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Abstract: Traditional assumptions in the simple chemostat modeldelfixed availability of the nutrient and its supply ratedan
fast flow rate to avoid wall growth. However, these assunmgstisecome unrealistic when the availability of a nutriemded&ls on the
nutrient consumption rate and input nutrient concentratind when the flow rate is not fast enough. In this paper, vax ritlese
assumptions and study the chemostat models with a variaibteemt supplying rate or a variable input nutrient concation, with
or without wall growth. This leads the models to nonautonosndynamical systems and requires new concepts of nonantarso
attractors from the recently developed theory of nonautamgs dynamical systems. Our results provide sufficient itiond for
existence of nonautonomous attractors and singletorctitsa

Keywords: Chemostat, wall growth, nonautonomous attractor

This paper is dedicated to the memory of Professor As the best laboratory idealization of nature for
José Sousa Ramos. population studies, the chemostat plays an important role
in ecological studies35,6,9,24,25,26,28]. With some
modifications it is also used as the model for waste-water
1 Introduction treatment processl[14]. The chemostat model can be

. . , ) . considered as the starting point for many variations that
A chemostat is associated with a laboratory device wh|cf3,ie|d more realistic biological models, e.g., the

consists of three interconnected vessel and is used thycompinant problem in genetically altered organisms
grow microorganisms in a c_ultured en_wronment. In its [22,23] and the model of mammalian large intestir |
basic form, the outlet of the first vessel is the inlet for'the8]_ More literature on the derivation and analysis of
second vessel and the outlet of the second vessel is thg,emostat-like models can be found 17]19,27] and the
inlet for the third. The first vessel is called a feed bottle, (oferences therein.

which contains all the nutrients required to grow the

microorganisms. All nutrients are assumed to be In the simple chemostat model, the availability of the
abundantly supplied except one, which is calldirdting nutrient and its supply rate are assumed to be fixed.
nutrient The contents of the first vessel are pumped intoHowever, the availability of a nutrient in a natural system
the second vessel, which is called the culture vessel, at asually depends on the nutrient consumption rate and
constant rate. The microorganisms feed on nutrients frominput nutrient concentration, which may lead to a
the feed bottle and grow in the culture vessel. The culturenonautonomous dynamical system. Another basic
vessel is continuously stirred so that all the organismsassumption in the simple chemostat model is that the flow
have equal access to the nutrients. The contents of theate is assumed to be fast enough that it does not allow
culture vessel are then pumped into the third vesselgrowth on the cell walls. Yet wall growth does occur
which is call a collection vessel. Naturally it contains when the washout rate is not fast enough and is a problem
nutrients, microorganisms and the products produced byn bio-reactors. Studies of chemostat models treated as
the microorganism<[1]. nonautonomous dynamical systems are very limited to
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date, e.g., Smith and Thieme introduced practicalWhen| and D are both constants2]] proposed the
persistence for nonautonomous dynamical system witHfollowing growth equations to describe the limited
the simple chemostat as an example 18 [when the  resource-consumer dynamics:
washout rate is time-dependent.

In this paper we study the chemostat models with a

variable nutrient supplying rate or a variable input X = D (I =) —aU(x(t))y(t), 2
nutrient concentration, with or without wall growth. This ,
requires new concepts of nonautonomous attractors fron)( = —Dy(®) +au(x()y(®). ®)

the recently developed theory of nonautonomous Often, the microorganisms grow not only in the
dynamical systems. The rest of this paper is organized agrowth medium, but also along the walls of the container.
follow. In section 2 we present the chemostat model andrhis is either due to the ability of the microorganisms to
its basic properties. In section 3 we recall somestick on to the walls of the container or the flow rate is not
definitions and results from the theory of nonautonomougast enough to wash these organisms out of the system.
dynamical systems which will be necessary for ourpNaturally, we can regard the consumer populati¢ as
analysis. In section 4 we study the models with a variablean aggregate of two categories of populations, one in the
nutrient supplying rate with and without wall growth. In  growth medium, denoted by (t), and the other on the
section 5 we study the model with variable input nutrientwalls of the container, denoted lpy(t). These individuals
concentration with and without wall growth. A closing may switch their categories at any time, i.e., the
remark is given in section 6 and completes the paper.  mjcroorganisms on the walls may join those in the growth

medium or the biomass in the medium may prefer walls.

Letr; andr;, represent the rates at which the species

2 The model stick on to and shear off from the walls, respectively, then

riyai(t) andrays(t) represent the corresponding terms of
Consider a chemostat model consisting of aspecies changing the categories. Assume that the nutrient
microorganism feeding on a single growth-limiting is equally available to both of the categories, therefoi it
nutrient. Denote by the growth-limiting nutrient and by  assumed that both categories consume the same amount of
y the microorganism feeding on the nutrientAssume  nutrient and at the same rate.

that all other nutrients, exceptare abundantly available, When the flow rate is low, the organisms may die
i.e., we are interested only in the study of the effect of thisnaturally before being washed out and thus washout is no
essential limiting nutrient on the speciey. longer the only prime factor of death. Denote > 0)

Under the standard assumptions of a chemostat, a lishe collective death rate coefficientyit) representing all
pf basic parameters and functional relations in the systemhe aforementioned factors such as diseases, aging, etc.
includes R1]: On the other hand, when the flow rate is small, the dead

— D, the rate at which the nutrient is supplied and a|sobior_nass is not sent out of the _s_ystem_immediately and is
the rate at which the contents of the growth mediumsubiect to bacterial decomposition which in turn leads to
are removed. regeneration of the nutrient. Expecting not 100%

—1, the input nutrient concentration which describes the'€Cycling of the dead material but only a fraction, we let
quantity of nutrient available with the system at any constant € (0,1) describe the fraction of dead biomass
time. that is recycled.

— a, the maximal consumption rate of the nutrient and . When! and D are both constants, and there are no
also the maximum specific growth rate of time delays in the system, the following model describes
microorganisms — a positive constant. the dynamics of chemostats with wall growth. Note that

_ U, the functional response of the microorganism ©N!Y Yi(t) contributes to the material recycling of the
describing how the nutrient is consumed by the dgad b|om.ass in the medium. Moreover, since the
species. It is known in literature as consumption Microorganisms on the wall are not washed out of the
function or uptake function. Basic assumptionstbn  SyStem, the term-Dy,(t) is not included in the equation
R* — R* are given by representing the growth gk(t). All the parameters are

1.U(0)=0, U(x)>0 forallx>O0. same as those of syste) ¢ (3), but 0< ¢ < areplacesa
2. limy e U '(x) — L, wherel; < w. as the growth rate coefficient of the consumer species.

3.U is continuously differentiable. X(t) = D(I —x(t)) —aU(x(t)) (ya(t) +ya(t))

4.U is monotonically increasing. ) )
Note that conditions 1 and 2 of the uptake functibn 1
ensure the existence of a positive constant 0 such Yi(t) = — (v+D)ya(t) + cU(x(t))ys(t) — rays(t)
that

U <L forall xe[0,em). ) +raya(t), (%)
Denote byx(t) and y(t) the concentrations of the Y2(t) = —Vya(t) +CcU(X(t))y2(t) +riya(t)
nutrient and the microorganism at any specific time —ray>(t). (6)
@© 2015 NSP
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We are interested in studying the above syste?hs (

(3), (4) - (6) with varied input, i.e., wheiD or | varies in

Definition 2. Let @ be a process ofR9. A family # =
{B(t) :t € R} of nonempty subsets Bf is said to begp-

time. We assume here that the consumption functiorinvariant if @ (t,to, B(tp)) = B(t) for all (t,tg) € RZ and

follows the Michaelis-Menten or Holling type-Il form:

@- positively invariant ifg (t,to, B(to)) C B(t) for all (t,to)

2
y e RZ.

U(x) = p— (7)

whereA > 0 is the half-saturation constar1].

Definition 3. Let @ be a process oiRY. A g-invariant
family &7 = {A(t) :t € R} of nonempty compact subsets
of RY is called a forward attractor ofg if it forward
attracts all families2? = {D(t):t € R} of nonempty
bounded subsets &¢, i.e.,

3 Nonautonomous dynamical systems

dist(g(t,to,D(tg)),A(t)) -0 ast—o (o fixed), (8)
In this section we provide some background information . o
from the theory of nonautonomous dynamical systemsatntd '? callllefd all'pulgac_k aItDtr?cht)r c[)ép i f't pullbacl:
[13] that we require in the sequel. Our situation is, in fact, attracts all families 2 = {D(t) :t€R} of nonempty

somewhat simpler, but to facilitate the reader’s access t(pounded subsets 8f', i.e.,

the literature we give more general definitions here. dist(g(t,to,D(tg)),A(t)) =0 asb— —o (t fixed.
Consider an initial value problem for a nonautonomous (9)
ordinary differential equation i&¢, i
The existence of a pullback attractor follows from that
dx(t) of a pullback absorbing family, which is usually more
gt = [(1x), x(to) =X. easily determined.

The solution usually depends on both the actual ttme Definition 4. A family % = {B(t) : t € R} of nonempty
and the initial timeto rather than just on the elapsed time compact subsets d@t? is called a pullback absorbing
t —tp as in an autonomous system. The solution mappingamily for a process if for each t € R and every family
@(t,to,xo) of an initial value problem for which an 2 = {D(t):t € R} of nonempty bounded subsetsksf
existence and uniqueness theorem holds then satisfies tfi@ere exists some ¥ T(t;, 7) € R* such that

initial value property@(to, to, Xo) = Xo, thetwo-parameter (t1,t0,D(to)) C B(ty) forallto € Rwithty <t; —T.

semigroupevolution property
The proof of the following theorem is well known, see

e.g., 3.

as well as thecontinuity property that (t,to,Xo) Theorem 1. Suppose that a procesp on RY has a
@(t,t0,Xo) is continuous on the state spak@. @-positively invariant pullback absorbing familyg =
These properties of the soluton mapping of {B(t):t < R} of nonempty compact subsetsRt

nonautonomous ordinary differential equations are one of Theng has a unique global pullback attractay =
the main motivations for th@rocessformulation of a  {A(t) :t € R} with its component sets determined by
nonautonomous dynamical system on a state sfidtce
(or, more generally, a metric spat¥,d)) and time seR At) = () @(t;to,B(to)) foreachte R.
for a continuous-time process. Define fo<t

If % is not@-positively invariant, then

At)=() U o(tto,B(to) foreachteR.

$0 to<t—s

@(t2,10,%0) = @ (t2, 1, @(t1,t0,%0)), to <ty <tp,

(10)

RZ = {(t,to) e R? : t >1to}.

Definition 1. A processg on spaceRY is a family of
mappings

A pullback attractor consists oéntire solutions i.e.,
functionsé : R — R such that (t) = ¢(t,to, & (to)) for all
(t,to) € RZ. In special cases it consists of a single entire
solution.

o(t,to,-) : R4 - RY, (t,to) € RZ,

which satisfies

(i) initial value property: @(to,to,X) = x for all x € RY
andany g € R;

(ii) two-parameter semigroup property: for allx R and
(t2,t1), (t1,to) € RZ it holds

¢(t27t07x) = ¢(t27t17 ¢(tlat07x)) )

(iii) continuity property: the mapping,to,x) — @(t,to,x)
is continuous o2 x R,

Definition 5. A nonautonomous dynamical systenis
said to satisfy a uniform strictly contracting propertyaf f
each R> 0, there exist positive constants K andsuch
that

(. to,%0) — @(t,to, o) ||I” < Ke™ @10 ||xg—yo||*  (11)

forall (t,tp) € Rg and %, Yo € Br, whereBg is the closed
ball in RY centered at the origin with radius R 0.

(@© 2015 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

2286 NS 2 T. Caraballo et al. : Chemostats with Time-Dependent Inputs

This property suffices in combination with a pullback x(t) cannot become negative. With the initial condition
absorbing set to ensure the existence of an attractor iy(tp) = yo > 0, there exist$; > to such thaty(t) > 0 on
both the forward and pullback sense that consists offto,t;]. Therefore

singleton sets, i.e., a single entire solution. The proof of
the following result involves the construction of an
appropriate Cauchy sequence which converges to a
unique limit, see11,12].

for t € [to,t1]. By uniqueness of solutions this expression

Theorem 2. Suppose that a procegson RY is uniform  holds for allt > to, thusy(t) is nonnegative.
strictly contracting on ag-positively invariant pullback
absorbing family %; = {B(t):teR} of nonempty
compact subsets @&“. Then the procesg has a unique d(x(t) +y(t

global forward and pullback attractor &/ = w =—D(t) (x(t) +y(t) —1)
{A(t) :t € R} with component sets consisting of singleton

Summing (2) and (3) gives

sets, i.e., &) = {{*(t)} for each te R, wherel* is an  and yields immediately that whext) +y(t) > |, we have
entire solution of the process. I < X(t)+y(t) < Xo+ Yo. Similarly, whenx(t) + ( ) <
I we have 0< x(t) +y(t) < I. Therefore 0< x(t) + y(t)
< max{l,Xo + Yo}, which implies thatx(t) andy(t) are
4 Variable nutrient supplying rate bounded. O

In this section we consider the case that the input nutrient i ,
concentration is a constant but the nutrient consumption We next study the long term behavior of solutions to
rate is varied. Specifically we assume tHat varies (12)-(13). More specifically, we will provide conditions
continuously in time, e.g., periodically or randomly, in a under which the system has a pullback attractor, and the

bounded positive interva (t) € [dm, dy] for allt € R. conditions under which the attractor is a single entire
’ solution or a single point. Note thdt,0) is the only
steady state solution for all parameters values. Other

. attracting solutions will not be steady states.
4.1 ODE case without a wall g y

Theorem 3. Assume that DR — [dn,dw], whereO <
We first study the case without a wall. Whkeis a positive  d,, < dy < o, is continuous. Then the systéf®)-(13)

constant and varies in time, withJ taking the form{),  has a pullback attractor” = {A(t) : t € R} inside the

system ) - (3) becomes nonnegative quadrar? := {(x,y) € R?:x >0,y > 0}.
dx(t) . ax(t) " Moreover,
dt ® (1 =x(t) - A +X(t)y(t), (12) (i) when a< dp, the axial steady state solutigih,0) is
asymptotically stable in the nonnegative quadrant and
aytt) Oy(D) ax(t) ) (13) the pullback attractore has a singleton component
at A x?" subset &) = {(1,0)} for allt € R;
(i) when
Lemmal. For any initial time p € R and initial a> (14+A/1)dy
conditions ¥, Yo > 0, all the solutions of syste(i2)-(13) ) ] )
are nonnegative and bounded for albtto. the pullback attractore” also contains points strictly

inside the positive quadrant in addition to the point
Proof. The coefficients are continuously differentiable for ~ {(1,0)};

X,y > 0. In particular, the nonlinear term (iii) when
axy A (A dm + dwl )2
ik AR - dn<a
Arx o <1 /\+x) " (Adm-+dul)? —AldZ,

is nonnegative and bounded above by the linear function the pullback attractores consists of the axial point
ay on the positive quadrant. This ensures the existence {(1,0)} and a single entire solutioné* that is
and uniqueness of solutions as long as they stay within  uniformly bounded away from the axes as well as
the positive quadrant. By continuity of solutions, with heteroclinic entire solutions between them, i.e., its
initial conditionx(tp) = Xo > 0, X(t) has to take value 0 component subsets are

before it becomes negative. Since
Alt)={(xy) €RZ i x+y=1;&*(t) <x<I}
dx

— =D(t)l
dt|, g (t)l >0, fort e R.

(@© 2015 NSP
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Proof. Definew(t) := x(t) +y(t). Then summingi2) and
(13) above gives

dwit)
—~ = DO —w)).

This has a steady state solutiofi = |, even wherD(t)

for x > 0, thenx(t) increases td andy(t) decreases to 0
along this line. This means all solutions in the
nonnegative quadrant approadt,0) asymptotically.
Now, to prove the additional statement on the structure of
the pullback attractor, i.e. that the solutions in then
nonnegative quadrant pullback convergélt®), we need

to integrate the previous differential inequality5{ and

is not a constant. One can show that it is both pullbackigke |imits in the pullback sense. Indeed5Y can be

and forward attracting, see e.gl3]. Let wp := w(tp) =
X(to) + y(to). Then

w(t) = woe fioD()ds 4 1o ko DIs)ds t D(s)e"‘z PIdrys
fo

t S
— woe 60995 g JoP0 | d [faP09 ds
to ds

_ woe’ftto D(s)ds Ie’f‘to D(s)dseftto D(r)dr
t t
_ Woe—.hoD(S)dsH _ |e_.’toD(S)ds7

which converges tb as eithety — —o with t fixed or ag
— o0 With tg fixed, since

0< e 1oPEds £ g-tnlt—to) _, g
in both cases.
From this and Lemma it follows that for everye >
0, the nonempty compact set

Be = {(xy) €ER? : x+y<Il+¢}

is positively invariant and absorbing in tHEi. The

nonautonomous dynamical system Rﬁ generated by

the ODE system1(2)-(13) thus has a pullback attractor

= {A(t) : t € R} consisting of non-empty compact

subsets oR2.

The various cases in the theorem provide us with
more information about the internal structure of the 9Y(t)

pulback attractor.

(i) Sincew(t) = x(t) + y(t) approaches ast — o« in the
positive quadrant it suffices to consider poifitsy) on the
line x+y = I in the positive quadrant. Sincgt) satisfies

(12) with y(t) = I —x(t) > 0, we have
dx(t) ax(t)
—qr = (—x®) (D(t) = +X(t)> . (14
If dm > @&, then
IXO) - (G—a) (1 = x(1)) > 0 (15)

dt
as long ax(t) # |. SinceA > 0 and

ax -
A +X

rewritten as
dx(t
%Jr (dm— Q) X(t) > (dm—a) 1,
and, consequently,
d
dt
Integrating this inequality in the intervé,t], we obtain

[e(dm*a)tx(t)} > (dm— a) le(@n-al,

x(t) > e (@m-a(t-to) | | (1 _ o (dm—a) <t—to>) . (16)

and taking limits now wherg — —o, we deduce that
X(t) > I, what yields our result. In summary, we have
proved that the pullback attractor consists of singleton
component subset4(t) = {(1,0)} and is also forward
asymptotically stable as well as pullback attracting.

(i) For 0 < & < | sufficiently small we always have

and from equation1(2)

dx(t) - — (D(t) — )\afg) (I —&)

dt
a&
> = _
_(dm )\+51>(| &)>0

In addition, from equation1(3)

T (D(t) - Aafsl) (1 — &)

ag;
< — —
<)\+£1 dm> (1—&)<0

Similarly, by the assumption in Assertion (2), which
implies thatdy < a, for 0 < & < | — & sufficiently small
we have

dt

all — &)
A+l—g&
Then from equationl(2)

dx
dt

B all — &)
x=I—g a (D(t) A +1 _82> £

a(I —82)
< S S 7
(dM A 82> & < 0

(@© 2015 NSP
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and from equation1(3)

By the inequalities18) we obtain

dy ( a(l — &) ) dA(t) aAl
= = DO - )& — 2 < —dmA(t) - ————A(t) +aA(t).
atl,._,, Py — R 0 by (t)+aa(t)
s (2l-&) 0
“\Aqi—g M)8F HenceA(t) — 0 ast — o when
Combining these results, we see that the compact ail
subset Om+ —"—= >4,

Bere, = {(%Y) ERZ 1 x+y=1,6 <x<| &)}

is positively invariant and this implies the result.
(iii) All the solutions to (L4) with 0 < x < | satisfy

Al — dwx(t) —al < dz—(tt) <dwl —dex(t).  (17)

The first inequality follows from the fact that

ax(t) ax(t)
ot W) (D(t) A +x(t))

> dml — dux(t) —a(l— %x(t)) (I —x(t))
a(l =x(t))

> dml — dwx(t) —al

> Aol — dwX(t) —

and the second from

dx(t) ax(t)
o W) (D(U T +x(t))

< (I=x(1))D(t)

< dml — dmx(t).
These imply that
M < X(t) < dﬂ (18)
dM dm

And, on the other hand, we have
du(l —x(t)) +

Then for any two solutions; (t) andxa(t) to (14), A(t) :=

dul — dmx(t) = (dm — dm)x(t) > 0.

)

Ain(A O+ d1)2
(Adm+dwl)Z—Ald2,

This holds ifa < dy as in case (1). However, it can also
hold if a is slightly larger thandy. In this case the
pullback limit for strictly positive initial conditions othe
scalar system1() is uniform strictly contractingq1,12]

in (0,1) and there exists a single entire solutién(t) €
(0,1, which is also forward asymptotically stable in the
usual forward sense. The corresponding pullback attractor
o/ of this system on[0,1] includes the steady state
solution| and has component sefg(t) = [£*(t),I] for
eacht € R, i.e., it includes the heteroclinic trajectories
joining the two “equilibrium” solutionst *(t) and|. For
the two-dimensional system12?)—(13) the pullback
attractore has component sets

At) ={(xy) : x+y=1&"(t) <x<1}
inR2 fort € R. O

i.e., when

4.2 ODE with a wall

Pilyugin and Waltman introduced the idea of a chemostat
with a wall in [15], see also 2Q] for the case with delays
and the book Z1]. This corresponds to part of the
population that lives near the wall (e.g., the bank of a lake
or boundary layer of the intestines), and behaves
differently. Here we follow Chapter 5 of the boo&]], in
particular equation (5.1) on page 176. Wheénis a
constantD varies in time and there are no delays in time,
the system4) - (6) with U taking the form {) becomes

x1(t) — (1) satisfies X(t) = D) (1 - x(1)) - ay ftx)(t)<y1<t>+y2<t)>
S = ~DWAm - (1 -x(0) ;5 own() 20
ax(t) £) = — (v+ D) ya(t) + L
=0l s n :Vy (t)i)r)yyl((:) Fx "
—I1y1 2Y2 P
aAl
= —POAD - e A0 Yo(t) = —vya(t) + oD _yyt)

)\(X1+X2)+X1X2At 19 )‘+X()

(A +x1) (A +x2) (®)- (19) +r1ya(t) —rayz(t), (22)
(@© 2015 NSP
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wherea represents the maximum specific growth rate,

represents the growth rate coefficient of the consumey, g

species, s@ > c; mis the half-saturation constant of the
consumption;ry, rp represent the rates at which the |
species stick on to and shear off from the wallglenotes
the collective death rate coefficient gf b describes the
fraction of dead biomass that is recycled.

Since the variablesx, y;, and y» represent

Sl thens(t) < 4! for all t > to. On the other

|fS(to) dM' thenS(t) will be non-increasing for

all't > tp and thu§(t) < S(tg). These imply thati X(t)||,
is bounded above, i.e.,

If S(to) <

X0 < max{ 2 x0) + £ 3at) + vt}

concentrations, we assume nonnegative initial conditions for all t > to.

X(to) =

Lemma2. Suppose that(Xo,Y10.Y20) € R3
{(x,y1,y2) € R®:x>0,y; > 0,y, > 0}. Then all the
solutions to systen{20)—(22) corresponding to initial
data inR3 are

(i) nonnegative for all t> to;
(if) uniformly bounded iR .

Xo; Yi(to) =y10; Ya(to) =VY20.

Moreover, the nonautonomous dynamical systenRdn
generated by the system of ODR§)—(22) has a pullback
attractor o« = {A(t) :t e R} inR3.

Proof. (i) By continuity each solution has to take value 0
before it reaches a negative value. Witk 0 andy; > 0,
y» >0, the ODE forx(t) reduces to

X' =D(t)l + bvys,

and thusx(t) is strictly increasing ak = 0. Withy; = 0
andx > 0,y, > 0, the reduced ODE foy(t) is

Y =Tr2y2 >0,

thusy, (t) is non-decreasing & = 0. Similarly,y- is non-
decreasing ay, = 0. Therefore(x(t),yi(t),y2(t)) € R3
for anyt.

(i) Define |IX(t)]|; := x(t) + ya(t) + y2(t) for X(t)

(x(t),ya(t),¥2(t)) € RE. Then [X(b); < S(t)
¢ IX(®)lly, where

S(t) = x(t) +

The time derivative of§(t) along solutions to 20)—(22)
satisfies

<

20n0) +¥2(0).

It follows that for everye > 0 the nonempty compact
set

a dul
Be := {(x,yl,yz) ERI X+ (V1ty2) < % +e}

is positively invariant and absorbing iﬁR{i. The
nonautonomous dynamical system Rﬁ generated by
the ODE system20)—(22) thus has a pullback attractor
o/ = {A(t) : t € R}, consisting of nonempty compact
subsets oR? that are contained iB. O

To obtain more information about the internal structure
of the pullback attractor of the nonautonomous dynamical
system generated by the ODE syst&) (- (22), we make
the following change of variables:

alt) = ya(t)

=0+ z(t) =yi(t) +y2(t).  (25)
System 20) - (22) then assumes the form
X(t) =D(t)(I —x(t)) — )\i((;zt)z(t)+bva(t)z(t), (26)
Z(t) = —vz(t) — Dt)a(t)z(t) + )\i):(;gt)z(t), 27)
a'(t) = —D(t)a(t)(1-a(t)) —ra(t)

+ro(1—alt)). (28)

Note that the steady state solutiin0,0) of system 20)

- (22) has no counterpart for syster?2gj—(28), sincea is
not defined for it. On the other hand, O) is a steady state
solution for the subsysten2§)—(27).

4.2.1 Global dynamics af (t)

dgt a
% = D)1 - x(t)] - [2(v+D(1) ~bv] ya(t) .
t a c Observe that the dynamics af(t) = a(t,tp,ap) are
—Zvys(t) uncoupled fromx(t) and z(t) and satisfy the Ricatti
c a equation 28). For any positivey; and y, we have
<l — dmx(t) — [—(v+dm)—bv} ya(t) 0 < a(t) < 1 for all t. Note thata’|q—o = r» > 0 and
a ¢ a'lq—1 = —r1 < 0, so the interval(0,1) is positively
——vys(t) (23) invariant. This is the biologically relevant region.
c WhenD is a constant, there is a unique asymptotically
Note thaté(v + dm) —bv > &dp, sincea > c and 0< stable steady state* € (0,1) given by (see 21], page
b < 1. Letu := min{dm, v}, then 180)
_ 2_
dS(t) < dul — S, (24) a* e D4ri+4ro \/(Izgrﬁrz) 4Dra. (29)
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We want to investigate the case ttiatvaries in time,

randomly or, say, almost periodically in a bounded . .
positive intervalD(t) € [dm,dw] for allt € R. In this case To investigate the case where the pullback attractor
consists of a single entire solution, we need to find

we need to talk about a random or deterministic pullback dit d hich
attractorey = {Aq(t) : t € R} in the interval(0,1). Such conditions underwhic
an attractor exists since the unit interval is positively ar(t) = i (1) teR
invariant (see e.g.,1B]), so its component subsets are P = Hulhss ‘
given by Suppose that they are not equal and consider their
differencedq(t) = a;f(t) — o (t). Then
Adt)= N a(to[0,1]), VteR. alt) = aa(t) —ai(t)

fo<t Ay (t) = D(t) (aj(t) + a7’ (1) Aa(t) — (D(t) +r1+r2) Aa(t)
These component subsets have the form < dw-20;(t)Aq(t) — (dm+r1+r2)Aq(t)
Aa = [a (1), a5 ()], _ (Zdwz Cq )A .
=\r+r, m—r1—r2 ) Aq(t).

wherea(t) anday;(t) are entire bounded solutions of the
Ricatti equation. The other bounded entire solutions of thelhus
Ricatti equation lie between these ones. 2hnr
0< Aq(t) < e( g —tn—r1r2) A (to) 0 ast— o
We can use differential inequalities to obtain bounds — = “ ’

on these entire solutions. Let us rewrite the Ricatti (as well as whetty — —) provided
equation 28) in the form

Zerz
ri+rp

—dm—r1—r2 <0,
a'(t) = D(t)(az(t) —a(t))—(ri+raa(t)+ra  (30)
which is equivalent to @yra < dm(rs +r2) + (r1+r2)2
Sincedm < dw, this holds, e.g., il (ro —r1) < (r1+ r2)2.
It essentially puts a restriction on the width of the intérva
in which D(t) can takes its values, unless> r».

Note thata*(t) is also asymptotically stable in the
forward sense in this case.

Sincea(t) < 1 andD(t) > 0, we have
a'(t) < —(ri+r2)a(t) +ra
Hencea (t) < B(t) with a(tg) = B(to), where
B(t) =—(ra+r2)B(t) +r2

This ODE has an asymptotically stable steady state*-2-2 Global Dynamics of(t) andz(t)
solution

B = r2 7 Suppose thatr*(t) is the unique entire solution in the
ri+rz pullback attractor of the Ricatti ODE2g). Thena*(t) €
so the entire solutions of the Ricatti equatiagylie Y81 C (0,1) forallt € R. Moreover, fort sufficiently
(minus an infinitesimal) below it, i.eq; () < B* forallt ~ 1arge,x(t) andz(t) components of the syster2d)—(28)
€ R. This provides an upper bound. On the other hand, Sausfy

a'(t) = D(H)a?(t) — (D(t) +ri+r2) a(t) +r2 X(t) = D(t)(I —x(t)) - Aafxt()t)z<t>+bva*<t>z<t>, (31)

> —(du+ri+ra(t)+r; exit)
Hencea (t) > y(t) with a(to) = y(to), where Z(t) = —vz(t) - D(t)a* (t)z(t) + 3 +x(t)z(t)' (32)
Y (t) = —(dv+r1+r2) y(t) +r2. The system31)—(32) has a steady state equilibriuin0).

Hence (1,0,a*(t)) is a nonautonomous “equilibrium”
This ODE has an asymptotically stable steady statesolution of the systenm2g)—(28).
solution

r2
y'=—
f1+r2+dw Theorem 4. Assume that D R — [dm,du], with
In this case we obtain a lower boung(t) > y* forallt € 0 < dm < du < o, is continuous, & ¢, be (0,1) and
R. In summary, v > 0. Then, the systeni31) - (32) has a pullback
attractor &7 = {A(t) : t € R} inside the nonnegative
o (t) = [af (t),a; ()] C [y, B*]. quadrant. Moreover,
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() When Therefore we have the upper and lower boundsifoy as
V+dmy" > c,
the axial steady state solutidh,0) is asymptotically qil = O - <ut) < M =:Qpl,
stable in the nonnegative quadrant and the pullback a—c+v+dw—bvp Amy”

. 33)
attractor &7 has a singleton component subsét)A= , (
{(1,0)} forallt € R. whereq; < 1 andgy > 1. Fore > 0 small, defin€l; to be

(i) When the trapezoid

CChl To={(x2€R2:x>¢, z>¢, qul <x+z<ql},

VB < e vt dw — VB

which is a subset of the positive quadrant defined as
the pullback attractore also contains points strictly
inside the positive quadrant in addition to the point {(x2) €eRZ:x>¢, z>¢€}.
{(1,0)}.
. - If we restrict our non-autonomous dynamical system to
Proof. (i) Whenv +dmy* > ¢, Z(t) satisfies this set, ther; is absorbing here. We next show tfatis

ex(t) ) invariant for this restriction what will give the existence
(t),

% =— (v +DMt)a*(t) — of a pullback attractor7¢ and the result easily follows.

A+x(t) First, noting that functiorf (x) = ;% is increasing on

where [0,0), for & small enough, we havge, < bvy* and

] cx(t) dx(t)

v+Dit)a*(t) - ————>v+dny ' —c>0. — _
LR m g | =Pwi-e)
Thus z(t) decreases to 0O as approacheso. As a wpy  9E
consequence(t) satisfies +{bva A+e 2t) > 0. (34)
X (t) =D()(I —x(t)). Second, the condition
Then . CC|
t
X(t) = x(to)e P9 1| VB < e v du—bvB)

and converges tbast — o ortg — —oo. Note that in view ) . el
of the definition of the transformatiamit is, however, not IS equivalent tov +du* < ;7. and thus fore small
possible to take = 0, when transforming from the original enough

system B1)—(32), although this system has an analogous
ay| - _ (—V—D(t)a*(t)+ ext) )e
=&

steady stat€l,0,0) in its (X,y1,Y») variables. 4y

(i) Let u(t) == x(t) + 2(t), th “ e
i) Let u(t) ;= x(t) +z(t), then c(aul —¢)
—v—dup + L 0. (35
u’(t):D(t)(I—x(t))+(i\;7agz(t§[)z(t) >< VP +"+ql'—€)8> (%)
Thva*(t)z(t) — vz(t) — D) a* (t)z(t). Inequalities 84), (35), together with
On the one hand, d(x(t) +z(t)) -0
u(t) < D)1 —x(t)) dt xtz=ayl
— (V+D(t)a*(t) —bva*(t))z(t) and
< D(t)l = D(t)x(t) — D(t)a*(t)z(t) d(x(t) + z(t)) ~o
< D(t)l =D(t)a*(t)u(t) dt xiz—gol

< — ) L ,
< dul — dmy"u(t) ensure the positive invariance of the compactTseand

On the other hand, the existence of a pullback attractef® = {Af(t) :t € R}
U(t) > D) (1 (V) n e -
—(a—c+v+D(t)a*(t) —bva*(t))z(t) onf I his poi b btain th
_ i _ « nfortunately at this point we are not able to obtain the
> DO =DOX(t) —(a—c+v+ e(t bv ") 2(1) existence of a stable single entire solution that attrdtts a
> D)l — (a—c+v+D(t) —bvB ) u(t) strictly positive entire solutions as in the case withoull wa
> dml — (@a—c+v+dy—bvB ) u(t). growth.
(@© 2015 NSP

Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

2292 NS 2 T. Caraballo et al. : Chemostats with Time-Dependent Inputs

5 Variable nutrition input rate (i) when D > a, the entire solution(x*(tg,y*(t)) =
(w"(t),0) is asymptotically stable inR% and the

Here we assume that the nutrition input valuean vary pullback attractor has singleton component sets) A

continuously with time, and henceforth denote itligy), = {(w*(t),0)} for every te R;

while the consumption ratb is a constant. Similarly we  (ii) when ai, > D(A +iwm), the pullback attractor has

assume thdtis bounded with positive values, in particular, nontrivial component sets that include(t),0) and

[(t) € [im/im] forallt € R, where O< im < im < co. strictly positive points;

(i) when D < aand a(A2+ A (2im —im) +i%) < D(A +
im )2, the pullback attractor contains a nontrivial entire
5.1 ODE without a wall solution that attracts all other strictly positive entire
solutions.
We now consider the case without a wall, in which case

the ODE system2)—(3) becomes -
Proof. From Lemma2 and the fact thatv*(t) € [im,im],

the nonempty compact set

dx(t ax(t
S = D10 ~x0)~ 52, (36)
B:i={(xy) €ER? :im<x+y<im}
dyt) _ ax(t)
dt —Dy(t)+ A +X(t)y(t). (37) is positively invariant and absorbing k2 for the ODE
] (38). The nonautonomous dynamical system ﬁﬁr
Letw(t) := x(t) +y(t). Then generated by the ODE systen86{-(37) thus has a
dw(t) pullback attractor = {A(t) : t € R} consisting of
Brraie D(I(t) —w). (38)  non-empty compact subsets Bf Then(w*(t),0) € A(t)

for everyt € R since the pullback attractor contains all
This does not have a steady state wHé) is not a ~ bounded entire solutions.

constant, but it has a nontrivial nonautonomous

“equilibrium” solution that is both pullback and forward To prove assertion (i) note that equatid@6) can be

attracting: bounded from above as
t
w(t) = w(tp)e Pt-) 4 pePt-to) [ |(5)eP(s)gs dyt) _ (&) N D .
to T__ _)\—|—X(t) y()—_( _a)y( )7
t
— w(tg)e Pt 1 pe P [ |(s)ePsds . , ,
to from which it follows immediately thay(t) — 0 ast —
which converges to whenD > a.
_ nea-Dt s (i) From the positive sign of the derivative of
Wi(t) =De [ml(s)eD ds equation 87) x(t) is increasing on th& = 0 face of the
i i above absorbing s& The facey = 0 is invariant, but for
as eitheftg - —cort — o, i.e., y =€ < imandin < X < iy, equation 86) gives
li t)—w'(t) = i t)—w'(t)| =0.
I ) = (0] = i o) w7 ) O _ (205
Note thatw*(t) € [im,im] for all t € R due to the bounds dt A+X(1)
onl. aim
> ( — — D) y(t) >0
Lemma 3. For any initial time § € R and initial A+im

conditions ¥, Yo > 0, all the solutions of system
(36)—(37) are nonnegative and bounded for any ty. when aim > D(A +iv). This means that the positive

o . interior of the absorbing set also contains points of the
The proof is similar to that of Lemma so will be  pyliback attractor.

omitted, while the proof of the following theorem is
similar to that of Theoren8, so not all details will be

given here (iii) Next we consider ODEZ6) restricted to the stable

manifoldx(t) + y(t) = w*(t) on which it takes the form
Theorem 5. The nonautonomous dynamical system

generated by the system of ODHE36)—(37) has a dx(t)
pullback attractore/ = {A(t) : t € R} in R%. Moreover, gt = P =xt) -5 () (W' (t) =x(t)). (39)
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For any two solutions; (t) andxy(t) to (39), define
Ax(t) :=Xq(t) — X2(t). ThenAy satisfies
dA(t)
dt

ax(t)
A +x(t)

= —DA(t) — (W (t) —xq(t))
axy(t)
A +Xo(t)
aAw(t)
A +x)(A +x2)
A (X1 + X2) + XaX2

Since 0< x(t) < w*(t) <im andw*(t) > im we have

+WH(t) —x2(t))

— DA - A1)

dAy(t) akin
S < —DA(t) - mAx(t) +adt).

HenceAy(t) — 0 ast — o when
aAim

()\ —I—IM)

> a,

i.e., when

a(A2+A (2 —im) +if) < DA +im)?

Lemma 4. Suppose thatxo,Y1.0,Y20) € Ri. Then, all
solutions to the systenf40)—(42) with initial value

(X(to),Ya(to), Y2(to)) = (X0, ¥1,0,¥20) are
(i) nonnegative for all t> to;
(if) uniformly bounded irR3 .

Moreover, the nonautonomous dynamical systenRén
generated by the system of ODE8)—(42) has a pullback
attractor o = {A(t) :t e R} inR3.

Proof. Similar to that of Lemma&. O
Using the new variablegt) anda(t) defined as inZ5),
equations40)—(42) become

() = D) ~x(0) - 3250

Z(t) +bva(t)z(t), (43)

cx(t)

Z(t) = —vz(t) — Da(t)z(t) + A x©

z(t), (44)

a'(t)= -Da(t)(1—a(t))—riat)+ra(1—a(t)). (45)
Equation 45) has a unique steady state solution

, D+I’1+I’2—\/(D+I’1+I’2)2—4DI’2
@ = 2D

This always holds ifa < D, in which case we have Which is asymptotically stable of®,1). Hence whern —

scenario (i) of the Theorem. It can, however, still hold if

oo, replacinga (t) by a* in equations43) and @4) we have

is slightly larger since ()\2+)\(2iM —im)+i§,|) < dx(t) ax(t) .

(A +im)2, in which case the above estimates with neither—g;~ = P(1() =x(t)) =+ JrX(t)z(t) +bvatz(t) (46)
x1(t) orxo(t) equal tow*(t), the system is strict uniformly

contracting 11,12] in the positive quadrant and thus has a dzt) . cX(t)

unique entire solution as its pullback attractor in the ~g¢ — —vz(t) - Da Z(t)+)\ +X(t)z(t). (47)

positive quadrant. O

5.2 ODE case with a wall

Last we study the case where the nutrition inpwtries
and wall growth is considered. Whdh is a constant|

For more details of the long term dynamics of the solutions

to (46) - (47) we establish the following theorem.

Theorem 6. Assume thati R — [im,im], withO <im <
im < o, is continuous, a ¢, be (0,1) andv > 0. Then
systen(46) - (47) has a pullback attractor? = {A(t) : t €
R} inside the nonnegative quadrant. Moreover,

(i) whenv +Da* > c, the entire solutionw*(t),0) is
asymptotically stable iiR? where

varies in time and there are no delays in time, the system

(4) - (6) with U taking the form 7) becomes

K() = D) ~X0) - 5o (1432

+bvy(t), (40)
(0 = (V-4 D)at) + 3 vl

—raya(t) +raya(t), (41)
Yo(1) = —0yalt) + 5 ye) + () 2yt (42)

t
W' (t) = De ™ [ 1(9)eP%ds

and the pullback attractore/ has a singleton
component subset® = {(w*(t),0)} forallt € R,

(i) when

CDiM

v+Do* < .
N A(a—c+v—bva*+ D)+ Div

the pullback attractore also contains points strictly
inside the positive quadrant in addition to the set

{(w(t),0)}.
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Proof. Here we omit some detailed calculations when 6 Capturing the time-variation of the inputs

similar to previous cases.
(i) Whenv+Da* > c,
cx(t)

dé(tt) =— (V+Da*— 3 +x(t)> Z(t) <0,

which implies thatz(t) decreases to 0 ds— o for any
Z(tp) > 0. Consequently(t) satisfies

dx(t)
— = PIO—xv)

and has a nontrivial nonautonomous equilibrium

¥ (s)ePsds

to

X(t) = X(to)e Pt 70) 4 De ™t

which converges tov*(t) ast — o orty — —oo.
(i) Let u(t) :==x(t) + z(t), then

/ (c—a)x(t)
u (t) D(|(t)—X(t))+WZ(t)
+bva*z(t) — vz(t) — D(t) o z(t).
On the one hand,
u'(t) < D(I(t) —x(t)) — (v—bva*+Da*)z(t)
< DI(t) — Dx(t) — Da*z(t)
< Dim —Da*u(t).
On the other hand,
u'(t) > D(I(t) —x(t)) — (@a—c+v+Da* —bva*)z(t)
> DI(t) —Dx(t) — (a—c+v—bvB*+D)zt)
> Dim— (@a—c+v—bvB"+D)u(t).

Therefore we have the upper and lower boundsifoy as
Dim

o im
" a—-c+v—bva*+D

a*’

<u(t) < (48)

For e > 0 small, defin€l; to be the trapezoid
T = {(x2) eR% :x>¢, z>¢,
Di i
M <x42z< 'ﬂ},
a*

a—c+v—bva*+D —
thenT; is absorbing. We next show thgt is invariant.
Similar to the proof of Theorerd, whene is small

enough, we have the following inequalities satisfied on the

boundaries of:

c(l—e¢)
)\+I—£>8>0’

xZ(t)|, . > <—v+ Da*+
(X() +2(0) [y iy o <O
(X(t) +2(t))'] ;5 > O

HenceT; is invariant and this implies that there exists a
pullback attractor” = {A(t) :t € R} in Te. O

The properties of the solution mapping(t;to,xg) of a
nonautonomous systems of ODEs of the form

dx

dt
in RY motivated theprocessor 2-parameter semigroup
formalism of abstract nonautonomous dynamical
systems. This intuitive formalism, however, does not
always allow the whole asymptotic behaviour to be
revealed without additional assumptions, in contrast¢o th
more complicatedskew product flowformalism that
already contains more built-in information in terms of
what is called a driving system. SeiJ].

Let (X,dx) and (P,dp) be metric spaces. Akew
product flow (6,¢) is defined in terms of a cocycle
mapping¢ on a state spacX which is driven by an
autonomous dynamical systef acting on a base or
parameter spacP and the time seR. Specifically, the
driving system8 on P is a group of homeomorphisms
(8 );cr under composition of® (i.e., with the properties
that (i) Bp(p) = pforall pe P; (i) 651t = B5(6(p)) for
all s, t € R; (iii) the mapping (t,p) — &(p) is
continuous) and aocycle mapping : R x P x X — X
satisfies

(i) (0, p,x) =xforall (p,x) € Px X,
(i) p(t+s.p,x) =@ (t,65(p), d (s, p,x)) for all s,t € R{,
(p,x) € Px X,

(iii) the mapping(t, p,x) — @ (t, p,x) is continuous.
A ¢-invariant family of nonempty compact subse#s =
{Ap: peP}ofX, ie., withg(t,p,Ap) = Agp for all
t e R andp € P, is called apullback attractorof a skew
product flow(8, ¢) if the pullback convergence

lim disty (¢ (t,6.1(p). D), Ap) =0 (pfixed)

f(x,t), X(to) = Xo,

holds for every nonempty bounded subBetf X andp €
P, and aforward attractorif the forward convergence

lim distc (¢, p,D), Agp)) =0

holds for every nonempty bounded sub&etof X and

p € P. Counterparts to the theorems for the existence of a
pullback attractors for a process hold for skew product
flows [13].

In terms of the chemostat systems abapé, p,X) is

the unique solution for € R{ of an initial value problem

dx
5 = 8

in RY for d = 1, 2 or 3 with the initial valuex(0) = X for
the driving system starting at HereP can be taken as the
hull of a time-dependent tergp: R — R (eitherD(t) or
[(t) above) in the spadg(R,R), i.e.,

P—Tqt+ ) ter) 0,

(49)
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