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Abstract: Hamiltonian systems are related to numerous areas of matheEnand have a lot of application branches, such as cédssic
and quantum mechanics, statistics, optical, astronomigeul@ar dynamic, plasma physics, etc. In general, the iatem of these
systems requires the use of geometric integrators. In hEmp we introduce a new variational approach for modelshviire
formulated naturally as conservative systems of ODEs, mgstrtantly Hamiltonian systems. Our variational methodHamiltonian
systems, which is proposed here, is in some sense sympectienergy preserving. In addition to introducing the templ, we briefly
indicate its most basic properties, and test its numeriegbpmance in some simple examples
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This paper is dedicated to the memory of Professorseveral approaches such as composition methods,
José Sousa Ramos. classical Runge-Kutta methods (RK) as well as
partitioned Runge-Kutta (PRK) methods, and methods
based on generating functions. The systematic study of
1 Introduction symplectic Runge-Kutta methods started around 1988,
and a complete characterization has been found
It is well-known that numerical methods, such as theindependently by Lasagnil§] (using the approach of
ordinary Runge-Kutta schemes, are not particularlygenerating functions), and by Sanz-Serral][and
efficient in integrating Hamiltonian systems, becauseSurisR4] (using the ideas of the classical papers of
Hamiltonian systems are not generic in the set of allBurrage and Butcher6] and Crouzeix 8] on algebraic
dynamic systems. They are not structurally stable againsstability).
non-Hamiltonian perturbations. Numerical solution of Nowadays, it is well-known that certain implicit RK
Hamiltonian systems is frequently carried out by methods of Radau type (generalizing the implicit Euler
symplectic integrators due to their good performance inmethod) are useful in the context of systems with strong
moderate and long-time integration, sekl[1316,17, dissipation, like electronic circuits or chemical reantio
22]. Symplectic numerical methods belong to the family dynamics. Partitioned Runge- Kutta (PRK) methods are
of Geometric Numerical Integrators, which preserveanother way to approximating the solution trajectory
important qualitative and geometric properties of thewhich it is based on using different approximation
underlying differential system, and are arguably the mostformulas for different components of the solution. (use
popular methods in this class. Certain qualitative different sets of quadrature rules for each subset of the
properties of the evolution, like symplecticity, are variables). The starting point of generating function (GF)
preserved and, in general they exhibit smaller errortheory was the discovery of Hamilton that the motion of
growth along the numerical trajectory. the system is completely described by a characteristic
Some pioneering works on symplectic integrations arefunction S, and thatS is the solution of a partial
due to VogelaereZf], Ruth [20], and Feng Kang1(Q]. differential equation, now called the Hamilton-Jacobi
The derivation of higher-order methods is covered bydifferential equation. It was noticed later, especially by
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Siegel (Siegel and Moser 1971), that such a func8am It is elementary to realize that solutions of the system are
directly connected to any symplectic map. It was calledprecisely thoseX for which E(X) = 0, and preserve the
generating function. Seé 1, 16]. initial condition. We would like to explore one possibility
Another important point should be taken into accountof taking advantage of the hamiltonian structure of the
regarding Hamiltonian systems, even with symplecticsystem for this variational approach. Namely, if the
maps, and that is the lack of energy conservation in thedimension is evenlq, and () holds for some hamiltonian
map. It would seem to be an obvious goal for HamiltonianH, then, as remarked abovél must be constant on
integration methods both to preserve the symplecticintegral curves, and so we could modify the error
structure and to conserve the energy, but it was shown thdunctional to take into account this extra information to
this was in general impossible. Thus a symplectic mapwrite
which only approximates a Hamiltonian cannot conserve

energy P7]. Recently, some research has been carried out g (x, p) = /T [}|x/ _ d_H(X’p)|2+ }Ip/+ d_H(ij”z
about energy-preserving symplectic methods based on the Jo |2 Jp 2 J
key tool line integral associated with conservative vector )
fields, as well as its discrete version. Ségdq]. 1 )

In this contribution, we introduce a new variational + 5H(X,p) —Hol ] dt.

approach for models which are formulated naturally as

conservative systems of ODEs, most importantly  The basis for our proposal is the following.

Hamiltonian systems. The variational method for

Hamiltonian systems, which is proposed here, is in som

sense symplectic and energy preserving, and is based on

natural modification of the schemes introducedliy?[3].

We perform an initial brief analysis of the approach both  Proof:

theoretically and numerically. Since we are assuming that all of our ingredients are
sufficiently smooth, we can differentiate as many times as
necessary without being concerned about its validity.

roposition 1.Suppose the pathis a critical point for the
lénctional in @), under the initial conditiorix(0),p(0)) =
(Xo0,Po)- Thenx is the unique solution oflj.

2 A new variational approach for Hence, it is straightforward to write down the
. . Euler-Lagrange optimality conditions for a critical path o
Hamiltonian systems (3) in the form
Consider the hamiltonian dynamical system (s _OH " (., oH 9%H
(¥ 50 ) = (= G 0uP)) oo 0PI+
) =2 (xt)pt). P =-T0xO.p0) O (M o) 2H oH
ap XO-PO). ox X(©:PO): (94 G 0P) ) Sz 0P) + (HOP) ~ Ho) G () =0
to hold in a certain time intervg, T), subject to initial _( 'y H )'_ < , oH ) 0%H o)+
boundary condition&x(O),p(O)) = (Xo0,Po). Bothx andp P o) " op GoP) ap? (P)

(x.p) + (H(x.p) —Ho) 2

ap

take on values irR™. We are interested in setting up a , OH 92H
(p ( ,p)) (x,p)=0.

method to understand, and approximate, the trajectories\ P * 5 X xdp
of such a system. In particular, we would like to focus on N )
how the a priori knowledge of conserved quantities may!n addition, we also have the transversality or natural
help in improving our ability to approximate such system. condition at the end-poirt=T,

It is well-known that the hamiltonian itself 9H
H(x,p) : RN x RN — R is one such conserved quantity so X — =—(x,p)

AH
=p'+5=(x,p)

=0.
that H(x(t),p(t)) = H(xo,po) = Ho for all timest in d t=T 0x =T
0,T).
Recently, an alternative to the analysis and numerica fwe put
approximation of dynamical systems has been introduced , , 0
([1,2,3]), based on the minimization of the error functional X=X - o (x,p), P=p+ X (X,p), (4)
T . . .
E(X) = / %|X’(t) ~F(X (t))|2dt we can rewrite the above big system in the form
0
9%H 9°H oH
! — — N
regarded as a measure of how far a given X +de0p (x:p) =Pz (%) = (H(p) —Ho) 70 -(x.P).
absolutely-continuous patk complying withX(0) = Xo . 0%H 92H OH
is from being a solution of the underlying dynamical P +X0—F)2(X7P)—dedp (X,p) = (H(X7P)—Ho)d—p(xﬁp)-

system
We also have thaX(T) = P(T) = 0. We would like to
X'(t) =F(X(t))in (0,T), X(0) = Xo. (2) conclude that the only pair complying with these
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conditions isX = 0, P = 0. Note that this would be hamiltonian system1] itself, and so an approximation
immediate, if in the error functional ir8] there is no term  procedure based on minimizing the error functional can
about the conservation of the energy, for in this case thenever get stuck in local minima, but proceed to steadily
problem for the paifX,P) would be approximate the true solution of the dynamical system.
Moreover, by construction, the functional penalizes the

02 9%H non conservation of the energy.
/ _ :
X +Xaxap (va) P axz (Xap) 07
, O%H 9?H L
P XG5z P P gp P =0, 3 A steepest descent direction for our

functional
together withX(T) = P(T) = 0. The unique solution is
X =0,P=0. This was the general point of view adoptedin \we focus on finding the steepest descent direction with
earlier contributions by the author4 (R, 3]) for a general- respect to the norm
purpose procedure. We want to conclude that it is also so
even with the added energy term

.
| P
0

in this case, the steepest descent direction can be found as
the solution of a variational problem of the following form.
Minimize Y:

T1
|| 5IH(x.p) —Hofat
0o 2

to the error functional. The whole point of our concern
here is to assess how this extra term on the conservation

of energy may affect the numerical performance of the 1 /T . , , _—

underlying numerical scheme. 5/ Y7+ (X"= QOHX) (Y + Q" O°H(X)Y)
To show our aim, we define the mapping

(X,p) = 7 (x,p) as follows: given(x,p), solve the linear +(H(X) = H(X(0)))OH(X)Y]dt,

system for(X,P) above under the final time condition
X(T) =P(T) = 0; once(X,P) is known, let(X,p) be the  underY(0) =0, where
solution of @) under the initial conditionX(0) = Xo,
p(0) = po. The true solution of 1) is certainly a fixed 0-1
point for this mappingZ. We claim that it is the only Q= 10/
such fixed point. If this is so, our proposition is proved.

As indicated, our mapping” is the composition of
two operations. The first one is the passege) — (X,P)
through

(5)

This is a standard quadratic variational problem whose
optimal solution can be found through the system

! _E Y/+X/+QTDH(X)
(é> =AXP) (é) +b(x,p) in (0, T), dt [ ]
(X(T),P(T)) — O,

FOPH(X)Q (x’+QTDH(x)) +(H(X) = H(Xo)) OH(X) =0

in (0,T), together with the end-point conditions
where the matrixA depends on second derivativestbf

evaluated at(x,p), and b depends orH, and its first Y(0)=0,Y(T)+X/(T)+ QTOH(X(T)) =0.
derivatives. If we now have two pair;,pi), i = 1,2,
then a standard application of Gronwall’s lemma lead to It is remarkable that the solution of this system can be
given in an fully explicit form as
H(Xl,Pl)—(XZ,PZ)H < MT”(lepl)_(XvaZ)H t T
where the consta comes from the Lipstchitz constants Y(t)= _/o [SG(s) + F(3)] ds—t/t G(s)ds (6)

for H, and its derivatives. By taking sufficiently small
the transformatior(x,p) — (X,P) is a contraction. The where
second operation can be treated similarly. ;T

We conclude that our mapping’, for small T, is a F= X2+Q DH(TQ T
contraction, and can only admit a unique fixed point, G = O°H(X)Q(X"+ Q" 0OH(X)) + (H(X) —H(X(0)))OH(X).
which has to be the solution of), This argument can be
used successively in small time intervals to cover any,
finite interval in a finite number of steps.

O

What Propositionl ensures is that the only critical T 2
points of the error functional3j are the solutions of the _/o [Y'(t)|"dt

We can therefore establish a steepest descent strategy
decrease the error in each iteration. Note that the
derivative of the error aX in the directionyY is
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Then we can choosg € (0,1) such that

E(X+nY) <E(X) —%/OT Y/ (1) dt.

Moreover, it is possible to check uniform convergence 5l .
of this procedure for smooth Hamiltonian systems (see = £
[18]). The following statement is a direct adaptation of ol " % '
similar results in 18].
Theorem 1The iterative procedure ‘ )
() = x(=Y 4 p;Y), starting from arbitrary feasible 4

X, converges strongly in HO,T) to the unique
solution of any sufficiently smooth Hamiltonian system. =i

4 Numerical results

The iterative numerical procedure is easily implementable
) 1. StarF W'th an '.n_'t'al appr.OX'matIO)go(t) compatible Fig. 1: The g-coordinate versus p-coordinate, 0’-approximation
with the initial conditions, for instancx! _)(t) = Xo. Problem8 using the non symplectic trapezoidal rule.
2. Assume we have approximatiot))(t) in [0, T].
3. Compute its derivativex())/(t).
4. DefineF andG through the formulas

FO = (xWy + @ToH(x1)),

. . . . ir
G = PH(XMNQ((XDY + QToH(x1)y) L8 B T oy
. . Ik e
+HHXD) ~ H(X(0))OH(X D). e .
i
5. Approximate the mapping % i
ok +
) t ) . T . B,
yi)t) :-/ [s61(9)+Fi)(9)] ds—t/ Gl)(s)ds I 5
0 T,
‘ (7) |
using (symplectic) quadrature formulas. =i P00 P
6. UpdateX ) to X It1) by using the formula l Mg e
4 ay.
XU+ (1) = x D) + v (1), ; . i .

-B - -4 =2 ] 2 4

7. lterate (3), (4), (5) and (6) until numerical
convergence.

We test this numerical procedure with two classical
systems: a Lotka-\olterra problem, and the Kepler
problem. In particular, we would like to stress the
necessity of using symplectic rules for the approximation

Fig. 2: The x-coordinate versus y-coordinate,’o’-original,’+'-
approximation. Problem8 using the symplectic mid-point
quadrature rule.

)
o YTh.e Lotka-Volterra problem can be given in normal
form The Kepler problem can be stated as
p; = eq — 2, (8) p{ _ _L (9)
q=1-¢ L (G+g)?

The initial conditions considered ape= 2.3 andg = 0.7. q = pi.

It is well known that this Lotka-Volterra problem is
defined as two species problem: one is a predator, théor i = 1,2. The initial conditions have been taken to be
other one its prey. It is frequently used to describe thep:s = 0.4, p> =0,g; =0 andgp = 2.
dynamics of biological systems, in which two species  The Kepler problem in classical mechanics is a special
interact. case of the two-body problem, in which two bodies interact
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through a central force that varies in strength as the imversmid-point quadrature rule,

square of the distance between them.

[i¥:18 O RD B
usf

04

-2 -15 -1

Fig. 3: The g-coordinate versus p-coordinate,’o’-approximation

Problem9 using the non symplectic trapezoidal rule.
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Fig. 4: The x-coordinate versus y-coordinate,’o’-original,’+'-
approximation. Problem9 using the symplectic mid-point
quadrature rule.

the simplest symplectic
quadrature rule.

5 Concluding remarks

One main point we would like to emphasize is the
importance of selecting the descent directignwith
respect to the norm

)
| v
0

since in this case we are able to write downin an
integral closed form. In this situation, we can use very
well known symplectic quadrature rules. In other cases,
we would need to approximate the resulting second order
boundary-value problem using symplectic methods. This
possibility still deserves some attention. Nevertheless,
recently, a symplectic algorithm based on the dual
variational principle has been proposed for solving the
nonlinear two-point boundary value problefr].

Finally, we would like to highlight the advantages of
our approach.

—A symplectic map which only approximates a
Hamiltonian cannot conserve ener@yl. In our case,
by definition the functional penalizes the
nonpreservation of the energy, and our linearization
can be approximated by well known sympletic
quadrature rules. In fact, for polynomial systems, the
formula for the directiorY can be obtained exactly.

—In the non-stiff situation, the long-time behaviour of
symplectic methods is well understood, and can be
explained with the help of a backward error analysis
(modified equations). In the highly oscillatory (stiff)
case, this theory breaks down. However, our base
linearization is well understood in both cases.
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