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Abstract: We consider the effects of additive and multiplicative eai® the asymptotic behavior of a fourth order parabolic égona
arising in the study of phase transitions. On account thatdegterministic model presents three different time scahethis paper
we have established some conditions under which the third sicale, which encounter finite dimensional behavior otstem, is
preserved under both additive and multiplicative lineaseoln particular we have proved the existence of a randaracadr in both
cases, and observed that the order of magnitude of the thiedscale is also preserved.
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This paper is dedicated to the memory of ProfessorThe global dynamics oflj have been studied ir8] by
José Sousa Ramos. numerical experiments and, in particular, the existence of
three time scales with different dynamical behavior has
been pointed out.
1 Introduction In a first time scale of orde©(&?), the energy of the
initial datum is drastically reduced and a microstructure

The study of phase transitions has been an importar@PP€ars in the region in which the gradients of the initial
ata are in the set in which the potentidlis non convex,

subject of research over the last decades (8peSeveral

models have been introduced, among the others, th#éat iS(—§7 ?) (see [LQ) for an analysis of the first time
Cahn-Hilliard (see for example?]) equations have been scale using variational techniques).

intensively studied. Ing] the authors introduced a model In the second time scale of ord®(1), the region without
related to that of Cahn and Hilliard (C-H) in the sense thatmicrostructure evolves in a heat equation like behavior,

if uis the solution of the equation while the region with microstructure remains almost
stationary.
Ut :_gzuxxxx+:_2L[W/(uX)]x In the last time scale of orde®(s~2), equation {)
U=Uy=0, ondl, (1) exhibits a finite dimensional behavior, the solution is
u(0,t) = uo, approximately the union of consecutive segments with
slops+1.

then uy solve the C-H equation. Inl1), | is an open Inthe papersq1], [12], [13], and @], the third time scale

interval, the functionW is the so called double well has been studied. Iri]] the authors prove the existence

potential, that isW(p) = (p?> — 1)? and ¢ is a small  of an exponential attractarZ; whose dimension is of

parameter. The equatiori)(represents thé2-gradient order O(¢~1%). In particular the time for which the

dynamics associated to the energy functional (sk@ [ Solutions enter the absorbing set is of or¢er?). In [12]

and [L4)): the authors found an estimate of the dimension, of order
O(e71) (in accordance with the numerical experiments

Fe(U) = %/IuideﬂL % /IW(uX)dx presented in3]), of the global attractoxz; by the volume
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elements evolution method and they proved the existenc®efinition 1. A random compact sefK(w)}weq is a
of an inertial manifold whose dimension is of order family of compact sets indexed hysuch that for every
O(¢7%°). Moreover, some estimates on the regularityx € X the mappingw — d(x,K(w)) is measurable with
estimates and on the embedding dimension argespecttoZ.
performed. Since natural systems are subjected to random
perturbation we consider interesting to reconsider theDefinition 2. Arandom set Kw) C X is said to absorb the
problem () in the context of stochastic processes.Set B if for almost alw € Q there exists (B, w) such that
Namely, when some multiplicative and additive noise forallt >t(B, w)
may appear in the formulation.

Thus, in Section 2 below we state the problem in the ¢(t,0-1w)B C K(w).
multiplicative case, state some necessary preliminary

definitions on the theory of random attractors, and prove €finition 3. A random set/ (w) is said to be a random

that our problem generates a random dynamical Systenﬁttractor associated to the random dynamical systerh
In Section 3 we prove the existence of a random attractor. -5
Finally, in Section 4 we consider the case in which the (i)« (w) is a random compact set.
noise appears as an additive one. We do not intend to(ii) ¢ (t, )7 () = . (B w), ¥t > 0,
establish all the results in a formal and detailed way, but(jii)attracts all B c X bounded and non-random, that is
only wish to provide the main estimates in order to justify
the existence of a random attractor, highlighting the main lim dist(¢ (t, 6_tw)B, 7 (w)) =0,
differences with the multiplicative case. This additive e
case requires of some additional technicalities which  \yheredistdenotes the usual Hausdorff semi-distance.
make the analysis more involved.
In the sequel we will use the fact thett, 6_;w) can be

L o interpreted as the position &= 0 of the trajectory which
2 Preliminary definitions was in x at time —t and we consider the attraction
property att goes to—oc. This is the so called pullback
convergence which means to look at the position of the
solutions at present time when the initial ones ge-to.

We consider the following stochastic version of the system
(2) with multiplicative noise

dX = (—€2A2X + 2W"(OX) AX)dt + oX o dw, In the next section we will prove the existence of a
X = Xe =0, on 02| ' ) random attractor for equatior2)( using the following
X(0,t) = Xo: ’ theorem (seel[d)):

Theorem 1.Assume that there exists a compact sewp

where w(t) is a two-sided standard Wiener process absorbing every bounded non-random set K. Then, the

defined on a probability basig2,.%,{.% }icr,P), where

{F her is a filtration that is an increasing collection of set —_—

sigma-algebras of? and.%, contains all the null sets. o (w) = | Ns(w)

In order to study the dynamics of equatia?) (ve first BcX

recall some basic definitions of the theory of randomis a random attractor fokp, where the union is taken over
dynamical systems. all B ¢ X bounded, and\g(w) is the omega-limit set of B
Let {& : Q — Q,t € R} be a family of measure given by

preserving transformations such thétw) — 6w is Ne(w) = ﬂ U¢(t,9—tw)B.

measurablefy = id and 65 = 66 for all s;t € R. The
flow 6 together with the corresponding probability space
(Q,7,P,(6)er) is called a measurable dynamical Moreover in [L6] the author proved that random attractors

n>0t>n

system. Finally we suppose thtis ergodic. are unique and, by the ergodicity &, there exists a
A continuous random dynamical system is a measurabl€ompact seK C X such thafP-a.s. the random attractor is
map the omega limit set oK, that is:
P RTXxQAxX—=X,

such that#-a.s. o (w) =)ot 61wK.

()¢(0,w) =id on X, n=ot=n

(iNp(t+s w)=9¢(t,Bw)(sw), Vt,sc RT, In order to prove the existence of the random attractor, the
where (X,d) is a Polish space with Bore¥-algebraZ idea is to transform the stochastic evolution equat@®n (
overfon(Q,7,P). containing a noise term into an evolution equation

In [16] the authors introduced, in the context of random without noise but with a random coefficient, that is a real

dynamical systems, the concept of attractor for stochastiéunction which takes random values. In this case all the
partial differential equations in order to study the techniques and tools for the study of standard evolutions
qualitative dynamical behavior of the solutions. equations are available.
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For this purpose we consider the following change of
variable
Y=T "X, (3)

where
T(w) =e"% (@),

and wherez* is the stationary solution of the equation
(4)

which is the so called Ornstein-Uhlenbeck process.
In particular, if¢ is a random dynamical system and
andT ! are measurable then

dz= —zdt+ dw, w(t) =w(w),

(t,wx) =T Haw ¢t wT(wXx)):= Yt wX)

is a random dynamical systems (seé]).[ Before

Theorem 2.ForP—a.s.w € Q and all T > 0, the problem
(5) admits a unique solutiogy such that

if Yo € H =L2(1)theny € CO([0,T],H)NLZ(0,T;V);

if Yo €V =H?(I) theny € C([0,T],V)NL3(0,T;D(A));

where DA) = {Y c H4(1): ¢ = yyx=00n2l} is the
domain of the differential operator A —[;7—:4.

The continuity of the cocycle is guarranteed by the
following stronger result:

Proposition 2. The solution of(5) is Lipschitz continuous
with respect to the initial data.

Proof. Let ¢5 , i = 1,2 be two solutions associated

proceeding with the analysis of the random system werespectively to the initial datajp;, i = 1,2 and set

recall some important properties a@f(w) (see p] for
more details):

Proposition 1. There exists a{ & }icr-invariant subset
Q € .7 of Q = Cp(R,R) of full measure such that

(b))

lim == = forwe Q,

t— oo

and for suchw the random variable is given by

/.

and is well defined. Moreover, foo € Q, the mapping

Z'(w) : e'w(1)dt

/O
is a stationary solution of equatio) with continuous
trajectories. In addition, fow € Q:

Z(6w)|
t]

0
(t,w) = 7 (Bw) = —/mera(w(r))dr

e (w(t+1)—w(r))dT

- )

lim
t—+oo

lim
t—+oo

1 t
—/ 7 (6;w)dT = 0,
tJo

and v
E|z*|=t£r£mf/o 17 (6;)|dT < o.

By the change of variable] the equationZ) becomes:

-1

Uy = _8ZWXxxx+ W[W/(T(etw) W)]x (5)
+0Z (Gw)y,

W(0) = Yo, (6)

The existence and uniqueness of solution follows from
classical methods such as Galerkin approximations (se
for example 6] Theorem 3.1.1), and we will omit the
details. In particular, we can prove the following result:

U=y — Y. Then the equation fulfilled by is the
following:

U = —&2Ugxxxt 0Z' (Gw)u

1
+ O w8 w)gn) - WT (@ @)0),

Multiplying the previous equation byin H yields:
1d, 2, 2 2
EaHUH + €| Ul
T 6w

T80

2 /I[W’(T(G[w) Lﬂlx) —W’(T(G[w) Lﬂzx)} UXdX
+0Z' (Bw)|ul*=0,
from which

1d

> g U2 € ud < 2]u 24272 [ Gidxt-012 | us

where
U= Y.
In the next section we will prove the absorbing

properties in several spaces, in particular, we will find the
existence of random variablegw) such that

1Y) <ro(w), [[4x(0)] <r2(w), [P0 <rs(w),

where again we intend the above estimates in the following
sense

S(t, 6-1w) o = (0).
Here we make use of that in order to conclude the proof

(see section below for the complete details).
In particular we use:

g'»—lﬂoo < | @axfoo | x|l o
| @l ||| W | ] ol

r3(w)r3(e) = K(w)

A

<
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Then, we can easily obtain

d 1
> gplull+ e%lluad® < 201+ TK(w) + 5012 ul®

2N(00.)
h?(w,t
Y upe,

IN

€2||Uxx||2 +
and integrating we arrive at
[[S(t, 6-tw)Yn o — S(t, 0-tw) Yool

= H w1(07 w, _t7 ‘I—’l,o) - (IJZ(O’ w, _ta QUZ,O) ||
= [[Y1(0) — Y2(0) |

1 0 w
< e OOy, — gy

3 Existence of the random attractor

In order to use Theorerh to prove the existence of the
random attractor, we prove the existence of a compac

random absorbing set.

We start by proving the existence of an absorbing ball in

H.

Proposition 3. There exists a random variablg(w) such
that for anyp > 0 there exists(w, p) < —1 satisfying

|@(0, w;to, Yo)|| < ro(w),
for allto <t(w,p) and ||| < p.

Proof. If we multiply the equationg) by ¢ we obtain the
following inequality:

2 2 2 2 4
2 S 1l ol >+ 2T (@)

= 2/|yxl?+ 07 (B w)|| @2
< (2+07'(8w))[|yx]?
< (2+ 07 (6w) | WY,

from which
L8 g Sl < (2+ 07 () P
< BEOZBON &y
Then
&+ S l? @
< 2297001 7(ga).

Integrating the previous inequality ta,

(=

—1]withtp < —1:

£2
DI? < [[@(to)||Pe”z 1)
-1
+ [ e stz F (6sw)ds

to

from which
. £2 -1 2
W-D1? < o7 {utolPeT o+ [ eFor(Bwids)
fo

2 2 £
<ez (T 9(6,w)|[X(to)[|7eZ™

+/ e2 ewds}

Now, if we fix the initial datumXp in B(0,p) C H, then
there exists a timé(w, p) such that for allty < t(w,p)
and for allXp € B(0, p) we have:

lw(-D))? < ri(w),

L]
N
—N

where
£2 -1 2
rP(w)=ez {14—/ eTSﬁ(GSw)ds}.
|n detail, it is sufficient to chosgw, p) such that:
£2
“(B,w)p%eT0 < 1,

2
and this is possible sinc@-a.s.T*z(etow)e%‘O — 0 as
to — —o. Using againT), for allt € [—1,0] we have that

lw®) 2 <llw(-1)|% = ”l+/ e 7 (9.7 (Bw)ds

and then
£2 0 2
W) < rf(w)e 7 +/ e7°F (Bsw)ds:= r§(w).
-1
We remark that, from Propositidh it follows that
-1
/ %S 7 (Byw)ds < o,

Remark.For any fixedw € Q the time for which the
absorbing property is fulfilled is of ord€@(¢~2), and this

is in perfect accordance with the numerical experiments
in [3] and with the autonomous case (sé&é&][and [12]).

Integrating inequality {), we deduce the following
estimate that will be useful later

0 2 0 2
[ IwiEat < [ ot

0 2
< [l o

<212{r1 +/ ff&wdt}_R()

while integrating in(to, 0) and lettingto — —co we derive

/|prx||2dt<—{ +/ awdt}

(@© 2015 NSP
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From the previous proposition we obtain the absorbing  Moreover, by the same argument, there exigtey) <
property inH and we can pass to the proof of the Tp(w) such that for alty < Ti(w):

absorbing property in t
- / F(6sw)ds
HE(1) == {ve L%(1): weL?(1) andv=0o0nal}. to Jt+to L
= 2+ 07" (6sw))*ds
e o @07 (80)
Proposition 4. There exists a random variablg(tw) such 1/t 16 4 4
that for anyp > 0 there exists fw, p) < —1 satisfying S - fo /+t0 F2(2 +(0Z (6sw))"]ds
8 4
Hlll(O, w;t07q—’0)“H&(I) < rz(w% < 2_+]'6_U i/t (Z“(Gsw))“ds
Te2 g2 \ oy
foralltg <t(w,p) and|| o] < p. 28 1694
| | | < S+ =526 (2]Y) = f(w)
Proof. If we multiply equation §) by yxx we obtain N € €
Then,
2., .2 2 2
217 el ST GO 0505 L e TR G
= 2|[gd* + 07 (B ) [[yx® & '
< (2+07'(B )| ¢t ®) = R(w).

Additionally, integrating equatior8f in (—1,0), we have

[ et < 5 {5 +2(omiw)+ 5 )R}

M(w) := max [T(Gw)]*.
[oz*(esw) 4 8—12} ds> €10

= r3(w) Proposition 5. There exists a random variablg(kw) such
2(W). .
that, for anyp > 0, there exists a constant
Before proving the absorbing property for the norm T(w,p):=min{t(w,p),T1(w)} < —1 satisfying
lYuxl|, we perform some important estimates. We

from which

IN

d 1
UG L COREA [T
and by the uniform Gronwall lemma where

) < Reexp(2

consider the following inequality (| sx(0, wito, Yo) || < r3(w),
t t foralltg < T(w,p) and <p.
[ iwizas< [ usods o= Mewpjandiwnl = .
t+o t+o Proof. In order to prove the absorbing property\inwe
- 12{p2+ t ﬁ‘(@sw)ds}, multiply equation §) by (syxxx
¢ Lz o 2 8 s+ €2 ool ?
and apply the uniform Gronwall lemma (ih+ to,t) with 2dt
tto<0: — 6T ()2 /. W2 Pooondx
1 P_2 't a
o [E{E R G005 2o P+ 07 (W) i
lu®)> < = x -
< O[T (6.0) | Wl | rood | + EHWXXXXHZ
(2/t {az*(e W)+ 1]ds) 2
X ex = .
P |77 22 + 55 102+ 07 (W) o
From the Birkhof ergodic theorem (see Da Prato and . €2
Zabczyk [L7, Chapter 1] and the stationarity of the §G[T(Q[a))]ZRHL[JXXH2||LIJXXXX||—I—?HLIIXXXXHZ

Ornstein-Uhlenbeck process we have that 5
. 1t +(;+02*(9tw))lltlfxxl\2,
im = [ 17 (8w)ldp=E()

0

to—— 1o from which:
Then, there existSp(w) such that for alky < To(w) we %IILIJXXIIZ < 8[ T(6w))* Psl|? (10)
have
1t 2
[z Gpedp< 26 (7)) +(—2+20z*< (@) sl
0 Jt+tp
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If we integrate equationlQ) in (s,0) for s€ (—1,0) we Then the equation can be rewritten as
have
1
18 2 _z /
9017 < 449+ 25 [T (@)} et Ve & = 5 [W e 00 (80))]
+0Z' (G w)g(x), (12)

[ (5207 @) lusol?at

Integrating again with respect &in (—1,0) we obtain

0
1)1 < [ 1l a(9)]%dsx
_118 0 Once_at this ppint, it is poss_ible to establish a result
+ [ (esw)]4||q—’xx||4d5 ensuring the existence and unigueness of solution of the
initial value problems associated t@2j, as well as the
2 continuity with respect to the initial data. However, we
+/ ( +207(65( ))) [l “d's will only comment on the main differences between this
case and the multiplicative noise one. Thus, we will show

where for simplicity we have set:

g(X) = g(X, Q. €, U) = ¢(X) - EZ@XXX(X)'

< R+ D )R (w) ow cernifg|
€ similar to those of the previous sections. We note that
n 2 +20 max |z (6sw)| | R(w) obtaining the estimates requires more technicalities n ou
se(-10) o computations.
2w We start with the absorption ili?(l). Multiplying
=13( )’ equation {2) by vin L?(I) we obtain
where we have used
0 0 1d, 2, 2 2
[l ®ds < [ 1924 s 2tV el
< ﬁZ(w)/o Hw ||2dS = E/I[W’/(VX‘FO'Z*(QIQ))(B()} (VXX+ O'(B(Xz*(etw))vdx
= XXX

From the above proposmons we get that there exists &nd, in more details,

random ball Z(w) in L2(1) N H(1) N H2(1) which

absorbs any bounded non random subset it time O 1d, .5 )

for any to < min{Ti(w),To(w),t(w,p)}. The 2dt”VH + 82|V > + 2] w3
compactness of4(w) in L%(1) follows from the compact

embedding ofH2(1) in L2(1). Then, by Theoreni, we = GGY/V?(VQ&de- GGZYZ/Vxxvqade
conclude that 3' , '
Theorem 3. The equation(5) admits a random attractor +607Y /quf@xdx
Ag(w) inH.
+120Y / VeV V@A X
|
4 Additive noise +120%2 [\ugax+ oY [ qudx

In this final section we consider some remarks on thewhere we have set, for notational simplicity;= z*(6 w).

stochastic version oflj with additive noise and compare \ve observe that using integration by parts we have:
the results with that of multiplicative noise. The system

takes the form:
{ dX = (—€2A2X + IW"(OX) AX)dt+ op(x)dw(t),

X =Xx=0, ondl, :—GGY/vf((pde
X(to,X) = XO(X)7 :

60Y / V2V@dx+ 120Y / ViV d X
| I

B e < 60]Y/[| oo |13
whereo > 0 andg € H satisfiesgoux € L(1). As in the < [vill4 + 9022 | 2| |2
previous section we consider a transformation involving PP
the Orstein-Uhlenbeck process: < [Ivkllz + 907 =l gl |1V [T v
2
£
v(t) = X(t) — 0Z' (6 w)e. < ||VX||21+Z||VXXHZ+

(@© 2015 NSP
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Then, Then
2dt” H + & _”VXXH +||VXH4 2dtHVxH2+$2||Vxxx||2+6HVxVxx||
04 4 < O Y[ gl[[[vax!l + 6O 1| el eo [ Vix] [ VicVixx |
= Il IVI1Z + 6022 [waee VI ]2 N e
ps +60° Y[ |5 | e[| Vx|
+60 Y312 gex! V] +120|Y || @]l oo | [ Vx| || VicVix|
+120%Y2||V|[[|vx | || @]l o + Y| g} VI], +1202Y2| koo | o1 i | | Vx|
from which 42|Vl % + 20| || @iex ]| Vi |-
1d i ; 2. w2 ;
sgvIE+ —||vxx||2+||vx|\4< fa(t)lIvxl+ fa(t), Simply using 2b< -+ b we obtain
1d
where 20|tHvxl\2+£2||vxxxll2 < fa(t) [ wedl|? + fa(t),
4y4
fa(t) —2+1202Y2H<B<||m+37 [ where
and fa(t) := 5+902Y?||g|2 + 3602Y?|| |2,
a2y4 +120%Y2(| oo | el
fa(t) = T|\9|\2+906Y6H<B<Ho40|\fﬂ<x|\-
and

Finally, using ||| < |I|2||v/|2, we conclude that 2y

oY
% 2+ €2 v? < 1) fat) := ||9||2+UZYZH%HZ+906Y6H@|| g
a XX > )

Thus we conclude
1 ;2
h(t) := £(t)+ fa(t) d 2f(>
( ) il < =3

;Zus;glfoﬂg\;igt?éilgi% a:‘c?rlTr::grrler:s%%al\I;}étcci’otz?)tornee Ien e note that the use of the uniform Gronwall lemma is
previ : ' : L . P€Xossible using similar arguments to those of the previous
the details while we pass to obtain the inequality|fay|.

— : L . section such as the ergodic theorem.
By multiplying equation {2) by vix in L*(1) we arrive at We conclude with the inequality involving||vyy|-
1d

) 5 Multiplying equation (2) by vyxxxin H,
Vi1 + €2 V|
2 dt 1d
+§ /I [W//(VX"_ U@(zk(elw)ﬂ (Vxx+ 0Z" (6 ) @x) Vxd X 2dt

- % /lW//(VX +oz (G w) @() (VXX +0z (G w) @(X)Vxxxxdx

where

fa(t).

— || Vo1 2 + €2V 2

+aZ*(6ta))/|gvXde: 0.

In details +UZ*(9t°J)/|gxxVxde

%/[W”(VX—F 0QZ (8 w))] (Vax+ 0Z' (6 W) Gx) Vicxd X The term involving the potential can be written in details:
|

— 6]V 2 + 607 (B.w) /| Vi ol 6 /| iooodX+ 607 (6.) /| V2 @Bl
16027 (6w))2 /| @2 dx 16027 (6.w)]2 /| FViooodX
16037 (B w)? /I B P 16037 (Bw)]° /| B DoVl
+120(Z' (G w)) /I V2, g dx +1207' (6 w) /l BVxVoVsoood X
+1202)7' (B w))? /I ViV B Bexd X +12027' (B w))? /l B PoxVaoood X
2
—ZHVXXH —ZUZ*(Q[(A))/IC&XVXXdX —Z/IVxxVxxxde— Zaz*(etw)/lf&xvxxxxdxa
(@© 2015 NSP
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and can be estimated by
61 i | vl V| + 60Y 1| e | B e [ Vi1
+602Y 2|5 [ el | Vx|
+603Y3||(B<||020||(B<x“”Vxxxx“
+120Y [ ][0 || V| oo || Vicx | | Vicxse |
+1202Y2| koo | @ex] o | Vx| Vit
+2]| Vo2 + 20 || x| Vi -

Then, by using the estimate g (1), thatis||vy|| < Ry, the

interpolating inequalities
uxlleo < [l 2t /2,
and 2ab < a + b?, we have
d
&I\Vxxl\z < 5 (t)][vied|* + fo (1) Vil | + (1),

where

144R2
fo(t) = == (1+ 4052 @2).

72
f6(0) = 21+ 601l | e + 13 7Y

288 8
+ B laElenl + 5 ).

and

g2Y? 72
f7(t)=2< 7 ||@Jxx||2+gGGYBIIG&Hillc&xll2
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