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1 Introduction

In this paper we apply techniques of Markov partitions and
kneading theory to the study of iterates of discontinuous
maps of the interval (or the real line) in itself. We show
that these systems can be studied with a proper framework,
which is related to kneading theory and Markov matrices.

We cite, as examples of discontinuous one
dimensional cases, the Lorenz maps, Newton maps, circle
and tree maps, see [1,2,3,7] among other literature.

In [9] Lampreia and Sousa Ramos studied symbolic
dynamics of continuous bimodal maps on the compact
interval. Using similar techniques, we study in this paper
the case of symmetric (odd) discontinuous maps in the
real line or some suitable interval with two discontinuity
points and three maximal intervals (laps) of continuity,
which are as well maximal intervals of monotonicity. We
call to this type of mapping asymmetric bimodal
discontinuous mapbecause of the existence of exactly
three laps as in the continuous bimodal case.

In section two, we introduce the notation, the main
definitions and revision of basic results. We include as
well, the notions of symbolic dynamics, kneading theory

and Markov partitions. We relate these concepts with lap
growth number. We tried to define with great detail all the
concepts presented. Since good definitions are essential
for the constructive proof of the main result, which is
actually done along the full length of the paper, section
two is relatively long.

In section three, we present the main result of the
paper, i.e., the spectral radius of the Markov matrix is the
inverse of the least root of the kneading determinant for
that kind of maps. We point out that the introduction of
the linear operatorµ in section three is one of the main
ideas of this paper along with the matrixΘ relating the
kneading and the Markov data. The linear transformation
µ , representing the symmetry of this type of
non-continuous maps, is completely different of its
continuous counterpart [9]. We think that the proof of the
result can be instructive giving methods that can be
applied to other non-continuous mappings.

1.1 Motivation

The iterates of the complex tangent familyλ tanz,
introduced in [5] and [8], when the parameterλ = iβ is
pure imaginary and the initial conditionx0 is a real
number can be identified with the iterates of the real
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alternating map
[

f1,β , f2,β
]

[4] in the real line

x1 = f1,β (x0) = β tan(x0)

x2 = f2,β (x1) =−β tanh(x1)

x3 = f1,β (x2)

x4 = f1,β (x3) .

...

The composition mapgβ is

gβ : R 7→ R

x → −β tanh(β tan(x)) , (1)

which can be interpreted as the second return map to the
real axis for the mappingλ tan(z). Knowingx0 andgβ , we
obtain all the even iterates of the original system. To obtain
the odd iterates knowing the even iterates is easy

x2n+1 = β tan(x2n) .

The geometric behavior of the mapsgβ in this family
depends on the parameterβ . The map is periodic and the
real line is mapped on the intervalI = (−β ,β ). We
restrict the map only to the intervalI . When π

2 < β < 3π
2

the mapsgβ have two discontinuities. The study of the
real projection of the complex tangent map is a good clue
to the dynamics in the complex plane, similarly to the
case of quadratic maps.

In this paper, we center our study on the symbolic
dynamics of the iterates of mapsF with the same
geometrical properties ofgβ . Considering that the tangent
family was an initial motivation and a good example, we
point out that the results are independent on the choice of
the family.

2 Basics

2.1 Bimodal symmetric discontinuous map

Definition 1.Bimodal symmetric discontinuous map of
type(−,−,−).

Let I = (−a,a) be a real interval (where a can be+∞)
and F : I 7→I, such that:

1.F is odd F(x) =−F (−x)
2.F is piecewise continuous having two discontinuities

c1 < c2, c1 = −c2, where limx→c±i
F (x) = ±a,

and limx→±a F (x) =±b, where b is a real number.
3.F is decreasing in every interval of continuity(−a,c1),
(c1,c2) and(c2,a).

Example 1.The family of mapsgβ defined in (1) is a family
of bimodal symmetric discontinuous maps.

Definition 1 applies to maps with infinite jumps atc1
andc2 as we can see in the next example. Actually, as we
see in the next example, any such map is smoothly
conjugated to a map with finite jumps via a
diffeomorphism.

Example 2.Consideru : R 7→R such that

u(x) =






−1 if x≤− 1
2

0 if − 1
2 < x< 1

2
1 if 1

2 ≤ x
,

the family
Gα : R → R

x 7→ x
4x2−1

−α u(x)

is a family of bimodal symmetric discontinuous maps
with b= −α, c1 = − 1

2, c2 =
1
2 anda= +∞. Any map in

this family satisfies definition1 and is smoothly
conjugated to a map with finite jumps using for instance
the diffeomorphismh(x) = arctan(x) such that

G̃α (x) = h◦Gα ◦h−1(x) , x∈
(
−π

2
,

π
2

)
.

The map G̃α can be prolonged by continuity to the
endpoints± π

2 of the interval, since

lim
x→± π

2

h◦Gα ◦h−1(x) = lim
x→±∞

h◦Gα (x) =∓arctan(α) .

2.2 Symbolic dynamics

For sake of completeness and readability we introduce
here briefly notions well known like orbit, periodic orbit
and symbolic itinerary among other concepts, see for
instance [6].

Definition 2.We define the orbit of a real point x0 as a
sequence of numbers O(x0) =

{
x j
}

j=0,1,... such that

x j = F j (x0) where Fj is the j-th composition of F with
itself.

Definition 3.Any point x is periodic with period n> 0 if
the condition Fn (x) = x is fulfilled with n minimal.

Because of condition1 in definition1, the orbit of any
point x is symmetric relative to the orbit of−x. To avoid
ambiguities in the definition of the orbit of the pre
discontinuity points we adopt the convention that
F (c1) = F

(
c−1

)
=−a andF (c2) = F

(
c+2

)
=+a.

Definition 4.[11] Consider the alphabet
A = {L,A,M,B,R} the addressA(x) of a real point x is
defined such that

A(x) =





L if x < c1
A if x= c1
M if c1 < x< c2
B if c2 = x
R if c2 < x

.
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We can apply this function to an orbit of a given real
point x0, we associate to that orbit one infinite symbolic
sequence.

Definition 5.Consider the sequence of symbols inA

It (x0) = A(x0)A(x1)A(x2) ...A(xn) ...

this infinite sequence is the symbolic itinerary of x0.

The orbitO(−a) is

{
x(1)j : x(1)j = F j (−a) , j = 0,1, . . .

}
.

The orbit ofO(+a) is

{
x(2)j : x(2)j = F j (+a) , j = 0,1, . . .

}
,

with F (+a) = b.

Definition 6.[11] Kneading sequences and kneading
pairs.The kneading sequences are defined as the symbolic
itineraries of the orbits of a and−a. The kneading pair is
the ordered pair formed by these two symbolic sequences

(It (a) , It (−a)) .

Definition 7.Order relation inA . The order onA is
naturally induced from the order in the real axis

L≺ A≺M ≺ B≺ R.

Definition 8.[11] Parity functionρ (S). Given any finite
sequence S with length p,ρ (S) is such that

ρ (S) = (−1)p
.

Definition 9.[11] Let A N denote the set of all sequences
written with the alphabetA . We define an ordering≺ on
the setA N such that: given two symbolic sequences P=
P0P1P2... and Q= Q0Q1Q2... let n be the first integer such
that Pn 6= Qn. Denote by S= S0S1S2...Sn−1 the common
first subsequence of both P and Q. Then, we say that P≺Q
if Pn≺Qn andρ (S) = +1 or Qn≺Rn if ρ (S) =−1. If no
such n exists then P= Q.

This ordering is originated by the fact that whenx< y
then It(x)� It (y).

To state the rules of admissibility the shift operatorσ
will be used, defined as usual.

Definition 10.Shift operator σ . The shift operator is
defined

σ (P0P1P2...) = P1P2....

When we have a finite sequence S the shift operator acts
such that

σ (S0S1S2...Sn−1) = S1S2...Sn−1S0.

The orbit of +a has the symbolic itinerary It(+a).
The sequence It(+a) is maximal (resp. It(−a) is
minimal) in the ordering defined in this section. Maximal
in the sense that every shift of the sequence It(+a) is less
or equal than It(+a). Every orbit with initial conditionx0
is symmetric to the orbit with initial condition−x0. Thus
any orbit beginning by+a is accompanied by a
symmetric orbit started by−a. Therefore, we shall focus
the admissibility rules for kneading sequences only on the
itineraries with the first symbolR (corresponding to+a).

Definition 11.[11] Operator τ. The operator
τ : A N 7→A N is defined such that

τL = R,τA= B,τM = M,τB= A,τR= L.

Given a sequence Q= Q0Q1Q2..., τ acts such that

τQ= τQ0τQ1τQ2...

The operatorτ interchanges the symbolsL and R,
letting the symbols M unchanged. For instance
τ ((RLMR)∞) = (LRML)∞.

Proposition 1[11] It (x0) = τ It (−x0).

Proof. Is a direct consequence of condition1 in definition
1. �

Given any itinerary of +a denoted by S, the
corresponding itinerary of−a is τS. The kneading pair is
(S,τS). To know the kneading sequenceS, corresponding
to the orbit of+a, is to know the kneading pair. By some
abuse of notation, sometimes (mainly in the examples) we
use only the kneading sequenceS instead of the kneading
pair.

Definition 12.[11] Admissibility rules:Let S be a given
sequence of symbols and(S,τS) be a pair of sequences.
(S,τS) is a kneading pair and S is a kneading sequence,
if S satisfies the admissibility condition:τS� σkS� S,
for every integer k. The set of the admissible sequences is
denoted byΣ ⊂A N.

Definition 13.Given a finite sequence P with length p, the
sequence S= P∞ is called a p-periodic sequence.

We will work sometimes only withP instead ofP∞

when there is no danger of confusion.

Definition 14.[11] A bistable periodic orbit contains both
the orbit of+a and the orbit of−a. Any bistable orbit has
an itinerary S= P∞ = (QτQ)∞ or shortly P= QτQ

As a consequence of the previous definition bistable
orbits and associated symbolic itineraries must have even
period.
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2.3 Kneading theory

In [10] were introduced the concepts of invariant
coordinate, kneading increments, kneading matrix and
kneading determinant. We will use the definitions of the
cited work with the convenient adaptations for the
discontinuous case. We present here a brief exposition of
the results obtained applying kneading theory to this type
of maps.

Definition 15.Invariant coordinate of an initial condition
θx0 (t). Is defined using the sequence
X = X0X1X2 . . .= It (x0). Is the formal power series

θx0 (t) =
+∞

∑
k=0

(−1)k Xkt
k.

With the notationθc±i
(t) = limx→c±i

θx (t), for each
discontinuity point, the kneading increment is defined.

Definition 16.Kneading increment and kneading matrix.
The kneading increment is

νi (t) = θc+i
(t)−θc−i

(t) .

This quantity is a formal power series measuring the
discontinuity. After collecting the terms associated to each
symbol, and remarking that, in this case, c−1 corresponds
to L, c+1 corresponds to M, c−2 corresponds to M and c+2
corresponds to R, the decomposition

νi (t) = Ni1 (t)L+Ni2 (t)M+Ni3(t)R

is obtained. The kneading matrix is

N =

[
N11(t) N12(t) N13(t)
N21(t) N22(t) N23(t)

]
.

Definition 17.Kneading determinant.Omitting the j-th
column of the kneading matrix we compute the
determinant Dj . The kneading determinant is

D(t) =
(−1) j+1D j

(1+ t)
.

The denominator in the kneading determinant results
from the fact thatF is decreasing in the three intervals
where this map is defined [10]. Note that
D1 =−D2 = D3.

Definition 18.[11] Given a sequence X= X1X2 . . . we
define a functionΦ : A 7−→ {−1,0,1}, such that

Φ (Xi) =




−1

0
1

if Xi = L,A
if Xi = M
if Xi = R,B

.

Definition 19.[11] Given a sequence X= X1X2 . . . from
A N we define a formal power series u(t), such that

u(t) =
+∞
∑

k=1
(−1)k Φ (Xk)tk. When X is finite with length

p we define the formal polynomial

up(t) =
p
∑

k=1
(−1)k Φ (Xk)tk.

Let S= S1S2 . . . ∈ Σ be a kneading sequence with the
kneading pair(S,τS), then the kneading determinant is
given by.

D(t) =
1+2u(t)

t +1
. (2)

When S = P∞ is p-periodic, the expression of the
kneading determinant simplifies into

D(t)(t +1) = 1 +
2up(t)

1−(−1)pt p . When the kneading
sequenceS is bistable:S= P∞ with P = QτQ of period
p = 2q, with the associated kneading pair
(S,τS) = (QτQ,(τQ)Q) the kneading determinant is(

1+ 2uq(t)
1+(−1)qtq

)
1

1+t .

2.4 Growth number

The kneading determinant is essential in the computation
of the growth number of laps.

Definition 20.Lap number ℓ(Fn) is the number of
maximal intervals of continuity of each composition of F
with itself.

Definition 21.The growth number is defined

ρ = lim
n→∞

n
√
ℓ(Fn). (3)

Remark.[11] The growth number ofF can be computed
using the relation

ρ =
1
t0
,

where t0 is the least root in the unit interval of the
kneading determinantD(t). The proof is provided
defining the power seriesΛ (t) = ∑n≥1ℓ(F

n) tn−1, where
each coefficient is the lap number of the iterateFn. This
new power series is closely related to the kneading
determinant because of the relation
Λ (t) = 1

t(1−t2)D(t)
− 1

t .

Example 3.The kneading sequence(RMR)∞ corresponds

to the kneading determinantD(t) = 1−2t−t3

(t+1)(1+t3)
, which is

realized for instance bygβ (x) with β approximately

3.1588 or byGα (from example2) with α = 1
4

(√
5−1

)
.

We obtain
Λ (t) = 3+7t+17t2+39t3+87t4+193t5+ . . ., in this

caseℓ(F) = 3, ℓ
(
F2

)
= 7, ℓ

(
F3

)
= 17. . .
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It will be an interesting work to see if the usual
relationship between the topological entropy and growth
number still remains valid in the case of discontinuous
maps.

2.5 Markov partition

Whenever we can define Markov matrices, the method of
Markov transition matrices in the case of continuous
maps is an equivalent approach to the computation the
roots of the kneading determinant. To eachp-periodic
kneading pair we associate a Markov transition matrix,
see [9] and related references on that paper. Now, denote
by

x(2)j = F j (c+2
)
, j = 0,1, . . . , p−1,

x(1)j = F j (c−1
)
, j = 0,1, . . . , p−1,

the orbits of the discontinuity points. An ordered sequence

(zk)k=1,...,2p is obtained reordering the elementsx(m)
j , m=

1,2, and getting a partition

Ik = (zk,zk+1) with k= 1, . . . ,2p−1.

The discontinuity points are present in the above
partition. We callzk1 = c1 andzk2 = c2. To compute the
Markov matrix note that Ik1−1 =

(
zk1−1,c

−
1

)
and

Ik1 =
(
c+1 ,zk1+1

)
and similarly with the two intervals

adjacent to the discontinuity pointc2. With this precision
made, the Markov transition matrix can be defined.

Definition 22.The Markov transition matrixΨ = [ψi j ] is
defined by the rule:

ψi j =

{
1 if I j ⊂ F (Ii) ,
0 otherwise.

In [9] the relationship between Markov partitions and
kneading theory is explained for bimodal continuous
maps. It is also presented the proof of the equality of the
reciprocal oft0 and the spectral radius of the matrixΨ . In
this paper we will prove the same equivalence of
definitions in the case of bimodal symmetric
discontinuous maps.

In the next example we obtain this equivalence for a
particular case, computing directly both the kneading
determinant and the characteristic polynomial of the
Markov matrix.

Example 4.The kneading pair

((RMR)∞
,(LML)∞)

corresponds to a pair of orbits satisfying

x(1)1 < x(1)0 = c1 < x(2)2 < x(1)2 < x(2)0 = c2 < x(2)1 , (4)

renaming the elements of the partition we get

z1 = x(1)1 ,z2 = x(1)0 ,z3 = x(2)2 ,

z4 = x(1)2 ,z5 = x(2)0 ,z6 = x(2)1 .

The Markov matrix is

Ψ =




1 1 1 0 0
0 0 0 0 1
0 1 1 1 0
1 0 0 0 0
0 0 1 1 1


 .

The smallest solutiont0 of the equation

det(I −Ψ t) =
(
1− t+ t2)(1−2t− t3)= 0

in the unit interval gives the growth number
ρ = 1

t0
= 1

0.4534 = 2.2056, exactly the same root obtained
with the kneading determinant of the example3.

2.6 Relation between Markov partition and the
orbits of the discontinuity points

Giving thep-periodic orbits

O
(
c+2

)
=
{

x(1)j : x(1)j = F j (c+2
)
, j = 0,1, . . . , p−1

}

and

O
(
c−1

)
=
{

x(2)j : x(2)j = F j (c−1
)
, j = 0,1, . . . , p−1

}
,

we define the vector

y=




y1
...
yp
yp+1
...
y2p




=




x(2)0
...

x(2)p−1

x(1)0
...

x(1)p−1




.

Let z be the vector{zi}i=1,...,2p wherezi−1 < zi < zi+1 are
the ordered elements ofy. There is a 2p×2p permutation
matrixπ such that

z= πy.

Let x(2)k = It
(

x(2)k

)
, the symbolic itinerary ofx(2)k , for

k = 0, . . . , p− 1. It is clear thatx(2)1 = S1S2 . . . = S is the

kneading sequence of+a. Let x
(1)
k = It

(
x(1)k

)
for

k = 0, . . . , p− 1. By symmetryx(1)1 = τS is the kneading

sequence of−a. It is also clear thatx(2)0 = σ p−1(S) and
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x
(1)
0 = σ p−1(τS). To eachk = 1, . . . , p corresponds a

symbolic sequence

x
(2)
k = σk−1 (S) .

To eachk= 1. . . , p,corresponds another sequence

x
(1)
k = σk−1 (τS) .

Naturally, we have

x
(1)
k = τ

(
x
(2)
k

)
.

To eachzj corresponds the symbolic itinerarywj = It (zj).
We definev j = It (y j).

Example 5.Given the kneading sequence(RMB)∞,
equivalent to(RMR)∞ already used before. The kneading

pair is ((RMB)∞
,(LMA)∞), x

(2)
1 = RMB = v2,

x
(2)
2 = MBR= v3, x(2)0 = BRM= v1, x(1)1 = LMA = v5,

x
(1)
2 = MAL = v6, andx(1)0 = ALM = v4. We getw1 = v5,

w2 = v4, w3 = v3, w6 = v4, w5 = v1 andw6 = v2.
The matrixπ is

π =




0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0



.

Example 6.Given the kneading sequence(RLMB)∞, the
kneading determinantD(t) is such that

(1+ t)D(t) = 1+2
−t− t2+ t4

1− t4

=
1−2t−2t2+ t4

1− t4 .

The kneading pair is ((RLMB)∞
,(LRMA)∞),

x
(2)
1 = RLMB = v2, x

(2)
2 = LMBR = v3,

x
(2)
3 = MBRL = v4, x

(2)
0 = BRLM = v1,

x
(1)
1 = LRMA = v6, x

(1)
2 = RMAL = v7,

x
(1)
3 = MALR = v8 and x

(1)
0 = ALRM = v5. We get

w1 = v6, w2 = v3, w3 = v5, w4 = v4, w5 = v8, w6 = v1,
w7 = v7 andw8 = v2.

The Markov matrix is

Ψ =




0 0 0 1 1 1 0
1 1 1 0 0 0 0
0 0 0 0 0 1 1
0 0 1 1 1 0 0
1 1 0 0 0 0 0
0 0 0 0 1 1 1
0 1 1 1 0 0 0




.

The matrixπ is

π =




0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0




.

The matrixπ can also be used to reorder the shifts of
the kneading sequences, giving the vector
v =

{
v1, . . . ,v2p

}
and the vectorw =

{
w1, . . . ,w2p

}
, we

havew= πv.

3 Main Result

3.1 The Markov and kneading endomorphism in
spaces of chain complexes

Let C0 be the vector space of the 0-chains spanned by the
shifts of the kneading sequences

{
v j
}

j=1,...,2p this space
is isomorphic of the space of the 0-chains spanned by the
points of the orbit

{
y j
}

j=1,...,2p. The spaceπ (C0) is

spanned by{wk}k=1,...,2p which is isomorphic to the
space of the 0-chains spanned by

{
zj
}

j=1,...,2p. Let C1 be
the space of the 1-chains spanned by{Ik}k=1,...,2p−1,
isomorphic to the linear space of the 1-chains spanned by{

I ′k
}

k=1,...,2p−1 where I ′k is the set of all the admissible
sequencesw: wk � w� wk+1. In what follows we identify
I ′k with Ik and use the same symbol both for sequences and
intervals and call both the linear transformations and the
corresponding matrix representations by the same letters.

The border of a 1-chain is obtained using the linear
transformation∂ : C1→ D0 such that∂ (Ik) = wk+1−wk,
∂ (C1) = D0 whereD0 is spanned by

{wk+1−wk}k=1,...,2p−1 .

It is clear thatD0⊂ π (C0).
We define the linear transformation∂s : C1→ D0 such

that

∂s(Ik) = ∂ (1− τ) Ik

= ∂
(
Ik− I2p−k

)

= ∂ (Ik)− ∂
(
I2p−k

)
.

The image ofIk by ∂s is

∂s(Ik) = wk+1−wk−
(
w2p+1−k−w2p−k

)

and is an element ofD0. We can define another linear
transformation that acts onπ (C0) with matrix
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representation

µ =




−1 1 0 · · · 0 1−1
0 −1 1 · · · 1 −1 0
...

...
...

. . .
...

...
...

0 1−1 · · · −1 1 0
1 −1 0 · · · 0 −1 1



.

where µi j = δi+1, j − δi, j − δ2p+1−i, j + δ2p−i, j ,

i = 1, . . . ,2p− 1, j = 1, . . . ,2p, and δ is the Kronecker
delta symbol. This linear transformation represents the
order relation of the points of the real line and the
symmetry of the original mapping. It is immediate from
the above definitions thatImage(∂s) = B0 is a proper
subspace ofD0 such thatD0 = B0 ⊕ B̃, where B̃ has
dimension one, andB0 is isomorphic toµπ (C0). We
define η = µπ and the endomorphismω acting onC0
with matrix representation

ω =

[
σ 0
0 σ

]
,

whereσ is the shift operator with matrix representation
p× p

σ =




0 1 · · · 0 0
0 0 · · · 0 0
...

...
.. .

...
...

0 0 · · · 0 1
1 0 · · · 0 0



.

Let α be the endomorphism induced inB0 by the rotation
ω in C0 which results from the commutativity of the
diagram

η ∂s
C0 −→ B0 ←− C1

ω ↓ ↓α ↓ α

C0 −→ B0 ←− C1
η ∂s

.

It is easy to see thatα = −Ψ , whereΨ is the Markov
matrix. Note thatηω = αη . Every entry in the matrixα
is non-positive, because the images of the intervals are
obtained by the images of the boundary points andF is
reverse order in any of each interval of continuity (lap).

Example 7.With the matrices of the examples5 we have

η =




1 −1 0 1−1 0
−1 0 1−1 0 1

0 0 0 0 0 0
1 0−1 1 0−1
−1 1 0−1 1 0




and

ηω =




0 1−1 0 1−1
1 −1 0 1−1 0
0 0 0 0 0 0
−1 1 0−1 1 0

0 −1 1 0−1 1


 ,

which is precisely−Ψη .

3.2 MatrixΘ

Giving the right p-periodic kneading sequenceS, the
symbolic itinerary of the right discontinuity point is
σ p−1S= S0S1S2 . . .= S0S. We construct the vector

s(S) =




Φ (S0)
Φ (S1)

...
Φ (Sp−1)
Φ (τS0)
Φ (τS1)

...
Φ (τSp−1)




=




1
Φ (S1)

...
Φ (Sp−1)
−1

Φ (τS1)
...

Φ (τSp−1)




,

whereΦ was defined in definition18. When applied to the
other kneading sequenceτS the vector takes the form

s(τS) = σ ps(S) .

Let Γ be a square matrix which columns 1 andp+1 ares
andσ ps, respectively, and the other elements are zeros.

Now, we introduce the matricesγ =Γ − I andΘ = γω .
The matrixΘ has the form




0 0 0 ... 0 0 0 −Φ(S0) 0 ... 0 0

0 Φ(S1) −1 ... 0 0 0 −Φ(S1) 0 ... 0 0

0 Φ(S2) 0 ... 0 0 0 −Φ(S2) 0 ... 0 0

...
...

...
...

...
...

...
...

...
...

...

0 Φ(Sp−2) 0 ... 0 −1 0 −Φ(Sp−2) 0 ... 0 0

−1 Φ(Sp−1) 0 ... 0 0 0 −Φ(Sp−1) 0 ... 0 0

0 −Φ(S0) 0 ... 0 0 0 0 0 ... 0 0

0 −Φ(S1) 0 ... 0 0 0 Φ(S1) −1 ... 0 0

0 −Φ(S2) 0 ... 0 0 0 Φ(S2) 0 ... 0 0

...
...

...
...

...
...

...
...

...
...

...

0 −Φ(Sp−2) 0 ... 0 0 0 Φ(Sp−2) 0 ... 0 −1

0 −Φ(Sp−1) 0 ... 0 0 −1 Φ(Sp−1) 0 ... 0 0




.

Example 8.With the same kneading sequences of the
example5, we have

γ =




0 0 0−1 0 0
1 −1 0−1 0 0
0 0−1 0 0 0
−1 0 0 0 0 0
−1 0 0 1−1 0

0 0 0 0 0−1




and

Θ =




0 0 0 0−1 0
0 1−1 0−1 0
−1 0 0 0 0 0

0 −1 0 0 0 0
0 −1 0 0 1−1
0 0 0−1 0 0



.
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Proposition 2The following diagram commutes

η
C0 −→ B0
γ ↓ ↓−I

C0 −→ B0
η

.

Proof. We must show thatηγ =−η or η (Γ − I) =−η , in
other words thatηΓ = 0, or thats(S) ,s(τS) ∈ kernel(η).
But η = µπ , andπ reorderss(S) in terms of the order of
the real line, giving

πs(S) =




ν (I(z1))
ν (I(z2))
...
ν (I(z2p−1))
ν (I(z2p))



,

knowing that I(zj) = τI
(
z2p− j

)
, j = 1, . . . p, we have

ν (I(zj )) = −ν
(
I
(
z2p− j

))
. It is obvious that

µπs(S) = µπs(τS) = 0.�

Theorem 1.The characteristic polynomial of the matrix
Θ = γω is

PΘ (t) = det(I − tΘ) = (1− (−1)p t p)2 (1+ t)D(t) ,

where D(t) is the kneading determinant.

Proof. The determinant of the matrixI − tΘ is

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 . . . 0 0 0 tΦ (S0) 0 . . . 0 0
0 1− tΦ (S1) t . . . 0 0 0 tΦ (S1) 0 . . . 0 0
0 −tΦ (S2) 1 . . . 0 0 0 tΦ (S2) 0 . . . 0 0
...

...
...

. . .
...

...
...

...
...

...
...

0 −tΦ (Sp−2) 0 . . . 1 t 0 tΦ (Sp−2) 0 . . . 0 0
t −tΦ (Sp−1) 0 . . . 0 1 0 tΦ (Sp−1) 0 . . . 0 0
0 tΦ (S0) 0 . . . 0 0 1 0 0. . . 0 0
0 tΦ (S1) 0 . . . 0 0 0 1− tΦ (S1) t . . . 0 0
0 tΦ (S2) 0 . . . 0 0 0 −tΦ (S2) 1 . . . 0 0
...

...
...

...
...

...
...

...
.. .

...
...

0 tΦ (Sp−2) 0 . . . 0 0 0−tΦ (Sp−2) 0 . . . 1 t
0 tΦ (Sp−1) 0 . . . 0 0 t −tΦ (Sp−1) 0 . . . 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

We first multiply the row 1 by−t and add the result to the
row p, we do the same with the rowsp+1 and 2p. Then
we develop the determinant by the columns 1 andp getting

a (2p−1)× (2p−1) determinant:
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1−tΦ(S1) t ... 0 0 tΦ(S1) 0 ... 0 0

−tΦ(S2) 1 ... 0 0 tΦ(S2) 0 ... 0 0

...
...

...
...

...
...

...
...

...
−tΦ(Sp−2) 0 ... 1 t tΦ(Sp−2) 0 ... 0 0

−tΦ(Sp−1) 0 ... 0 1 tΦ(Sp−1)−t2Φ(S0) 0 ... 0 0

tΦ(S1) 0 ... 0 0 1−tΦ(S1) t ... 0 0

tΦ(S2) 0 ... 0 0 −tΦ(S2) 1 ... 0 0

...
...

...
...

...
...

...
...

...
tΦ(Sp−2) 0 ... 0 0 −tΦ(Sp−2) 0 ... 1 t

tΦ(Sp−1)−t2Φ(S0) 0 ... 0 0 −tΦ(Sp−1) 0 ... 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

then we multiply the rowp−1 by−t and add the result to
the rowp−2. We do the same with the last two rows. Then
we develop the determinant by the columnsp−1 and the
last one getting a(2p−2)× (2p−2) determinant:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1−tΦ(S1) t ... 0 tΦ(S1) 0 ... 0

−tΦ(S2) 1 ... 0 tΦ(S2) 0 ... 0

...
...

...
...

...
...

...
r1(t) 0 ... 1 r2(t) 0 ... 0

tΦ(S1) 0 ... 0 1−tΦ(S1) t ... 0

tΦ(S2) 0 ... 0 −tΦ(S2) 1 ... 0

...
...

...
...

...
...

...
r2(t) 0 ... 0 r1(t) 0 ... 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where r1 (t) = −tΦ (Sp−2) + t2Φ (Sp−1) and
r2 (t) = tΦ (Sp−2) − t2Φ (Sp−1) + t3Φ (S0). Repeating
this reducing process we get a 2×2 determinant

∣∣∣∣
1−∑p−1

k=1 (−1)k tkΦ (Sk) −∑p
k=1 (−1)k tkΦ (Sk)

−∑p
k=1 (−1)k tkΦ (Sk) 1−∑p−1

k=1 (−1)k tkΦ (Sk)

∣∣∣∣ .

Remembering that

up(t) =
p

∑
k=1

(−1)k tkΦ (Sk) ,

S0 = Sp = B and (−1)p t pΦ (B) = (−1)pt p,

the previous determinant is equal to
∣∣∣∣
(1− (−1)p t p)+up(t) −up(t)

−up(t) (1− (−1)pt p)+up(t)

∣∣∣∣ ,

which gives

PΘ (t) = (1− (−1)p t p)
2
(

1+2
up(t)

1− (−1)pt p

)

and this is precisely

PΘ (t) = (1− (−1)p t p)2 (1+ t)D(t) ,

as desired.�
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Example 9.We use the kneading sequences of the example
6 to illustrate this last result, the matrixΘ is




0 0 0 0 0−1 0 0
0 1−1 0 0−1 0 0
0 −1 0−1 0 1 0 0
−1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0
0 −1 0 0 0 1−1 0
0 1 0 0 0−1 0−1
0 0 0 0−1 0 0 0




,

with characteristic polynomial
(
1− t4)(1−2t−2t2+ t4) ,

which agrees with the value of the kneading determinant
(1+ t)D(t) = 1−2t−2t2+t4

1−t4
.

We have now all the ingredients to state the main
results of this paper.

Theorem 2.The following diagram commutes

η
C0 −→ B0
↓Θ ↓Ψ

C0 −→ B0
η

.

and PΘ (t) = (1+ t)det(I − tΨ).

Proof. Noticing thatΘ = γω andΨ = −α the result is
only a direct consequence of

η
C0 −→ B0
↓ω η ↓α

C0 −→ B0
↓γ

η ↓−I

C0 −→ B0

conjugated with the fact that the two rows in the next
diagram

inj η

0 −→ B̃ −→ C0 −→ B0 −→ 0
↓−I inj ↓Θ η ↓Ψ

0 −→ B̃ −→ C0 −→ B0 −→ 0

are exact sequences, where inj is the natural embedding.�

Corollary 1.The inverse of the least root in the unit
interval of the periodic kneading determinant is the
spectral radius of the Markov matrix.

Proof. Is an immediate consequence of the relation

(1− (−1)p t p)
2D(t) = det(I − tΨ) ,

obtained in the last theorem.�
We think that the results of this work can be extended

to general discontinuous maps with finite number of
discontinuities. That is a natural extension of this work.
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