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Abstract: Hamiltonian systems are related to numerous areas of mathematics and have a lot of application branches, such as classical
and quantum mechanics, statistics, optical, astronomy, molecular dynamic, plasma physics, etc. In general, the integration of these
systems requires the use of geometric integrators. In this paper, we introduce a new variational approach for models which are
formulated naturally as conservative systems of ODEs, mostimportantly Hamiltonian systems. Our variational method for Hamiltonian
systems, which is proposed here, is in some sense symplecticand energy preserving. In addition to introducing the technique, we briefly
indicate its most basic properties, and test its numerical performance in some simple examples
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1 Introduction

It is well-known that numerical methods, such as the
ordinary Runge-Kutta schemes, are not particularly
efficient in integrating Hamiltonian systems, because
Hamiltonian systems are not generic in the set of all
dynamic systems. They are not structurally stable against
non-Hamiltonian perturbations. Numerical solution of
Hamiltonian systems is frequently carried out by
symplectic integrators due to their good performance in
moderate and long-time integration, see [11,13,16,17,
22]. Symplectic numerical methods belong to the family
of Geometric Numerical Integrators, which preserve
important qualitative and geometric properties of the
underlying differential system, and are arguably the most
popular methods in this class. Certain qualitative
properties of the evolution, like symplecticity, are
preserved and, in general they exhibit smaller error
growth along the numerical trajectory.

Some pioneering works on symplectic integrations are
due to Vogelaere [26], Ruth [20], and Feng Kang [10].
The derivation of higher-order methods is covered by

several approaches such as composition methods,
classical Runge-Kutta methods (RK) as well as
partitioned Runge-Kutta (PRK) methods, and methods
based on generating functions. The systematic study of
symplectic Runge-Kutta methods started around 1988,
and a complete characterization has been found
independently by Lasagni [15] (using the approach of
generating functions), and by Sanz-Serna [21] and
Suris[24] (using the ideas of the classical papers of
Burrage and Butcher [6] and Crouzeix [8] on algebraic
stability).

Nowadays, it is well-known that certain implicit RK
methods of Radau type (generalizing the implicit Euler
method) are useful in the context of systems with strong
dissipation, like electronic circuits or chemical reaction
dynamics. Partitioned Runge- Kutta (PRK) methods are
another way to approximating the solution trajectory
which it is based on using different approximation
formulas for different components of the solution. (use
different sets of quadrature rules for each subset of the
variables). The starting point of generating function (GF)
theory was the discovery of Hamilton that the motion of
the system is completely described by a characteristic
function S, and that S is the solution of a partial
differential equation, now called the Hamilton-Jacobi
differential equation. It was noticed later, especially by
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Siegel (Siegel and Moser 1971), that such a functionS is
directly connected to any symplectic map. It was called
generating function. See [11,16].

Another important point should be taken into account
regarding Hamiltonian systems, even with symplectic
maps, and that is the lack of energy conservation in the
map. It would seem to be an obvious goal for Hamiltonian
integration methods both to preserve the symplectic
structure and to conserve the energy, but it was shown that
this was in general impossible. Thus a symplectic map
which only approximates a Hamiltonian cannot conserve
energy [27]. Recently, some research has been carried out
about energy-preserving symplectic methods based on the
key tool line integral associated with conservative vector
fields, as well as its discrete version. See,[4,5].

In this contribution, we introduce a new variational
approach for models which are formulated naturally as
conservative systems of ODEs, most importantly
Hamiltonian systems. The variational method for
Hamiltonian systems, which is proposed here, is in some
sense symplectic and energy preserving, and is based on a
natural modification of the schemes introduced in [1,2,3].
We perform an initial brief analysis of the approach both
theoretically and numerically.

2 A new variational approach for
Hamiltonian systems

Consider the hamiltonian dynamical system

x′(t) =
∂H
∂p

(x(t),p(t)), p′(t) =−
∂H
∂x

(x(t),p(t)), (1)

to hold in a certain time interval(0,T), subject to initial
boundary conditions(x(0),p(0)) = (x0,p0). Bothx andp
take on values inRN. We are interested in setting up a
method to understand, and approximate, the trajectories
of such a system. In particular, we would like to focus on
how the a priori knowledge of conserved quantities may
help in improving our ability to approximate such system.
It is well-known that the hamiltonian itself
H(x,p) : RN ×RN → R is one such conserved quantity so
that H(x(t),p(t)) = H(x0,p0) ≡ H0 for all times t in
(0,T).

Recently, an alternative to the analysis and numerical
approximation of dynamical systems has been introduced
([1,2,3]), based on the minimization of the error functional

E(X) =

∫ T

0

1
2
|X′(t)−F(X(t))|2dt

regarded as a measure of how far a given
absolutely-continuous pathX complying withX(0) = X0
is from being a solution of the underlying dynamical
system

X′(t) = F(X(t)) in (0,T), X(0) = X0. (2)

It is elementary to realize that solutions of the system are
precisely thoseX for which E(X) = 0, and preserve the
initial condition. We would like to explore one possibility
of taking advantage of the hamiltonian structure of the
system for this variational approach. Namely, if the
dimension is even 2N, and (1) holds for some hamiltonian
H, then, as remarked above,H must be constant on
integral curves, and so we could modify the error
functional to take into account this extra information to
write

E(x,p) =
∫ T

0

[

1
2
|x′−

∂H
∂p

(x,p)|2+
1
2
|p′+

∂H
∂x

(x,p)|2

(3)

+
1
2
|H(x,p)−H0|

2
]

dt.

The basis for our proposal is the following.

Proposition 1.Suppose the pathx is a critical point for the
functional in (3), under the initial condition(x(0),p(0)) =
(x0,p0). Thenx is the unique solution of (1).

Proof:
Since we are assuming that all of our ingredients are

sufficiently smooth, we can differentiate as many times as
necessary without being concerned about its validity.
Hence, it is straightforward to write down the
Euler-Lagrange optimality conditions for a critical path of
(3) in the form

−

(

x′−
∂H
∂p

(x,p)
)′

−

(

x′−
∂H
∂p

(x,p)
)

∂ 2H
∂x∂p

(x,p)+

(

p′+
∂H
∂x

(x,p)
)

∂ 2H
∂x2 (x,p)+(H(x,p)−H0)

∂H
∂x

(x,p) = 0,

−

(

p′+
∂H
∂x

(x,p)
)′

−

(

x′−
∂H
∂p

(x,p)
)

∂ 2H
∂p2 (x,p)+

(

p′+
∂H
∂x

(x,p)
)

∂ 2H
∂x∂p

(x,p)+(H(x,p)−H0)
∂H
∂p

(x,p) = 0.

In addition, we also have the transversality or natural
condition at the end-pointt = T,

x′−
∂H
∂p

(x,p)

∣

∣

∣

∣

t=T
= p′+

∂H
∂x

(x,p)

∣

∣

∣

∣

t=T
= 0.

If we put

X = x′−
∂H
∂p

(x,p), P= p′+
∂H
∂x

(x,p), (4)

we can rewrite the above big system in the form

X′+X
∂ 2H
∂x∂p

(x,p)−P
∂ 2H
∂x2 (x,p) = (H(x,p)−H0)

∂H
∂x

(x,p),

P′+X
∂ 2H
∂p2 (x,p)−P

∂ 2H
∂x∂p

(x,p) = (H(x,p)−H0)
∂H
∂p

(x,p).

We also have thatX(T) = P(T) = 0. We would like to
conclude that the only pair complying with these
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conditions isX ≡ 0, P ≡ 0. Note that this would be
immediate, if in the error functional in (3) there is no term
about the conservation of the energy, for in this case the
problem for the pair(X,P) would be

X′+X
∂ 2H
∂x∂p

(x,p)−P
∂ 2H
∂x2 (x,p) = 0,

P′+X
∂ 2H
∂p2 (x,p)−P

∂ 2H
∂x∂p

(x,p) = 0,

together withX(T) = P(T) = 0. The unique solution is
X ≡0,P≡ 0. This was the general point of view adopted in
earlier contributions by the authors ([1,2,3]) for a general-
purpose procedure. We want to conclude that it is also so
even with the added energy term

∫ T

0

1
2
|H(x,p)−H0|

2dt

to the error functional. The whole point of our concern
here is to assess how this extra term on the conservation
of energy may affect the numerical performance of the
underlying numerical scheme.

To show our aim, we define the mapping
(x̃, p̃) = T (x,p) as follows: given(x,p), solve the linear
system for(X,P) above under the final time condition
X(T) = P(T) = 0; once(X,P) is known, let(x̃, p̃) be the
solution of (4) under the initial conditionx̃(0) = x0,
p̃(0) = p0. The true solution of (1) is certainly a fixed
point for this mappingT . We claim that it is the only
such fixed point. If this is so, our proposition is proved.

As indicated, our mappingT is the composition of
two operations. The first one is the passage(x,p) 7→ (X,P)
through

(

X
P

)′

= A(x,p)
(

X
P

)

+b(x,p) in (0,T),

(X(T),P(T)) = 0,

where the matrixA depends on second derivatives ofH
evaluated at(x,p), and b depends onH, and its first
derivatives. If we now have two pairs(xi ,pi), i = 1,2,
then a standard application of Gronwall’s lemma lead to

‖(X1,P1)− (X2,P2)‖ ≤ MT‖(x1,p1)− (x2,p2)‖

where the constantM comes from the Lipstchitz constants
for H, and its derivatives. By takingT sufficiently small
the transformation(x,p) 7→ (X,P) is a contraction. The
second operation can be treated similarly.

We conclude that our mappingT , for small T, is a
contraction, and can only admit a unique fixed point,
which has to be the solution of (1). This argument can be
used successively in small time intervals to cover any
finite interval in a finite number of steps.

�

What Proposition1 ensures is that the only critical
points of the error functional (3) are the solutions of the

hamiltonian system (1) itself, and so an approximation
procedure based on minimizing the error functional can
never get stuck in local minima, but proceed to steadily
approximate the true solution of the dynamical system.
Moreover, by construction, the functional penalizes the
non conservation of the energy.

3 A steepest descent direction for our
functional

We focus on finding the steepest descent direction with
respect to the norm

∫ T

0
|Y′(t)|2dt,

in this case, the steepest descent direction can be found as
the solution of a variational problem of the following form.

Minimize Y:

1
2

∫ T

0
[|Y′|2+(X′−Ω∇H(X)(Y′+ΩT∇2H(X)Y)

+(H(X)−H(X(0)))∇H(X)Y]dt,

underY(0) = 0, where

Ω =

(

0 −1

1 0

)

. (5)

This is a standard quadratic variational problem whose
optimal solution can be found through the system

−
d
dt

[

Y′+X′+ΩT∇H(X)
]

+∇2H(X)Ω
(

X′+ΩT ∇H(X)
)

+(H(X)−H(X0))∇H(X) = 0

in (0,T), together with the end-point conditions

Y(0) = 0,Y′(T)+X′(T)+ΩT∇H(X(T)) = 0.

It is remarkable that the solution of this system can be
given in an fully explicit form as

Y(t) =−
∫ t

0
[sG(s)+F(s)] ds− t

∫ T

t
G(s)ds, (6)

where

F = X′+ΩT∇H(X)

G = ∇2H(X)Ω(X′+ΩT∇H(X))+(H(X)−H(X(0)))∇H(X).

We can therefore establish a steepest descent strategy
to decrease the error in each iteration. Note that the
derivative of the error atX in the directionY is

−

∫ T

0
|Y′(t)|2dt
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Then we can chooseη ∈ (0,1) such that

E(X +ηY)≤ E(X)−
1
2

∫ T

0
|Y′(t)|2dt.

Moreover, it is possible to check uniform convergence
of this procedure for smooth Hamiltonian systems (see
[18]). The following statement is a direct adaptation of
similar results in [18].

Theorem 1.The iterative procedure
X( j) = X( j−1) + η jY( j), starting from arbitrary feasible
X(0), converges strongly in H1(0,T) to the unique
solution of any sufficiently smooth Hamiltonian system.

4 Numerical results

The iterative numerical procedure is easily implementable.
1. Start with an initial approximationX0(t) compatible

with the initial conditions, for instanceX(0)(t) = X0.

2. Assume we have approximation(X( j))(t) in [0,T].
3. Compute its derivative(X( j))′(t).
4. DefineF andG through the formulas

F( j) = (X( j))′+ΩT∇H(X( j)),

G( j) = ∇2H(X( j))Ω((X( j))′+ΩT∇H(X( j)))

+(H(X( j))−H(X(0)))∇H(X( j)).

5. Approximate the mapping

Y( j)(t) =−
∫ t

0

[

sG( j)(s)+F( j)(s)
]

ds− t
∫ T

t
G( j)(s)ds,

(7)
using (symplectic) quadrature formulas.

6. UpdateX( j) to X( j+1) by using the formula

X( j+1)(t) = X( j)(t)+η jY( j)(t).

7. Iterate (3), (4), (5) and (6) until numerical
convergence.

We test this numerical procedure with two classical
systems: a Lotka-Volterra problem, and the Kepler
problem. In particular, we would like to stress the
necessity of using symplectic rules for the approximation
of Y( j).

The Lotka-Volterra problem can be given in normal
form

p′ = eq−2, (8)

q′ = 1−ep
.

The initial conditions considered arep= 2.3 andq= 0.7.
It is well known that this Lotka-Volterra problem is

defined as two species problem: one is a predator, the
other one its prey. It is frequently used to describe the
dynamics of biological systems, in which two species
interact.

Fig. 1: The q-coordinate versus p-coordinate,’o’-approximation.
Problem8 using the non symplectic trapezoidal rule.

Fig. 2: The x-coordinate versus y-coordinate,’o’-original,’+’-
approximation. Problem8 using the symplectic mid-point
quadrature rule.

The Kepler problem can be stated as

p′i = −
q1

(q2
1+q2

2)
3
2

, (9)

q′i = pi .

for i = 1,2. The initial conditions have been taken to be
p1 = 0.4, p2 = 0, q1 = 0 andq2 = 2.

The Kepler problem in classical mechanics is a special
case of the two-body problem, in which two bodies interact
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through a central force that varies in strength as the inverse
square of the distance between them.

Fig. 3: The q-coordinate versus p-coordinate,’o’-approximation.
Problem9 using the non symplectic trapezoidal rule.

Fig. 4: The x-coordinate versus y-coordinate,’o’-original,’+’-
approximation. Problem9 using the symplectic mid-point
quadrature rule.

The approximations using the non symplectic
trapezoidal rule are not satisfactory, see Figures1 and3.
This situation can be resolved by considering other types
of quadrature rules, like the family of simplectic ones, to
approximate the directionY( j) for each iteration step. The
good results in Figures2-4 have been obtained by using

mid-point quadrature rule, the simplest symplectic
quadrature rule.

5 Concluding remarks

One main point we would like to emphasize is the
importance of selecting the descent directionY with
respect to the norm

∫ T

0
|Y′(t)|2dt,

since in this case we are able to write downY in an
integral closed form. In this situation, we can use very
well known symplectic quadrature rules. In other cases,
we would need to approximate the resulting second order
boundary-value problem using symplectic methods. This
possibility still deserves some attention. Nevertheless,
recently, a symplectic algorithm based on the dual
variational principle has been proposed for solving the
nonlinear two-point boundary value problem [19].

Finally, we would like to highlight the advantages of
our approach.

–A symplectic map which only approximates a
Hamiltonian cannot conserve energy [27]. In our case,
by definition the functional penalizes the
nonpreservation of the energy, and our linearization
can be approximated by well known sympletic
quadrature rules. In fact, for polynomial systems, the
formula for the directionY can be obtained exactly.

–In the non-stiff situation, the long-time behaviour of
symplectic methods is well understood, and can be
explained with the help of a backward error analysis
(modified equations). In the highly oscillatory (stiff)
case, this theory breaks down. However, our base
linearization is well understood in both cases.
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the Universidad Politécnica de Cartagena. Her research
interests include the numerical approximation of
nonlinear and differential equations.

Pablo Pedregal
received the PhD degree
in Applied Mathematics in
the University of Minnesota.
His research interests
are in the areas of applied
mathematics, particularly
optimization understood in a
broad sense. He has published
research articles in reputed

international journals of applied mathematics and
analysis. He is referee and editor of mathematical
journals.

c© 2015 NSP
Natural Sciences Publishing Cor.


	Introduction
	A new variational approach for Hamiltonian systems
	A steepest descent direction for our functional
	Numerical results
	Concluding remarks

