0

ProofThe proof is a direct consequence of Theorem 3 . . . .
using Theorems 5 and 8 of Appendix I. See the Appendix for a short introduction to the averaging

theory used in this paper.
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Since, if k= 23. In all the cases the determinant of

(P 1 2"@32 3(‘(11, f12) 2 2

(7 1 14 I are 1612(1+ 9K?),

g 2n) o9 (G.9) |G

2

Py 1 [0 4 Appendix |

G 2710 G

the differential system9) coincides with the systenb).
Once we have obtained the averaged systenit (s

Now we shall present the basic results from averaging
theory that we need for proving the results of this paper.
In the first part we described the main tools from the

immediate to check that it satisfies the assumptions okveraging theory for ending with some classical results on

Theorem 4 of the Appendix,
conclusions of Theorer to our averaged systerd)(the
rest of the statement of Theorenfiollows immediately.

3 Proof of Theorem?2

The function2?; in Deprit canonical variables is given by

2,(L,G,l,9) =2v/L2—-G%(L — Lcosycos2
+Gsingsin2) + 4K ((G+L)?sin(g+1)
—(G—L)?sin*(g—1))+0(¢)

Fixed the energy leveh for the Hamiltonianzzq we
obtain the following system

(Z_(IB =¢f1(g9,G) = e4hvh?2 — G2cos
dg B Gsinyg
a - £f2(9,G) = ¢h <6K+ . GZ) .
The following expressions
3hK T
G ) = T a7 |
( 1 gl) (\/m 4)
3hK T
G ) = T T 3 A
( 2 gZ) ( m 4)
3hK T
G 3 =\ T/ |
(Ga.) (\/1+9K2 4)
3hK T
G ) = T T /5
(Ga,04) ( o 4>
are the only solutions of the systerfy(g,G) = 0,
f2(g,G) = 0.
On the other hand
—8h?
d(fq, 2) B ——
2 lGeg0 \2(1+9K2)¥2 0
fork=1,4 and
8h?
d(fy,f2) _ —
d(G ) - \/1+9K2
9) (G0 —2(1+9K?)3/2 0

then applying the

integrability of two—degrees of freedom systems.

The next theorem provides a first order approximation
for the periodic solutions of a periodic differential syste
for the proof see Theorems 11.5 and 11.6 of Verhd8k

Consider the differential equation
X = eF1(t,X) + €2R(t,x,£), X(0) = %o (10)

with xe D C R", t > 0. Moreover we assume thia(t, x)
isT periodicint. Separately we considerihthe averaged
differential equation

y=¢€f1(y), y(0) = Xo, (11)

where
1 T
L) =7 [ Rty

Under certain conditions, equilibrium solutions of the
averaged equation turn out to correspond Withperiodic
solutions of equationi(l).

Theorem 4Consider the two initial value problem4@)
and (11). Suppose:

()F1, its JacobiandF/dx, its Hessiand?F;/dx? are
defined, continuous and bounded by an independent
constant in [0, ) x D ande¢ € (0, &).

(ii)Fy is T-periodic in t (T independent ©j.

(ii)y (t) belongs taQ on the interval of timg0, 1/¢].

Then the following statements hold.

(a)Forte [1,1/¢] we have thatt) —y(t) = O(¢€), ase —
0

(b)If. p is a singular point of the averaged equatidii)
#0,

and Y
det(—1>
9 /) ly=p

then there exists a T—periodic solutiof(t,&) of
equation (@0) which is close to p such that
$(0,6) » pase — 0.

(c)The stability or instability of the limit cyclé (t,¢) is
given by the stability or instability of the singular
point p of the averaged system1j. In fact, the
singular point p has the stability behavior of the
Poincae map associated to the limit cyapdt, €).
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In the sequel we use the idea of the proof of Theoremin all the points of the phase space except perhaps in a set
4(c). For more details see sections 6.3 and 11.8168f.[ of zero Lebesgue measure), andimvolution with 7
Suppose thatg(t,e) is a periodic solution of X0) (i.e. the parenthesis of Poisson#f and¥ is zero).
corresponding toy = p a singular point of the averaged For Hamiltonian systems with two degrees of freedom
equation {1). We linearize the equationlQ) in a  the involution condition is redundant, sinée is a first
neighborhood of the periodic solutig(t,€) obtaining a  jntegral of the Hamiltonian system the mentioned Poisson

linear equation witlT periodic coefficients parenthesis is always zero.
X = eA(T, €)X (12) Finally, a flow defined on a subspace of the phase space
T is completdf its solutions are defined for all time.
with A(t, €) = [%([Fl(t,x)]xzwvg). Now are ready for stating the Liouville—Arnold’s
We define thér—periodic matrix Theorem restricted to Hamiltonian systems of two
degrees of freedom.
0F; o
B(t) = -, (LP)- Theorem 5(Lioville—Arnold). ~ Suppose  that a

Hamiltonian system with two degrees of freedom defined
From Theoren we have limA(t,e) = B(t). We shall  on the phase space M has its Hamiltonig#f and the
0 function ¥ as two independent first integrals in

use the matrices involution. If k ={ pe M / H(p) =h and Qp) = ¢}

B 1 TBt dt # 0 and (h, c) is a regular value of the maps?, ¥),
1= ?/o (®) then the following statements hold.
and . (@)l is a two dimensional submanifold of M invariant
= [ IB(s)—B under the flow of the Hamiltonian system. .
co / [B(S) —Bujds (b)If the flow on a connected componefit of Inc is

Note thatB; is the matrix of the linearized averaged C(l)mpllete, thenl. is gliffeorrlwrphic either to the tozrus
equation. The matri€(t) is T periodic and it has average S x S, or to the cylindeiS” x R, or to the planeR<.

zero. The near—identity transformation If 1. is compact, then the flow on it is always
complete and;}, ~ St x St.
X—y=(I—€C(t))x (13)  (c)Under the hypothesis (b) the flow gi is conjugated

; ; 1,gl 1 2
allows us to writte the equation.d) as to a linear flow either o1+ x S*, onS* x R, or onR<.

. The main goal of this result is to connect the
_ 2

y=¢By+e(Alt.e) —B)y+0O(e%).  (14)  components of the invariant sets associated, which are
RemarkWe note thatA(t, ) — B(t) — 0 ase — 0, and generically submanifolds of the phase space, with the two

also that the characteristic exponents of equatibf) ( ![l;]d?np?andergt f||r:;:t [{r;]tegrﬁls in :nv;lf}rmorr;apdh:f tthe ﬂtov: on
depend continuously on the small parametelt follows em IS complete then they are ditteomaorphic to a torus, a

that, for ¢ sufficiently small, if the determinant @, is cylinder or a plane, where the flow is conjugated to a

not zero, then 0 is not an eigenvalue of the ma@jxand linear one.

then it is not a characteristic exponent df). By the Using the notation of the previous Theorem when a
near-identity transformation we obtain that systet®)( connected componerif is diffeomorphic to a torus,
has not multipliers equal to 1. either all orbits on this torus are periodic if the rotation

number associated to this torus is rational, or they are
quasi-periodic (i.e. every orbit is dense in the torus) € th
We shall summarize some facts on the rotation number associated to this torus is not rational.
Liouville—Arnold integrability theory for Hamiltonian
systems and on the theory of periodic orbits of differential For an autonomous differential system, one of the
equations, for more details sef fnd subsection 7.1.2 of multipliers is always 1, and its corresponding eigenvector
[2], respectively. We present these results for Hamiltonianis tangent to the periodic orbit.
systems of two degrees of freedom, because they adjust to
the study presented in this paper associated to a perturb%gW

: / ays has two multipliers equal to one. One multiplier is
planar Kepler problem under a Newtonian force f'em.’ b'“'tl because the Hamiltonian system is autonomous, and the
we remark that these results also work for an arbitrary ;

other has again value 1 due to the existence of the first
number of degrees of freedom.

integral given by the Hamiltonian.
A Hamiltonian system with Hamiltoniaz’ of two
degrees of freedom is callddtegrable in the sense of Theorem 6(Poincag). If a Hamiltonian system with two
Liouville—Arnoldif it has a first integral/ independentof degrees of freedom and Hamiltonian H is
A (i.e. the gradient vectors o and¥ are independent Liouville—Arnold integrable, and G is a second first

A periodic orbit of an autonomous Hamiltonian system

(@© 2015 NSP
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integral such that the gradients of H and G are linearly

independent at each point of a periodic orbit of the i r — |\ /X27¥2 theequations of motion of the Hil
system, then all the multipliers of this periodic orbit are problem with radiation pressure of the primaries

equalto 1. The Jacobi integral of the Hill problem with radiation

Theoremb is due to Poincaréll]. It gives us atoolto ~ Pressure of the primaries are
study the non Liouville—Arnold integrability, dx\ 2 dy )\ 2 ok
independently of the class of differentiability of the Cyr=— <_) + <_> +3X22KX + 2
second first integral. The main problem for applying this < dt dt r
resu]t i_n a n_egative way is to find periodic orbits having and the potential function
multipliers different from 1.

3x2 k
QuR(X,Y) = =5- KX+ 72

5 Appendix I and consequently the equations of motion take the form

The equations of motion of the restricted three-body d?X  _dY 0Qur d?Y _dX 0Qur
problem (Szebehely1B]) with radiation pressure of the G2 Cat T ax ’ de cat T oy
primaries (Simmons et allf]), with origin at the center

of mass, in a rotating system of coordinates, using
dimensionless variableg, g, may be written as,

In this work we consider the case when only the larger
primary radiates and consequerky= 1. We now make a
canonical transformation, through the set of variables,

dXx dy
d?qy _2dq2 _0Q d?qp +2dﬂ _ d_Q (15) (Q1, Q2, P, P) — (X, Y, /——VY, X+ —)

a2 “dt  dq’ d2 ‘dt o’ dt dt
. o - ) , and we obtain the Hamiltonian function tfie Hill
andQ is the gravitational potential in synodic coordinates problem with radiation pressure of the larger primary

defined as,

1 5 o ki(l-p)  kop %R:_TZE(PlJer)—iZ =+
Q(QLQZ)—E(%JF%)JFT‘F? \/ QI+ Q5
>
with (QaP1— Qi) +KQ1 —Qf + %
= (m—p2+0g r5=(q—u+1)°+05. The Hamiltonian function of the Hill problem with

radiation pressure of the larger primary. can be also

Te constany, is the ratio of the mass of the smaller regularized by applying the Levi-Civita transformation.

primary to the total mass of the primaries and u < =. This transformation takes the previous Hamiltonian into
The radiation factors of the primaries are denoted by théhe form of two uncoupled harmonic oscillators perturbed
constantd; andko. by 'the Coriolis forge, th.e sun action .and the radiation
The Jacobi integral of this problem, has the following &ction of the main primary. Following the method
expression, exposed in (poner los nuestros) we obtain
1
C20(0.0) (dql)z (dq2>2 Jﬁqegzi(xz—kYz—kxz—kyz)+2(x2+y2)(yX—xY)+
= q1,92) — | | = —
dt dt 4K (X =y — 402 +Y) (¢ — 232 + ).
whereC is the Jacobian constant. Fixed the energy?reg = h the following relation hold
If we put the origin of the synodical system in the smaller 1
primary and change the scale of lengths through the h= §|CHR|‘3/2.

relations

_ 1/3 _ 1/3 _ 1/3
o= p—14+Xp% = YUtk =1-Kp'® (16)  Acknowledgements
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